微生物学微生物与基因工程

基因工程的发展与前景

基因工程的发展与前景 摘要:基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。本文将从基因工程的概况、发展、应用与前景进行介绍和总结。 关键词:基因工程;发展;前景 1 基因工程的概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术。是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔生医奖颁给发现DNA 限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。2000年,国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程。 2 基因工程的发展 1860至1870年,奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年,丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年,3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年,美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年,科学家成功分离出第一个基因。 1980年,科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年,科学家首次培育出世界第一个转基因植物转基因烟草。 1988年,K.Mullis发明了PCR技术。 1990年10月,被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1994年,中科院曾邦哲提出转基因禽类金蛋计划和“输卵管生物反应器

第九章_微生物与基因工程

第九章微生物与基因工程 计划学时:2 重点:基因工程的基本操作过程,基因工程的应用。 一、基因工程的发展历史 基因工程是在本世纪70年代初开始出现的。三项关键技术的建立为基因工程奠定了基础,这三项技术是:DNA的特异切割、DNA的分子克隆和DNA的快速测序。 早在50年代,阿尔伯(Arber)的实验室就已发现大肠杆菌能够限制侵染的噬菌体,60年代末进而证明大肠杆菌细胞内存在修饰–限制系统,即给宿主自身DNA打上甲基化标记并切割入侵的噬菌体DNA。1970年史密斯(Smith)等人从流感嗜血杆菌(Hemophilus influenzae)中分离出特异切割DNA的限制酶。次年,内森斯(Nathans)等人用该酶切割猴病毒SV40 DNA,最先绘制出DNA的限制图谱(restriction map)。1973年史密斯和内森斯提出修饰–限制酶的命名法。限制性核酸内切酶可用以在特定位点切割DNA,限制酶的发现使分离基因成为可能。为表彰上述科学家在发现和使用限制酶中的功绩,1978年的诺贝尔医学奖被授予阿尔伯、内森斯和史密斯。 1973年,科恩(Cohen)和博耶(Boyer)等将pSC101质粒作为载体与R质粒的四环素和卡那霉素的抗性基因相融合,并将重组体DNA转化大肠杆菌,首次实现了DNA的分子克隆。 1975年桑格(Sanger)实验室建立了酶法快速测定DNA序列的技术。1977年吉尔伯特(Gilbert)实验室又建立了化学测定DNA序列的技术。分子克隆和测序方法的建立,使重组DNA技术系统得以产生。1980年诺贝尔化学奖被授予伯格、吉尔伯特和桑格,以肯定他们在发展DNA重组与测序技术中的贡献。 1977年板仓(Itakura)和博耶用人工合成的生长激素释放抑制素(Somatostatin, SMT)基因构建表达载体,并在大肠杆菌细胞内表达成功,得到第一个基因工程的产品。1982年,在建立转基因植物和转基因动物的技术上均获得重大突破。借助土壤农杆菌Ti质粒可将外源基因导入双子叶植物细胞内并发生整合,从而使植株获得新的遗传性状。同年通过基因工程方法把大鼠生长激素基因注射到小鼠受精卵的雄核中,然后移植到母鼠子宫内,由此培育出巨型小鼠。仅仅10年时间,基因工程在实践中迅速成熟,日趋完善。 二、基因工程的基本过程 生物的遗传性状是由基因(即一段DNA分子序列)所编码的遗传信息决定的。基因工程操作首先要获得基因,才能在体外用酶进行“剪切”和“拼接”,然后插入由病毒、质粒或染色体DNA片段构建成的载体,并将重组体DNA转入微生物或动、植物细胞,使其复制(无性繁殖),由此获得基因克隆(clone,无性繁殖系的意思)。基因还可通过DNA聚合酶链式反应(PCR)在体外进行扩增,借助合成的寡核苷酸在体外对基因进行定位诱变和改造。克隆的基因需要进行鉴定或测序。控制适当的条件,使转入的基因在细胞内得到表达,即能产生出人们所需要的产品,或使生物体获得新的性状。这种获得新功能的微生物称为“工程菌”,新类型的动、植物分别称为“工程动物”和“工程植物”,或“转基因动物”和“转基因植物”。基因工程操作过程大致可归纳为以下主要步骤: ①分离或合成基因; ②通过体外重组将基因插入载体;

医学微生物学期末考试之名词解释答

答案 一、名词解释: 1、L型细菌:亦称细菌细胞壁缺陷型,是由于细菌胞壁的肽聚糖结构受理化因素或生物因素的破坏或合成被抑制所致。此种细菌在普通环境下会死亡,但在高渗环境下仍可存活。 2、中介体:为细菌部分细胞膜内陷、折叠、卷曲形成的囊状结构,多见与革蓝染色阳性菌。其功能类似于真核细胞的线粒体,故又称为“拟线粒体”。 3、质粒:是存在于细菌细胞质中的染色体以外的遗传物质,为闭合环状的双链DNA,它控制细菌的某些特定的遗传性状(如耐药、毒力等)。 4、芽胞:是细菌体在特定的情况下脱水形成的一个空泡,具有多层致密的结构,抵抗力特别强。杀灭芽孢最有效的方法是高压蒸汽灭菌法。 5、热原质:又称为致热原,将它注入动物或人的机体可引起发热,它的成分是革蓝染色阴性菌的LPS。热原质耐热,但不易挥发,可用蒸馏的方法祛除。 6、消毒:是指杀灭病原微生物的方法。 7、溶原性转换:细菌从温和噬菌体获得新的遗传性状。 8、转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状。可分为普遍性转导和局限性转导。9、正常菌群:指定居于人的体表及与外界相通的腔道中微生物群,在一般情况下,对机体有益无害。 10、败血症:是指病原菌侵入血流,并在其中大量生长繁殖,产生毒性代谢产物,引起严重的全身性中毒症状。 11、人工自动免疫:用人工接种的方法给机体输入抗原性物质(如疫苗、类毒素等),使机体免疫系统因受抗原刺激而产生体液和/或细胞免疫应答的过程。12、SPA:存在于90%金黄色葡萄球菌表面,可与人及多种哺乳动物IgG分子的Fc段非特异性结合。SPA的这一特点可增强葡萄球菌的抗吞噬能力。

