动态规划练习(二)

动态规划练习(二)
动态规划练习(二)

动态规划练习(二)

——来自vijos

1、装箱问题

——(全国青少年信息学奥林匹克分区联赛NOIP2001普及组第四题原题,P1133题,文件名zhuangxiangwenti.pas)

描述:

有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积(正整数)。要求从n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。

输入格式:

第一行,一个整数,表示箱子容量;

第二行,一个整数,表示有n个物品;

接下来n行,分别表示这n个物品的各自体积。

输出格式:

一个整数,表示箱子剩余空间。

样例输入(——zhuangxiangwenti.in):

24

6

8

3

12

7

9

7

样例输出(——zhuangxiangwenti.out):

2、核电站问题(P1232题,文件名hedianzhan.pas)

描述:

一个核电站有N个放核物质的坑,坑排列在一条直线上。如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质。

现在,请你计算:对于给定的N和M,求不发生爆炸的放置核物质的方案总数。

输入格式:

输入文件只有一行,两个正整数N,M。

输出格式:

输出文件只有一个正整数,表示方案总数。

样例输入(hedianzhan.in):

4 3

样例输出(hedianzhan.out):

13

数据范围:对于100%的数据,n<=50,m<=5

3、能量项链

——(全国青少年信息学奥林匹克分区联赛NOIP2006第一题原题,P1312题,文件名nengliangxianglian.pas)

描述:

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为(Mars单位),新产生的珠子的头标记为m,尾标记为n。

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:

(4⊕1)=10*2*3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

输入格式:

输入文件的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当1≤i <N时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式:

输出文件只有一行,是一个正整数E(E≤2.1*109),为一个最优聚合顺序所释放的总能量。样例输入(nengliangxianglian.in):

4

2 3 5 10

样例输出(nengliangxianglian.out):

710

4、导弹拦截

——(全国青少年信息学奥林匹克分区联赛NOIP1999 经典问题,P1303,文件名:daodanlanjie.pas)

描述:

某国为了防御敌国的导弹袭击,研发出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试验阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入格式:

输入数据只有一行,该行包含若干个数据,之间用半角逗号隔开,表示导弹依次飞来的高度(导弹最多有20 枚,其高度为不大于30000 的正整数)。

输出格式:

输出数据只有一行,该行包含两个数据,之间用半角逗号隔开。第一个数据表示这套系统最多能拦截的导弹数;第二个数据表示若要拦截所有导弹至少要再添加多少套这样的系统。

样例输入(daodanlanjie.in):

389,207,155,300,299,170,158,65

样例输出(daodanlanjie.out):

6,1

动态规划例题

例1:机器负荷分配问题 某公司新购进1000台机床,每台机床都可在高、低两种不同的负荷下进行生产,设在高负荷下生产的产量函数为g(x )=10x (单位:百件),其中x 为投入生产的机床数量,年完好率为a =0.7;在低负荷下生产的产量函数为h(y)=6y (单位:百件),其中y 为投人生产的机床数量,年完好率为b=0.9。计划连续使用5年,试问每年如何安排机床在高、低负荷下的生产计划,使在五年内生产的产品总产量达到最高。 例2:某企业通过市场调查,估计今后四个时期市场对某种产品的需要量如下表: 时期(k) 1 2 3 4 需要量(d k ) 2(单位) 3 2 4 假定不论在任何时期,生产每批产品的固定成本费为3(千元),若不生产,则为零;生产单位产品成本费为1(千元);每个时期生产能力所允许的最大生产批量为不超过6个单位,则任何时期生产x 个单位产品的成本费用为: 若 0<x ≤6 , 则生产总成本=3十1·x 若 x =0 , 则生产总成本=0 又设每个时期末未销售出去的产品,在一个时期内单位产品的库存费用为0.5(千元),同时还假定第1时期开始之初和在第4个时期之末,均无产品库存。现在我们的问题是;在满足上述给定的条件下,该厂如何安排各个时期的生产与库存,使所花的总成本费用最低? 例3:设某企业在第一年初购买一台新设备,该设备在五年内的年运行收益、年运行费用及更换新设备的净费用如下表:(单位:万元) 年份(k) 役龄(t) 运行收益()k g t 运行费用()k r t 更新费用()k c t 第一年 0 22 6 18 第二年 0 1 23 21 6 8 19 22

动态规划基本原理

动态规划基本原理 动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目 需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经 不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采 取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了 一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供 选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可 以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策 略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最 短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可 能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点 必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离 加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析, 有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10,