医学微生物学期末考试模拟试卷(含答案)

医学微生物学期末考试模拟试卷(含答案)一、选择题(每题1分, 共30分) 【A型题】 1. 流行性乙型脑炎的传播媒介是 A. 三带喙库蚊 B. 伊蚊 C. 蜱 D. 虱 E. 蚤 2.肝炎病毒中核酸类型属于DNA的是 A. HAV B. HBV C. HCV D. HDV E. HEV 3.易发生整合感染的病毒是 A. 流行性感冒病毒 B. 轮状病毒 C. 巨细胞病毒 D. 鼻病毒 E. 冠状病毒 4. 可直接测量病毒体大小的方法是 A. 光学显微镜观察 B. 电子显微镜观察 C. X线衍射法 D. 超速离心法 E. 超过滤法 5. 决定病毒体感染细胞的关键物质是 A. 刺突 B. 衣壳 C. 包膜 D.核酸 E. 核蛋白 6. 干扰素的本质是 A. 病毒抗原 B. 受病毒抗原刺激后产生的抗体 C. 病毒基因编码的蛋白

D. 抗病毒化学制剂 E. 受病毒感染后细胞产生的蛋白质 7. 抗病毒中和抗体的作用是 A. 激活补体杀伤靶细胞 B. 降解病毒核酸 C. 病毒失去血凝 性 D. 病毒失去感染性 E. 病毒失去免疫原性 8. 内毒素是下列哪种细菌的主要致病物质 A. 金黄色葡萄球菌 B.肺炎链球菌 C.乙型溶血性链球 菌 D. 淋病奈瑟菌 E. 脑膜炎奈瑟菌 9. 病毒的致病机制不包括 A. 杀细胞性感染 B. 整合感染 C. 稳定状态感染 D. 侵袭感染 E.免疫病理作用 10. 病毒抗原检测可采用下列哪种方法 A. 核酸杂交 B. PCR C. ELISA D. 血凝试验 E. PFU 11. 现已用于临床预防病毒性传染病的人工主动免疫制剂是 A. 基因工程疫苗 B. 抗独特型疫苗 C. DNA疫苗 D. 抗病毒血清 E. DNA重组疫苗 12. 肠道致病菌与非致病菌的初步鉴别试验选用 A. 吲哚试验 B. 尿素分解试验 C. 乳糖发酵试验

基因工程与微生物

基因工程与微生物 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 一、基因工程的概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术。是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔生医奖颁给发现DNA 限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。2000年,国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程 二、基因工程的基本步骤 (1)提取目的基因 获取目的基因是实施基因工程的第一步。如植物的抗病(抗病毒抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。 要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫抗病毒的基因都可以用上述方法获得。 用鸟枪法获得目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。又由于真核细胞的基因含有不表达的DNA片段,一般使用人工合成的方法。 目前人工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA 为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,

医学微生物学考试试卷(附答案)汇总

医学微生物学考试试卷(A) (临床医学本科、影像医学本科、中医药学本科、实验技术本科、预防医学本科) 班级学号姓名 注意事项: 1.在试卷上写上姓名、班级。在答题卡上填上学号,将相应的数字涂黑,并写上班级、姓名和试卷类型(A卷/B卷)。交卷时必须将答题卡与试卷一起上交,否则以零分计算! 2.本份试卷由基础知识题和病例分析题组成,共150个选择题,请按题目要求,在备选答案中选择一个最佳答案,并在答题卡上将相应的字母涂黑,做在试卷上无效。 3.考试时请严格遵守考场纪律,原则上不允许上厕所。 第一部分、A型选择题 (由一题干和5个备选答案组成,请选出一个最佳答案。共90个选择题) 1.哪种疾病的病原体属于非细胞型微生物: A.疯牛病 B.梅毒 C.结核病 D.沙眼 E.体癣 2.细菌属于原核细胞型微生物的主要依据是: A.单细胞 B.二分裂方式繁殖 C.对抗生素敏感 D.有由肽聚糖组成的细胞壁 E.仅有原始核结构,无核膜 3.革兰阳性菌细胞壁: A.肽聚糖含量少 B.缺乏五肽交联桥 C.对溶菌酶敏感 D.所含脂多糖与致病性有关 E.有蛋白糖脂外膜 4.青霉素杀菌机制是: A.干扰细胞壁的合成 B.与核糖体50S亚基结合,干扰蛋白质合成 C.影响核酸复制 D.与核糖体30S亚基结合,干扰蛋白质合成 E.损伤细胞膜 5.有关“细菌鞭毛”的叙述,哪一项是错误的: A.与细菌的运动能力有关 B.许多革兰阳性菌和阴性菌均有鞭毛 C.在普通光学显微镜下不能直接观察到 D.可用于细菌的鉴定 E.将细菌接种在固体培养中有助于鉴别细菌有无鞭毛(半固体) 6.有关“芽胞”的叙述,错误的是: A.革兰阳性菌和阴性菌均可产生(都是阳性) B.不直接引起疾病 C.对热有强大的抵抗力 D.代谢不活跃 E.通常在细菌处于不利环境下形成 7.用普通光学显微镜油镜观察细菌形态时,总放大倍数为: A.10倍 B.100倍 C.400倍 D.900~1000倍 E.10000倍 8.脑膜炎奈瑟菌和肺炎链球菌经结晶紫初染、碘液媒染、95%乙醇脱色后,菌体分别呈: A.红色和紫色 B.紫色和紫色 C.紫色和无色 D.无色和无色 E.无色和紫色 9.革兰染色法是最常用的一种染色法,其实际意义不包括:

2020年(生物科技行业)微生物工程

(生物科技行业)微生物工 程

微生物工程 壹.名词解释 微生物工程:指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的壹种技术。 拮抗作用:当多种物质联合作用时,其中的壹种物质会通过壹定渠道降低另壹种物质的作用(通常是有害作用),使机体维持平衡状态。例如当人体血糖含量较高时,胰岛素分泌增加,胰高血糖素分泌减少,俩种激素桔抗作用使血糖的含量降低。当血糖含量较低时,胰岛素分泌减少,胰高血糖素分泌增加,结果是使血糖的含量升高。 生物测定:利用某些生物对某些物质(如维生素、氨基酸)的特殊需要,或对某些物质(如激素、抗生素、药物等)的特殊反应来定性、定量测定这些物质的方法。载体:能够插入核酸片段、能携带外源核酸进入宿主细胞,且在其中进行独立和稳定的自我复制的核酸分子。 质粒:细胞中独立于染色体之外,能够独立复制的共价闭合环状DNA. 菌落原位杂交:是将细菌从培养平板转移到硝酸纤维素滤膜上,然后将滤膜上的菌落裂菌以释出DNA。将DNA烘干固定于膜上和放射性同位素标记过的探针杂交,放射自显影检测菌落杂交信号,且和平板上的菌落对位。 效价:抗生素的计量单位,是抗生素等生物制品有效成分含量高低的指标,能够通过仪器的方法测得。 复制起始位点:指在DNA转录时RNA聚合酶和之结合,起始转录的特定核苷酸序列,决定转录起始位点和转录频率。 BOD(生物需氧量):通常表示水中有机物等需氧污染物质含量的壹个综合指示。水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所

消耗水中溶解氧的总数量。 半连续发酵:指在发酵过程的后期周期性地放出部分含有产物的发酵液,然后再补加相同体积的新鲜培养基的发酵方法。这种发酵能够重复多次。 半连续发酵semi-continuousfermentation:是指在补料-分批发酵的基础上,间歇地放掉部分发酵液的培养方法。 补充发酵:指在发酵过程中以壹定的速率排出成熟的发酵液,同时以相同的速率加入新鲜培养基,使整个发酵过程基本维持在稳定期的发酵方法。 抗生素:是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的壹类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。 下游处理:特指生物工程产品生产程序中的后期加工。指的是生物产品特别是发酵液的分离、纯化、加工、剂型制备等,直至达到产品质量要求的整个处理过程。 二.简答题 1.基因工程在微生物工程的应用表当下哪些方面?每壹方面举例1-2个说明。答:①生产药物疫苗中的引用:这类基因工程药物的生产是当前基因工程最重要的应用领域,发展迅速。例如:有抗肿瘤.抗病毒功能干扰素.白细胞等;用于生理调节的胰岛素和其他生长激素等。 ②改造传统工业发酵菌种:例如生产抗生素.氨基酸.有机酸.酶制剂等,这类菌种基本上都要经过长期的诱变或重组育种,生产性能很难再大幅度的提高。要打破这壹局面,必须使用基因工程的手段才能解决。目前在氨基酸.酶制剂等领域已有大量成功的例子。 ③环境保护:在环境保护方面,利用基因工程可培育同时能分解多种有毒物质

最新医学微生物期末考试

登陆QQ邮箱,对比重点是否有出路 1、败血症:病原菌侵入血流,并在其中生长繁殖,同时,产生毒素,引起严重中毒症状。 2、病原微生物:对人类和动物、植物具有致病性的微生物称病原微生物。 3、潜伏感染:宿主与致病菌在相互作用过程中暂时处于平衡状态,病菌潜伏在病灶内或某些特殊组织中,一般不出现在血液、分泌物或排泄物中,一旦机体抵抗力下降,潜伏致病菌大量繁殖,即可使疾病复发。 4、菌群失调:是指在原微生境或其他有菌微生境内正常微生物群发生的定量和定性的异常变化。这种变化主要是量的变化,故也称比例失调。 5、消毒:杀灭物体上的病原微生物,但不一定能杀死芽胞的方法 6、无菌操作:防止微生物进入人体或其他物体的操作方法。 7、条件致病微生物:某些微生物在正常情况下不致病,但在正常菌群当其菌群失调、定位转移、宿主转换或宿主抵抗力的严重降低时,可引起疾病,称条件致病菌。 8、显性感染:当机体抗感染的免疫力较弱,或侵入的致病菌数 量较多、毒力较强,以致机体的组织细胞受到不同程度的损害,生理功能也发生改变,并出现一系列的临床症状和体症。 9、菌落:单个细菌经培养后分裂繁殖成的一堆肉眼可见的细菌集团 10、毒血症:致病菌侵入宿主体内后,只在机体局部生长繁殖,病菌不进入 血循环,但其产生的外毒素入血。外毒素经血到达易感的组织和细胞,引起特殊的毒性症状。 11、半数感染量:表示在规定时间内,通过指定感染途径,使一定体重或年龄的某种动物半数感染所需最小细菌数或毒素量。 12、灭菌:杀灭物体上所有微生物,包括病原微生物、非病原微生物和芽胞的方法。 13、微生物:自然界中一些个体微小、结构简单、肉眼直接看不到 的微小生物。 14、CPE:即致细胞病变效应,是指病毒感染引起的、光学显微镜下可见的受感染组织细胞的形态学改变。 15、侵袭力:是指致病菌突破机体的防御功能,在体内定居、繁殖和扩散的能力。 与细菌的表面结构和产生的胞外酶有关 16、肥达试验:系用已知的伤寒杆菌O、H抗原和甲、乙型副伤寒杆菌的H抗原,与不同稀释度的待检血清作定量凝集试验,根据抗体的含量和动态变化以辅助临床诊断伤寒、副伤寒的一种血清学试验。 17、菌群失调症:是指在原微生境或其他有菌微生境内正常微生物群发生的定量和定性的异常变化。这种变化主要是量的变化,故也称比例失调。 18、结核菌素试验:属于迟发型超敏反应,用结核菌素试剂做皮肤试验,感染过结核分枝杆菌或接种过卡介苗者一般都出现阳性反应 19、慢发病毒感染:病毒或致病因子感染后,经过很长的潜伏期,有的可达数年或数十年之久,以后出现慢性进行性疾病,直至死亡。如HIV的艾滋病和麻疹病毒的亚急性脑。。 20、溶原性转换:是指当噬菌体感染细菌时,宿主菌染色体中获得了噬菌体的DNA片段,使其成为溶原状态时而使细菌获得新的性状。 1、简述破伤风梭菌的致病机制及防治原则。 感染条件:伤口需形成厌氧微环境,伤口窄而深(如刺伤),伴有泥土或异物感染;大面积创伤、烧伤,坏死组织多,局部组织缺血;同时有需氧菌或兼性厌氧菌混合感染。