POJ 动态规划题目列表

[1]POJ动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740(博弈), 1742, 1887, 1926(马尔科夫矩阵,求平衡), 1936,1952, 1953, 1958, 1959, 1962, 1975, 1989, 2018, 2029,2039, 2063, 2081, 2082,2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346, 2353,2355, 2356, 2385, 2392, 2424, 不易: 1019,1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707,1733(区间减法加并查集), 1737, 1837, 1850, 1920(加强版汉罗塔), 1934(全部最长公共子序列), 1937(计算几何), 1964(最大矩形面积,O(n)算法), 2138, 2151, 2161(烦,没写), 2178, 推荐: 1015, 1635, 1636(挺好的), 1671, 1682, 1692(优化), 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 1949, 2019, 2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411 状态 DP 树 DP 构造最优解四边形不等式单调队列 1015 Jury Compromise 1029 False coin 1036 Gangsters 1037 A decorative fence 1038 Bugs Integrated, Inc. 1042 Gone Fishing 1050 To the Max 1062 昂贵的聘礼 1074 Parallel Expectations 1080 Human Gene Functions 1088 滑雪 1093 Formatting Text 1112 Team Them Up! 1141 Brackets Sequence 1143 Number Game

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

动态规划之状态压缩

状态压缩 Abstract 信息学发展势头迅猛,信息学奥赛的题目来源遍及各行各业,经常有一些在实际应用中很有价值的问题被引入信息学并得到有效解决。然而有一些问题却被认为很可能不存在有效的(多项式级的)算法,本文以对几个例题的剖析,简述状态压缩思想及其应用。 Keywords 状态压缩、Hash、动态规划、递推 Content Introducti o n 作为OIers,我们不同程度地知道各式各样的算法。这些算法有的以O(logn)的复杂度运行,如二分查找、欧几里德GCD算法(连续两次迭代后的余数至多为 原数的一半)、平衡树,有的以)运行,例如二级索引、块状链表,再往上有O(n)、O(n p log q n)……大部分问题的算法都有一个多项式级别的时间复杂度上界1,我们一般称这类问题2为P (deterministic Polynomial-time)类问题,例如在有向图中求最短路径。然而存在几类问题,至今仍未被很好地解决,人们怀疑他们根本没有多项式时间复杂度的算法,NPC(NP-Complete)和NPH(NP-Hard)就是其中的两类,例如问一个图是否存在哈密顿圈(NPC)、问一个图是否不存在哈密顿圈(NPH)、求一个完全图中最短的哈密顿圈(即经典的Traveling Salesman Problem货郎担问题,NPH)、在有向图中求最长(简单)路径(NPH),对这些问题尚不知有多项式时间的算法存在。P和NPC都是NP(Non-deterministic Polynomial-time)的子集,NPC则代表了NP类中最难的一类问题,所有的NP类问题都可以在多项式时间内归约到NPC问题中去。NPH包含了NPC和其他一些不属于NP(也更难)的问题,NPC问题的函数版本(相对于判定性版本)一般是NPH的,例如问一个图是否存在哈密顿圈是NPC的,但求最短的哈密顿圈则是NPH的,原因在于我们可以在多项式时间内验证一个回路是否真的是哈密顿回路,却无法在多项式时间内验证其是否是最短的,NP类要求能在多项式时间内验证问题的一个解是否真的是一个解,所以最优化TSP问题不是NP的,而是NPH的。存在判定性TSP问题,它要求判定给定的完全图是否存在权和小于某常数v的哈密顿圈,这个问题的解显然可以在多项式时间内验证,因此它是NP 1请注意,大O符号表示上界,即O(n)的算法可以被认为是O(n2)的,O(n p log q n)可以被认为是O(n p+1)的。2在更正式的定义中,下面提到的概念都只对判定性问题或问题的判定版本才存在(NPH除外)。Levin给出了一个适用于非判定问题的更一般的概念,但他的论文比Cook的晚发表2年。