微生物与生化药学 问答题

微生物与生化药学问答题 第二章基因工程制药 1. 利用基因工程技术生产药物的优点? 答:1、大量生产过去难以获得的生理活性蛋白和多肽,为临床使用提供有效的保障; 2、可以提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入的研究, 从而扩大这些物质的应用范围; 3、可以发现、挖掘更多的内源性生理活性物质; 4、内源生理活性物质在作为药物使用时存在的不足之处,可通过基因工程和蛋白质工 程进行改造和去除; 5、可获得新型化合物,扩大药物筛选来源。 2. 基因工程药物制造的主要步骤? 答:目的基因的克隆; 构建DNA 重组体; 将DNA 重组体转移入宿主菌构建工程菌; 工程菌的发酵; 外源基因表达产物的分离纯化; 产品的检验等。 3. 化学合成目的基因的先决条件? 答:较小的蛋白质或多肽的编码基因可以采用人工化学合成,其先决条件:已知目的基因的核苷酸序列或蛋白质的氨基酸序列,按相应的密码子推导出DNA 的碱基序列。

4. 人工合成基因的限制有哪些? 答:1、不能合成太长的基因,50~60 个碱基对; 2、人工合成碱基对时,遗传密码的简并会为选择密码带来很大的困难: 3、费用高。 5. 基因工程宿主菌应满足那些要求?目前应用最广泛的宿主菌有哪些? 答:1、容易获得较高浓度的细胞; 2、能利用廉价易得的原料; 3、不致病、不产生内毒素; 4、发热量低,需氧低,适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA 重组技术操作; 7、产物的产量、产率高,产物容易提取。 宿主菌可分两大类:1、原核细胞:大肠杆菌、枯草芽孢杆菌、链霉菌; 2、真核细胞:酵母菌、丝状真菌、哺乳动物细胞。 6. 表达载体须具备哪些条件?常用载体有哪些? 答:1、能够在宿主细胞中复制并稳定地保存。 2、具多个限制酶切点,但每种切口最好只有1 个,以便与外源基因连接。 3、具有某些标记基因,便于进行筛选。 4、所产生的mRNA 必须有翻译的起始信号。

医学微生物学考试试卷(A)(附答案)

医学微生物学考试试卷(A)(附答案) (临床医学本科、影像医学本科、中医药学本科、实验技术本科、预防医学本科)班级学号姓名 注意事项: 1.在试卷上写上姓名、班级。在答题卡上填上学号,将相应的数字涂黑,并写上班级、姓名和试卷类型(A卷/B卷)。交卷时必须将答题卡与试卷一起上交,否则以零分计算! 2.本份试卷由基础知识题和病例分析题组成,共150个选择题,请按题目要求,在备选答案中选择一个最佳答案,并在答题卡上将相应的字母涂黑,做在试卷上无效。 3.考试时请严格遵守考场纪律,原则上不允许上厕所。 第一部分、A型选择题 (由一题干和5个备选答案组成,请选出一个最佳答案。共90个选择题) 1.哪种疾病的病原体属于非细胞型微生物: A.疯牛病 B.梅毒 C.结核病 D.沙眼 E.体癣 2.细菌属于原核细胞型微生物的主要依据是: A.单细胞 B.二分裂方式繁殖

C.对抗生素敏感 D.有由肽聚糖组成的细胞壁 E.仅有原始核结构,无核膜 3.革兰阳性菌细胞壁: A.肽聚糖含量少 B.缺乏五肽交联桥 C.对溶菌酶敏感 D.所含脂多糖与致病性有关 E.有蛋白糖脂外膜 4.青霉素杀菌机制是: A.干扰细胞壁的合成 B.与核糖体50S 亚基结合,干扰蛋白质合成 C.影响核酸复制 D.与核糖体30S亚基结合,干扰蛋白质合成 E.损伤细胞膜 5.有关“细菌鞭毛”的叙述,哪一项是错误的: A.与细菌的运动能力有关 B.许多革兰阳性菌和阴性菌均有鞭毛 C.在普通光学显微镜下不能直接观察到 D.可用于细菌的鉴定

E.将细菌接种在固体培养中有助于鉴别细菌有无鞭毛 6.有关“芽胞”的叙述,错误的是: A.革兰阳性菌和阴性菌均可产生 B.不直接引起疾病 C.对热有强大的抵抗力 D.代谢不活跃 E.通常在细菌处于不利环境下形成 7.用普通光学显微镜油镜观察细菌形态时,总放大倍数为: 倍倍 倍~1000倍 倍 8.脑膜炎奈瑟菌和肺炎链球菌经结晶紫初染、碘液媒染、95%乙醇脱色后,菌体分别呈: A.红色和紫色 B.紫色和紫色 C.紫色和无色 D.无色和无色 E.无色和紫色 9.革兰染色法是最常用的一种染色法,其实际意义不包括: A.鉴别细菌 B.初选抗菌药物 C.了解细菌致病性 D.了解细菌的染色性