动态规划理论在城市规划中实践与应用

动态规划理论在城市规划中实践与应用 发表时间:2019-05-23T16:15:30.983Z 来源:《基层建设》2019年第4期作者:谢洁惠 [导读] 摘要:城市发展是一个涉及面广、影响因素多的复杂过程,过分强调终极蓝图的传统规划已无法为城市发展提供可行的指引与路径,故而动态规划思想在规划实践中得到应用,因此本文对动态规划理论在城市规划中的实践与应用进行了探讨。 云浮市城市规划设计院 527399 摘要:城市发展是一个涉及面广、影响因素多的复杂过程,过分强调终极蓝图的传统规划已无法为城市发展提供可行的指引与路径,故而动态规划思想在规划实践中得到应用,因此本文对动态规划理论在城市规划中的实践与应用进行了探讨。 关键词:动态规划理论;实践;应用;城市规划 传统城市规划是以土地利用控制为核心、以发展目标和理想愿景为导向的“静态规划”,强调终极蓝图的实现,却无法提供切实可行的城市发展指引与行动路径[1]。传统规划在实施过程中疲于应对,甚至被当作经济发展的绊脚石,城市规划编制方法和管理机制面临变革与创新需求,更加关注规划的过程性与灵活性成为规划工作现实的选择,进而导致从理想蓝图到动态规划的演进[2]。随着我国经济发展从“求量”到“求质”的转变,新的发展环境愈加迫切呼唤规划创新,因此本文对动态规划理论在城市规划中的实践与应用进行了探讨。 1 动态规划背景及理论概述 1.1 动态规划的起源 在城市规划领域,至少20世纪60年代西方规划理论界就提出了系统规划、结构规划、行动规划、程序规划、程序性规划、连续性规划、渐进性规划、适应性规划、恢复性规划等具有动态规划思想的理论。其中提出连续性规划的布兰奇认为城市规划过于重视规划的终极状态而忽视了规划过程,这种观点很好地诠释了传统规划对终极蓝图过分强调的本质。国内从20世纪90年代开始有学者关注动态规划,但直到2012年“城市规划——从终极蓝图到动态规划”论坛召开,才引起广泛的关注。 1.2 动态规划的内涵 目前,学术界对动态规划概念并未形成统一的认识,一般认为城市规划编制应重视规划目标与规划路径的结合,以增强规划对外部变化的适应能力。动态规划并不否认规划的静态性,实际上“静态”才是规划的本质特征,“动态”则是相对的,“动”和“静”是辩证统一的关系。动态规划重在过程引导,通过动静结合引导和控制城市发展[3]。需强调的是,动态规划并不是一种新的规划类型,而是一种有别传统规划的思维方法和程序。传统规划思维方法是静态线性的,规划目标是一次性的终极目标,规划程序是单向直线,规划目标与实施路径没有直接关联;而动态规划思维方法是动态网络化的,规划目标是分阶段的过程目标,规划程序是反复循环的,规划目标与实施路径是结合在一起的。 1.3 动态规划的特征 动态规划的典型特征有4个,即过程性、渐进性、循环性和灵活性。过程性即动态规划把规划看作过程而非成果,规划是形成方案到落实建设的过程。渐进性强调城市发展的渐进性过程,故而城市规划目标与任务需细化分解,通过确定阶段性任务和目标,逐步完成总体目标。循环性强调规划过程的曲折性,即规划遵循设计-评价-再设计-再评价的过程,通过不断修正完善逐步完成目标。灵活性体现了规划方法和内容的弹性,根据预测结果设计有弹性的方案,并在实施过程中分阶段修正建设偏差,确保实际建设按规划目标进行。 1.4 动态规划的方法 由于动态规划理论多元化,遵循不同理论的规划方法也必然有差别,现以行动规划方法为例说明。某地以控规作为规划审批的平台和管理的依据,以行动规划作为协调工具,用于控规编制和项目审批的参考依据。控规实施过程中发现不适应发展的内容,通过行动规划进行调节修正,并通过动态维护保障控规的动态化。当出现影响控规布局的建设项目或相关部门提出新要求时,及时启动控规修改程序。由于控规处于不断动态调整状态,所以它是一个循环往复过程。规划内容随城市生长不断更新和完善,体现了有机生长的动态设计过程和全周期的评价更新过程。 2 动态规划理论在城市规划中的应用与实践 2.1 基于分期布局的动态规划 城镇发展是一个复杂连续的过程,其发展目标、发展道路、产业结构调整均具有不确定性,传统规划模式常与城镇发展过程脱节,用地布局也难以反映市场需求,所以规划方式需更新。 相比大城市,城镇经济规模较小,经济发展更具灵活性,尤其适合各种动态规划方法。分期布局是指按照城镇发展规律将总体规划分为若干期,通过分析合理规模确定发展空间,而时间与空间无严格对应关系,根据空间发展需要确定大致时间。在规划过程中,应用门槛理论、集聚扩散理论、外部形态演化过程理论对分期布局进行合理分段,第一阶段为集聚阶段,第二阶段为扩散阶段。发展规模受制于城镇自然环境、资源条件及与周围地区的关系,以城镇化率70%作为合理规模。用地布局是在城镇总体规划基本架构基础上所做出的分阶段结构性布局。为适应城镇动态发展需要,实施过程中有较大弹性。例如某城镇现时人口为10万,预计达到70%城镇化率时的人口规模不超过35万,发展年限大约在40年后。根据合理规模划分6个分期,再按时序进行排队,使每个分期布局相对完整,相邻分期之间布局相互衔接。确定每个分期的发展重点及与已建成区的关系,明晰产业区、居住区、生态绿化区的结构布局关系,明确城镇中心区的新建、扩建、改造内容等。分期布局规划的意义在于,追求动态完整,确保每个分期布局合理,兼顾远、中、近各阶段发展;每个分期发展重点不一样,例如有的分期以新区发展为主,另一个分期可能以旧城改造为主;重视发展时序的同时,注重特殊因素的灵活处理。 2.2 基于滚动性规划的动态规划 滚动性规划是指按照城镇总体规划要求,并根据城镇经济社会发展特点,确定近期建设的滚动性规划。通常,近期建设规划编制周期为一年,每年编制后3年的建设规划。由于滚动性规划中有部分内容是重复的,上一年未完成的项目、用地和基础设施等自动滚动到下一年,而规划始终处于修订和完善之中,不像常规做法那样,完成了1个建设周期才编制下一周期的规划,滚动性规划能保持规划的动态性与连续性。制定滚动性规划时,合理确定近期目标是重点,一般可通过寻找城镇近期经济发展的突破口来确定,只要认真分析城镇发展阶段和机遇条件,不难确定城镇近期经济发展目标。相关理论包括历史积累效应触发机制、小区域联动效应发展机制、大型建设项目随动效应等。以某城镇滚动性规划编制为例,分析经济与用地统计数据的相关性,再据此确定城镇年度用地规模,即根据土地利用效益来确定建设用地使用量。如果效益好,可以适当增加土地投放量;反之,则需要控制土地市场投放量。接着确定城镇建设项目,为此可根据城镇过去