微生物与基因工程

第十章微生物与基因工程 基因工程(genetic engineering)或重组DNA技术(recombinant DNA technology) 就是指对遗传信息的分子操作与施工,即把分离到的或合成的基因经过改造,插入载体中,导入宿主细胞内,使其扩增与表达,从而获得大量基因产物,或者令生物表现出新的性状。基因工程这个术语可以用来表示特定基因操作,也可泛指它所涉及的技术系统,其核心就是构建重组体DNA的技术。因此,基因工程与重组DNA技术有时也就成为同义词。 基因工程就是在现代生物学、化学与化学工程学以及其她数理科学的基础上产生与发展起来的,并有赖于微生物学的理论与技术的发展与运用,微生物在基因工程的兴起与发展过程中起着不可替代的作用。基因工程的出现就是本世纪生物科学具有划时代意义的巨大事件,它使得生物科学获得迅猛发展,并带动了生物技术产业的兴起。它的出现标志着人类已经能够按照自己意愿进行各种基因操作,大规模生产基因产物,并且去设计与创建新的基因、新的蛋白质与新的生物物种,这也就是当今新技术革命的重要组成部分。 第一节基因工程概述 一、基因工程的发展历史 基因工程就是在本世纪70年代初开始出现的。三项关键技术的建立为基因工程奠定了基础,这三项技术就是:DNA的特异切割、DNA的分子克隆与DNA的快速测序。 早在50年代,阿尔伯(Arber)的实验室就已发现大肠杆菌能够限制侵染的噬菌体,60年代末进而证明大肠杆菌细胞内存在修饰–限制系统,即给宿主自身DNA打上甲基化标记并切割入侵的噬菌体DNA。1970年史密斯(Smith)等人从流感嗜血杆菌(Hemophilus influenzae)中分离出特异切割DNA 的限制酶。次年,内森斯(Nathans)等人用该酶切割猴病毒SV40 DNA,最先绘制出DNA的限制图谱(restriction map)。1973年史密斯与内森斯提出修饰–限制酶的命名法。限制性核酸内切酶可用以在特定位点切割DNA,限制酶的发现使分离基因成为可能。为表彰上述科学家在发现与使用限制酶中的功绩,1978年的诺贝尔医学奖被授予阿尔伯、内森斯与史密斯。 1973年,科恩(Cohen)与博耶(Boyer)等将pSC101质粒作为载体与R质粒的四环素与卡那霉素的抗性基因相融合,并将重组体DNA转化大肠杆菌,首次实现了DNA的分子克隆。 1975年桑格(Sanger)实验室建立了酶法快速测定DNA序列的技术。1977年吉尔伯特(Gilbert)实验室又建立了化学测定DNA序列的技术。分子克隆与测序方法的建立,使重组DNA技术系统得以产生。1980年诺贝尔化学奖被授予伯格、吉尔伯特与桑格,以肯定她们在发展DNA重组与测序技术中的贡献。 1977年板仓(Itakura)与博耶用人工合成的生长激素释放抑制素(Somatostatin, SMT)基因构建表达载体,并在大肠杆菌细胞内表达成功,得到第一个基因工程的产品。1982年,在建立转基因植物与转基因动物的技术上均获得重大突破。借助土壤农杆菌Ti质粒可将外源基因导入双子叶植物细胞内并发生整合,从而使植株获得新的遗传性状。同年通过基因工程方法把大鼠生长激素基因注射到小鼠受精卵的雄核中,然后移植到母鼠子宫内,由此培育出巨型小鼠。仅仅10年时间,基因工程在实践中迅速成熟,日趋完善。 二、基因工程的基本过程 生物的遗传性状就是由基因(即一段DNA分子序列)所编码的遗传信息决定的。基因工程操作首先要获得基因,才能在体外用酶进行“剪切”与“拼接”,然后插入由病毒、质粒或染色体DNA片段构建成的载体,并将重组体DNA转入微生物或动、植物细胞,使其复制(无性繁殖),由此获得基因克隆(clone,无性繁殖系的意思)。基因还可通过DNA聚合酶链式反应(PCR)在体外进行扩增,借助合成的寡核苷酸在体外对基因进行定位诱变与改造。克隆的基因需要进行鉴定或测序。控制适当的条件,使转入的基因在细胞内得到表达,即能产生出人们所需要的产品,或使生物体获得新的性状。这种获

医学微生物学期末考试卷二

医学微生物学考模拟考试试卷二 一、名词解释(每题3分,共15分) 1. Sterilization: 2. Lysogenic phage / Temperate phage: 3. Weil-Felix reaction: 4. Envelope: 5. Interferon(IFN): 二、填空(每空0.5分,共15分) 1. 细菌的生长方式是繁殖,繁殖速度为每代,繁殖过程包括、、、,的细菌最典型。 2. 金黄色葡萄球菌与表皮葡萄球菌生物学性状的主要区别点为:①,②, ③,④,⑤,⑥。 3. 幽门螺杆菌呈或,营养要求较高,需在微需氧条件下才能生长,即、 和,形成菌落。幽门螺杆菌生化反应不活泼,不分解,但、、。幽门螺杆菌的致病与、毒素有关,在慢性胃炎、胃溃疡、十二指肠溃疡患者的胃粘膜检出率较高。 4. 大肠杆菌有O、H、K三种抗原,O抗原是脂多糖最外层的,刺激机体后主要产生类抗体;H抗原位于细菌的上,刺激机体后主要产生类抗体;K抗原位于O抗原外层,与细菌的有关。 三、最佳选择题(每题1分,共30分) 1、下列描述中,不属于所有微生物的共同特点是:() A:体积微小;B:结构简单;C:种类繁多;D:可无致病性;E:严格活细胞内生长繁殖。 2、与细菌耐药性有关的遗传物质是:() A:普通菌毛;B:性菌毛;C:细菌染色体;D:质粒;E:毒性噬菌体。 3、条件致病菌的条件是:() A:正常菌群耐药性改变;B:正常菌群遗传性状改变;C:肠蠕动减慢使细菌增多; D:长期使用广谱抗生素;E:各种原因造成的免疫功能亢进。 4、下列生物制品,何种易引起Ⅰ型超敏反应:() A:丙种球蛋白;B:胎盘球蛋白;C:抗毒素;D:白细胞介素;E:干扰素。 5、下列各组中均属专性厌氧菌的是:() A:破伤风杆菌、肉毒杆菌、结核杆菌;B:产气荚膜杆菌、乳酸杆菌、流感嗜血杆菌; C:产气荚膜杆菌、肉毒杆菌、脆弱类杆菌;D:破伤风杆菌、炭疽杆菌;变形杆菌; E:肉毒杆菌、破伤风杆菌、白喉杆菌。