动态规划状态转移方程

1.资源问题1 -----机器分配问题 F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2.资源问题2 ------01背包问题 F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]); 3.线性动态规划1 -----朴素最长非降子序列 F[i]:=max{f[j]+1} 4.剖分问题1 -----石子合并 F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]); 5.剖分问题2 -----多边形剖分 F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]); 6.剖分问题3 ------乘积最大 f[i,j]:=max(f[k,j-1]*mult[k,i]); 7.资源问题3 -----系统可靠性(完全背包) F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]} 8.贪心的动态规划1 -----快餐问题 F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3} 9.贪心的动态规划2 -----过河 f[i]=min{{f(i-k)} (not stone[i]) {f(i-k)}+1} (stone[i]); +贪心压缩状态 10.剖分问题4 -----多边形-讨论的动态规划 F[i,j]:=max{正正 f[I,k]*f[k+1,j]; 负负 g[I,k]*f[k+1,j]; 正负 g[I,k]*f[k+1,j]; 负正 f[I,k]*g[k+1,j];} g为min 11.树型动态规划1 -----加分二叉树 (从两侧到根结点模型)

动态规划基本原理

动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析,

有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10, 所以A到D的最短距离是10,最短路径是A→B1→C2→D。 二、动态规划的术语 1.阶段 把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k 表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。 在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。 2.状态 状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。 在前面的例子中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。 过程的状态通常可以用一个或”一组数”来描述,称为状态变量。一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。 当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。状态变量取值的集合称为状态集合。 3.无后效性 我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发

3 (修改)大规模状态空间中的动态规划和强化学习问题

3 大规模状态空间中的动态规划和强化学习问题 本章我们将讨论大规模状态空间中的动态规划和强化学习问题。对于这类问题,我们一般很难求得问题的精确解,只能得到问题的近似解。前面章节所介绍的一些算法,如值迭代、策略迭代和策略搜索,无法直接用于这类问题。因此,本章将函数近似引入这些算法,提出三类基于函数近似的算法版本,分别是近似值迭代、近似策略迭代和近似策略搜索。本章将从理论和实例两个角度分析算法的收敛性,讨论如何获取值函数逼近器的方法,最后比较分析三类算法的性能。 3.1 介绍 第二章详细介绍了DP/RL中三类经典算法,这三类算法都需要有精确的值函数及策略表示。一般来说,只有存储每一个状态动作对回报值的估计值才能得到精确地Q值函数,同样V值函数只有存储每一个状态的回报值的估计值才能得到;精确的策略描述也需要存储每一个状态对应的动作。如果值函数中某些变量,比如某些状态动作对、状态等,存在很多个或者无穷多个潜在值(又或者这些值是连续的),那么我们就无法精确描述对应的Q值函数或者V值函数,因此,考虑将值函数和策略通过函数近似的方式来表示。由于实际应用中大部分问题都存在大规模或者连续状态空间,因此,函数近似方法是求解动态规划和强化学习问题的基础。 逼近器主要可以分为两大类:带参的和非参的。带参的逼近器主要是从参数空间到目标函数空间的映射。映射函数及参数的个数由先验知识给定,参数的值由样本数据进行调整。典型的例子是对一组给定的基函数进行加权线性组合,其中权重就是参数。相比之下,非参的逼近器通过样本数据直接得到。本质上,非参的函数逼近器也是含带参数的,只是不像带参的函数逼近器,参数的个数及参数的值直接有样本数据决定。例如,本书中所讨论的基于核函数的逼近器就是带参数的函数逼近器,它为每一个数据点定义一个核函数,并对这些核函数做加权线性组合,其中权重就是参数。 本章主要对大规模状态空间中动态规划和强化学习问题进行广泛而深入的讨论。第二章中所介绍的三类主要算法,值迭代、策略迭代和策略搜索,将与函数近似方法相结合,获得三类新的算法,分别是近似值迭代、近似策略迭代以及近似策略搜索。本章将从理论和实例两个角度讨论算法的收敛性,并对比分析三类算法的性能。关于值函数近似与策略逼近的一些其他重要问题,本章也将给予讨论。为了帮助读者更好的阅读本章的内容,图3.1给出一个本章的内容脉络图。

动态规划练习试题和解答

动态规划练习题 [题1] 多米诺骨牌(DOMINO) 问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。顶行和底行的差值是2。这个差值是两行点数之和的差的绝对值。每个多米诺骨牌都可以上下倒置转换,即上部变为下部,下部变为上部。 现在的任务是,以最少的翻转次数,使得顶行和底行之间的差值最小。对于上面这个例子,我们只需翻转最后一个骨牌,就可以使得顶行和底行的差值为0,所以例子的答案为1。 输入格式: 文件的第一行是一个整数n(1〈=n〈=1000〉,表示有n个多米诺骨牌在桌面上排成一行。接下来共有n行,每行包含两个整数a、b(0〈=a、b〈=6,中间用空格分开〉。第I+1行的a、b分别表示第I个多米诺骨牌的上部与下部的点数(0表示空)。 输出格式: 只有一个整数在文件的第一行。这个整数表示翻动骨牌的最少次数,从而使得顶行和底行的差值最小。 [题2] Perform巡回演出 题目描述: Flute市的Phlharmoniker乐团2000年准备到Harp市做一次大型演出,本着普及古典音乐的目的,乐团指挥L.Y.M准备在到达Harp市之前先在周围一些小城市作一段时间的巡回演出,此后的几天里,音乐家们将每天搭乘一个航班从一个城市飞到另一个城市,最后才到达目的地Harp市(乐团可多次在同一城市演出). 由于航线的费用和班次每天都在变,城市和城市之间都有一份循环的航班表,每一时间,每一方向,航班表循环的周期都可能不同.现要求寻找一张花费费用最小的演出表. 输入: 输入文件包括若干个场景.每个场景的描述由一对整数n(2<=n<=10)和k(1<=k<=1000)开始,音乐家们要在这n个城市作巡回演出,城市用1..n标号,其中1是起点Flute市,n是终点Harp市,接下来有n*(n-1)份航班表,一份航班表一行,描述每对城市之间的航线和价格,第一组n-1份航班表对应从城市1到其他城市(2,3,...n)的航班,接下的n-1行是从城市2到其他城市(1,3,4...n)的航班,如此下去. 每份航班又一个整数d(1<=d<=30)开始,表示航班表循环的周期,接下来的d个非负整数表示1,2...d天对应的两个城市的航班的价格,价格为零表示那天两个城市之间没有航班.例如"3 75 0 80"表示第一天机票价格是75KOI,第二天没有航班,第三天的机票是80KOI,然后循环:第四天又是75KOI,第五天没有航班,如此循环.输入文件由n=k=0的场景结束. 输出: 对每个场景如果乐团可能从城市1出发,每天都要飞往另一个城市,最后(经过k天)抵达城市n,则输出这k个航班价格之和的最小值.如果不可能存在这样的巡回演出路线,输出0. 样例输入: 样例输出:

动态规划的原理及应用

动态规划的原理及应用 班级:计科1302班 小组成员:王海涛蔡佳韦舒 蒋宪豪尹卓 完成时间:2015年5月26日

动态规划的原理及应用 学生:算法设计第5组,计算机系 指导教师:甘靖,计算机系 摘要:动态规划是解决多阶段决策过程最优化问题的一种方法。特点是把多阶段决策问题变换为一系列相互联系的单阶段问题,然后逐个加以解决。其基本思想就是把全局的问题化为局部的问题,为了全局最优必须局部最优,适用于在解决问题过程中需要多次重复解决子问题的问题。其应用领域广泛,涉及到管理学、经济学、交通、军事和计算机等多个领域,将动态规划思想正确地应用于实践,将对我们的生活带来便利,甚至带给我们的社会和国家以保障。 关键词:动态规划;最优决策;应用;领域 The Principle and Application of Dynamic Programing The dynamic programing is a way to solve optimization problem in the process of multi-stage decision,whose feature is alter the multi-stage decision problems to single phase problems which are connected with each other,and then solve them one by one.The basic idea is to change the overall problem into partcial problem.And the partcial one must keep the best in order to promise the quality of overall one,which splies to repeatedly solving subproblem throughout the whole process.It is spreading to many fields,like management,economics,traffic,military and computer. Put the idea of dynamic programing correctly into practice will bring a lot of convenience to our daily life,our society as well as our country.

动态规划经典教程

动态规划经典教程 引言:本人在做过一些题目后对DP有些感想,就写了这个总结: 第一节动态规划基本概念 一,动态规划三要素:阶段,状态,决策。 他们的概念到处都是,我就不多说了,我只说说我对他们的理解: 如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。 下面举个例子: 要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。 一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。 经过这个例子相信大家对动态规划有所了解了吧。 下面在说说我对动态规划的另外一个理解: 用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。这样对图求最优路径就是动态规划问题的求解。 二,动态规划的适用范围 动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢? 一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件: 最优子结构(最优化原理) 无后效性 最优化原理在下面的最短路径问题中有详细的解答; 什么是无后效性呢? 就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。 而求状态N时有用到了状态i这样求解状态的过程形成了环就没法用动态规划解答了,这也是上面用图论理解动态规划中形成的图无环的原因。 也就是说当前状态是前面状态的完美总结,现在与过去无关。。。 当然,有是换一个划分状态或阶段的方法就满足无后效性了,这样的问题仍然可以用动态规划解。 三,动态规划解决问题的一般思路。 拿到多阶段决策最优化问题后,第一步要判断这个问题是否可以用动态规划解决,如果不能就要考虑搜索或贪心了。当却定问题可以用动态规划后,就要用下面介绍的方法解决问题了:(1)模型匹配法: 最先考虑的就是这个方法了。挖掘问题的本质,如果发现问题是自己熟悉的某个基本的模型,就直接套用,但要小心其中的一些小的变动,现在考题办都是基本模型的变形套用时要小心条件,三思而后行。这些基本模型在先面的分类中将一一介绍。 (2)三要素法 仔细分析问题尝试着确定动态规划的三要素,不同问题的却定方向不同: 先确定阶段的问题:数塔问题,和走路问题(详见解题报告) 先确定状态的问题:大多数都是先确定状态的。 先确定决策的问题:背包问题。(详见解题报告) 一般都是先从比较明显的地方入手,至于怎么知道哪个明显就是经验问题了,多做题就会发现。 (3)寻找规律法: 这个方法很简单,耐心推几组数据后,看他们的规律,总结规律间的共性,有点贪心的意思。 (4)边界条件法 找到问题的边界条件,然后考虑边界条件与它的领接状态之间的关系。这个方法也很起效。 (5)放宽约束和增加约束 这个思想是在陈启锋的论文里看到的,具体内容就是给问题增加一些条件或删除一些条件使问题变的清晰。 第二节动态规划分类讨论

动态规划习题

第七章动态规划 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。 动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。 §7.1 动态规划的基本理论 1.1多阶段决策过程的数学描述 有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

相关文档
最新文档