第17章微生物与寄生虫学习题(精)

第17章微生物与寄生虫学习题 细菌形态与结构 一、名词解释 1.微生物 2.荚膜 3.芽胞 4.质粒 5.L型细菌 二、填空题 1.根据微生物的细胞结构及化学组成,可将其分为、 、三种类型。 2.细菌物形态多种多样,根据外形可归纳为、和 。 3.细菌的基本结构包括、、和等。 4.细菌的特殊结构有、、和。 5.异染颗粒对鉴定有意义。 6.细胞膜的主要功能有、、。 7.核质与细菌的、有着密切的关系。 ★8. 溶菌酶的作用机理是切断N-乙酰葡萄糖胺与N-乙酰胞壁酸之间的连结,破坏的骨架,引起革兰阳性菌裂 解;青霉素则是干扰之间的连 结,使革兰阳性菌不能合成而导致死亡。 ★9. 菌体中的RNA均存在于核蛋白体上,当m RNA与核蛋白体连成时,即成为合成蛋白质的场所。细菌核蛋白体沉降系数 为。由和两个亚基组成,链霉素能与细 菌核蛋白体的亚基结合,红霉素能与 亚基结合从而干扰蛋白质的合成而致细菌死亡。 三、判断改错题 1.细菌是一类含有完整细胞器的单细胞微生物。() 2.芽胞形成是细菌的繁殖方式.( ) 3.临床上常以杀死细菌的芽胞作为彻底灭菌的指标.( ) 4.荚膜本身具有毒性,所以有荚膜的细菌毒力强.( ) 5.鉴别细菌最常用,最重要的染色法是革兰染色法和抗酸染色法.( ) 6.性菌毛与细菌遗传物质传递及耐药菌形成有关.( ) 四、选择题 1.细菌的测量单位是( )

A.nm B. um C. mm D. cm 2.细菌细胞壁的共有成分是( ) A.多糖 B.脂多糖 C.肽聚糖 D.磷壁酸 3.细菌能维持其一定外形是因为( ) A.细菌壁的半渗透性 B.细胞质是溶胶状物质 C.细胞壁坚韧且具有弹性 D.细胞浆具有渗透压 4.革兰氏染色法的染色步骤是( ) A.初染-脱色-复染-媒染 B. 初染-复染-媒染-脱色 C.初染-脱色-媒染-复染 D. 初染-媒染-脱色-复染 5.与细菌体内遗传有关的物质是( ) A.核糖体 B.中介体 C.染色体 D.质粒 6.有关细菌芽胞的正确描述是( ) A.是某些细菌的特殊结构 B.当环境适宜时可发芽为多个繁殖体 C.是细菌保持生命力的一种形式 D.根据芽胞的形状,位置及大小有助于鉴别细菌 7.细菌涂片标本制作步骤包括有( ) A.涂片 B.固定 C.染色 D.干燥 五、简答题 1.G+菌与G-菌细胞壁的结构主要有何不同? 2.简述显微镜油镜的使用及保护法. ★3.细菌有哪两种菌毛?各有何功能? 4.举例说明微生物与人类的关系. 5.列表说明细菌特殊结构的种类及医学意义。 细菌的生长繁殖与代谢 一、名词解释 1.培养基 2.热原质 3.抗生素 二、填空题 1.细菌生长繁殖的条件有、、、 . 2.将细菌接种于液体培养基中,经37℃培养小时,可出现 、、生长现象。 3.细菌合成代谢产物与致病性有关的是、,

微生物期末考试名词解释.

微生物:存在于自然界体型微小,数量繁多,肉眼看不见,必须借助于光学显微镜或电子显微镜放大数百倍甚至上万倍才能观察到的一群微小低等生物体。 微生物学:用以研究微生物的分布、形态结构、生命活动(包括生理代谢、生长繁殖)、遗传和变异、在自然界的分布与环境相互作用以及控制它们的一门科学。 医学微生物学:主要研究与人类医学有关的病原微生物的生物学性状、对人体感染和致病的机理、特异性诊断方法以及预防和治疗感染性疾病的措施,以控制甚至消灭此类疾病为目的的一门科学。 细菌(bacterium):是属原核生物界的一种单细胞微生物。 细胞壁:是包被于细菌细胞膜外的坚韧而富有弹性的膜状结构。 肽聚糖或粘肽:是原核细胞型微生物细胞壁的特有成分,主要由肽聚糖骨架、四肽侧链及肽链或肽链间交联桥构成。 脂多糖:即革兰阴性菌的内毒素。它由脂类A、核心多糖和寡糖重复单位构成。 荚膜:许多细菌的最外表还覆盖着一层多糖类物质,边界明显的称为荚膜。 芽孢:某些细菌在它生活史中的某个阶段或某些细菌在遇到不良环境时,细胞质.细胞核逐渐脱水浓缩,在菌体内形成一个内生胞子。 鞭毛:鞭毛是某些细菌的运动器官,由一种称为鞭毛蛋白(flagellin)的弹性蛋白构成,结构上不同于真核生物的鞭毛。细菌可以通过调整鞭毛旋转的方向(顺和逆时针)来改变运动状态。 菌毛:菌毛是在某些细菌表面存在着一种比鞭毛更细、更短而直硬的丝状物,须用电镜观察。 质粒:游离于原核生物核基因组以外具有独立复制能力的闭合共价环状双链DNA分子。 L型细菌:当细菌细胞壁中的肽聚糖结构受到理化或生物因素的直接破坏或核成被抑

制时,细菌并不一定死亡而成为细胞壁缺陷的细菌。 热原质:许多G-菌如伤寒沙门菌、铜绿假单胞菌以及一些G+菌如枯草芽胞杆菌能产生一种多糖,注入人体或动物体内可引起发热反应,成为致热原。(其实就是指菌体脂多糖)。 抗生素:由某些微生物在代谢过程中产生的,能抑制或杀死某些生物细胞(主要是微生物和肿瘤细胞)的物质。 细菌素:某些细菌能产生一种仅作用于边缘关系细菌的抗生素样物质,其抗菌范围很窄。 菌落:由单个细菌分裂增殖,经过一定时间(18~24h)后,可形成肉眼可见的孤立的细菌集团,称为菌落。 灭菌:指用物理或化学的方法杀灭全部微生物,包括致病和非致病微生物以及芽孢。防腐:防止或抑制皮肤表面细菌生长繁殖的方法。 无菌:无菌是无活菌的意思,多是灭菌的结果。 无菌操作:防止细菌进入人体或其它物品的操作技术,称为无菌操作。 噬菌体:是感染细菌、真菌、放线菌或螺旋体等微生物的病毒。 毒性噬菌体:能在宿主菌内复制增殖,产生许多子代噬菌体,并最终裂解细菌 前噬菌体:温和噬菌体的基因组整合于宿主菌染色体中,这种整合在细菌染色体上的噬菌体基因称为前噬菌体。这种带有前噬菌体的细菌称为溶原性细菌。 溶原性:温和噬菌体具有的产生成熟子代噬菌体颗粒和裂解宿主菌的潜在能力,称为溶原性。 溶原性转换:温和噬菌体的DNA整合到宿主菌的染色体DNA后,使细菌的基因型发生改变从而获得新的遗传性状。例如白喉棒状杆菌产生白喉毒素的机理。 转座子:是一类在细菌的染色体、质粒或噬菌体之间自行移动的遗传成分,是基因

医学微生物学期末考试卷一

5、鼠疫杆菌在肉汤培养基中一般不形成:(E ) A:菌膜生长;B:混浊生长;C:絮状生长;D:钟乳石状下沉生长;E:颗粒状沉淀生长。 6、与慢性胃炎和消化性溃疡有密切关系的病原菌是:(B) A:空肠弯曲菌;B:幽门螺杆菌;C:克雷伯氏杆菌;D:副溶血性弧菌;E:白色念珠菌。 7、立克次体与细菌的主要区别是:(B ) A:有细胞壁和核糖体;B:严格的细胞内寄生;C:以二分裂法繁殖; D:对抗生素敏感;E:含有两种核酸。 8、培养钩端螺旋体的最佳温度为:(C) A:37℃;B:35℃;C:28℃;D:24℃;E:20℃。 9、下列有关减毒活疫苗的叙述,错误的是:(D) A:减毒活疫苗的免疫效果优于灭活疫苗; B:减毒活疫苗刺激机体产生的特异性免疫持续时间比灭活疫苗长; C:减毒活疫苗能在机体内增殖或干扰野毒株的增殖或致病作用; D:减毒活疫苗可诱导机体产生分泌型IgA,适用于免疫缺陷或低下的患者; E:减毒活疫苗一般只需要接种一次即能达到免疫效果,而灭活疫苗需要接种多次。 12、腺病毒衣壳五邻体可导致细胞:(A ) A:变圆、脱落;B:发生转化;C:癌变;D:新抗原形成;E:溶酶体膜通透性增加。16、实验证明切断适当外周神经纤维可阻断:(E) A:HBV传入中枢神经;B:HCV传入中枢神经;C:HIV传入中枢神经: D:EBV传入中枢神经;E:HSV传入中枢神经。 17、感染病毒的细胞在细胞核或胞浆内存在可着色的斑块状结构称为:(A ) A:包涵体;B:蚀斑;C:空斑;D:极体;E:异染颗粒。 22、不能作为病毒在细胞内生长繁殖指标的一项是:(D) A:致细胞病变作用;B:红细胞凝集;C:干扰现象; D:细胞培养液变混浊;E:细胞培养液pH改变。 24、能引起临床症状的肠炎沙门氏菌感染数量一般为:(D ) A:1个;B:10个;C:100个;D:1000个;E:10000个。 26、较少产生耐药性菌株的细菌是:(E) A:结核分枝杆菌;B:绿脓杆菌;C:痢疾杆菌; D:金黄色葡萄球菌;E:乙型溶血性链球菌。 4.简述不同的RNA型病毒在宿主细胞内进行基因组复制及mRNA翻译病毒蛋白的过程。(12分) RNA病毒的生物合成及成熟释放过程因不同的RNA病毒而异,除正粘病毒科和逆转录病毒科病毒需在细胞核内复制基因组外,其余RNA病毒均在细胞质内复制。 (1)单股正链RNA(ssRNA)病毒,包括无包膜的小RNA病毒(如脊髓灰质炎病毒型肝炎病毒等)和有包膜的披膜病毒、冠状病毒等。 ①病毒ssRNA即为mRNA,脱壳后迅速进入宿主细胞质内核蛋白体(ribosome)并编码病毒结构蛋白(衣壳蛋白)和非结构蛋白(RNA聚合酶等)。 ②同时以病毒ssRNA为模板,在宿主细胞依赖RNA的RNA聚合酶作用下,按碱基配对原则(U=A,G≡C,A=U,C≡G),在细胞质光滑内质网内复制±RNA双链中间体,并裂解为-ssRNA模板,继续不断地复制子代ssRNA。 ③ssRNA装配进蛋白衣壳内,构成衣壳体(在无包膜RNA病毒,即为病毒体),细胞自溶,释放出大量子代病毒。

微生物和基因工程

微生物和基因工程 基因工程是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,使之进入原先没有这类分子的寄主细胞内并进行持续稳定的繁殖和表达。 基因工程微生物的构建包括以下基本步骤: 用限制性内切酶对质粒的特定位点进行切割,形成粘性末端; 用同样的限制性内切酶对含有目标基因的外源DNA分子进行切割,两端形成与质粒上的粘性末端相互补的单链; 将切割好的质粒和基因片段混合并通过DNA连接酶键合在一起完成基因重组并重新成为环状分子; 将重组质粒转化到微生物细胞内。 基因工程的基本过程: 1. 从生物有机体基因组中,分离出带有目的基因的DNA片段。 2. 将带有目的基因的外源DNA片段连接到能够自我复制的并具有选择记号的载体分子上,形成重组DNA分子。 3. 将重组DNA分子转移到适当的受体细胞(亦称寄主细胞)并与之一起增殖。 4. 从大量的细胞繁殖群体中,筛选出获得了重组DNA分子的受体细胞,并筛选出已经得到扩增的目的基因。 限制性内切酶: 识别并在特定位点切开DNA DNA连接酶 通过磷酸二酯键把两个或多个DNA片段连接成一个DNA分子 分子克隆的载体----具备自主复制能力的DNA分子(vector),如病毒、噬菌体和质粒等小分子量复制子都可以作为基因导入的载体。 基因载体的结构和功能: 生物学来源: 细菌质粒噬菌体病毒其它 多个不同来源独立的元件,包括高等生物的一些基因组元件结合使用,从而产生了一系列新的基因载体 质粒载体的结构和功能 大部分为双链闭环超螺旋DNA分子,也有线性质粒,质粒的分子规模从2kb到1mb。 质粒主要见于细菌,也见于古细菌和酵母菌。 质粒编码的性状一般包括抗性特点,如抗生素抵抗,不利环境抵抗(重金属抗性),产毒特性和抗毒特性等。 从质粒本身的特性来看,质粒具备复制特性,分离特性,判别特性和进化特性。 基本特性 复制子遗传标记多克隆位点其它 许多元件往往只在一定的生物宿主环境下才表现出对应的生物学特点 遗传筛选标记 抗生素抗性标记 抗突变标记 人工插入失活和α互补标记 抗生素标记: 氨苄青霉素抗性(ampr)基因编码β-内酰胺环水解酶,分泌到细菌膜周隙水解氨苄青霉素。卡那霉素抗性基因(kanr)其决定质粒对氨基糖苷类抗生素的抵抗。在质粒在大肠杆菌使用,

微生物学[第十章微生物与基因工程]山东大学期末考试知识点复习

第十章微生物与基因工程 一、要点提示 1.基因工程,又称基因操作或重组DNA技术,是体外对DNA分子进行加工、剪切、操作及施工,把不同来源的DNA分子重新组合构建载体后,导入宿主细胞内,使其扩增和表达,获得大量基因产物,或者使生物体表现出新的形状。基因工程是在分子生物学、微生物学基础上结合有关现代科学和工程学原理和方法而开拓的技术领域。它的出现改变了生物科学的面貌,促使现代生物技术迅猛发展,并带动了现代生物技术产业的兴起。 2.基因工程的基本过程是目的基因的获得→重组载体的构建→重组载体导入宿主细胞→阳性重组子的筛选→基因的测序和鉴定→基因的控制表达。基因工程的每一个环节都离不开微生物的参与。 3.基因工程给人类带来的正面影响是十分巨大的,基因工程产品及其技术在医学、工业、农业及其他领域的应用愈来愈广泛,并已经带来了令人可喜的结果。但是基因工程潜在的危害性也不容忽视,任何滥用和非和平的开发(生物战争)都会给人类带来毁灭性的灾难。 二、重点、难点剖析 1.微生物和微生物学在基因工程的产生和发展中占据了十分重要的地位,可以说一切基因工程操作都离不开微生物。从以下6个方面可以说明。 (1)微生物的多样性,尤其是抗高温、高盐、高碱、低温等基因,为基因工程提供了极其丰富而独特的基因资源;目的基因的获得可以是通过构建基因文库或cDNA文库来筛选目的基因片段;或通过PCR技术进行基因的体外扩增,包括对活的不可培养微生物基因的体外扩增,并对基因进行定点诱变和分子定向进化。 (2)基因工程所用克隆载体主要是用病毒、噬菌体和质粒改造而成。

(3)基因工程所用千余种工具酶绝大多数是从微生物中分离纯化得到的。 (4)微生物细胞是基因克隆的宿主,基因工程中最重要、最广泛应用的克隆载体宿主是原核生物的大肠杆菌及真核生物的酿酒酵母。即使植物基因工程和动物基因工程也要先构建穿梭载体,使外源基因或重组体DNA在大肠杆菌中得到克隆并进行拼接和改造,才能再转移到植物和动物细胞中。 (5)大规模表达各种基因产物,从事商品化生产,通常都是将外源基因表达载体导人大肠杆菌、酵母菌或哺乳动物细胞中,构建成工程菌,然后利用微生物发酵工程来实现。 (6)有关基因结构、性质和表达调控的理论主要也是来自对微生物的研究,或者是将动、植物基因转移到微生物中后进行研究而取得的,因此,微生物学不仅为基因工程提供了操作技术,同时也提供了理论指导。 2.微生物与基因克隆载体。 (1)克隆载体的基本要求。 ①载体在细胞中必须能够独立自主地复制。 ②载体必须具有若干限制酶的单一切割位点,即多克隆位点,位于载体复制的非必需区,便于外源DNA的插入。 ③载体必须具有可供选择的遗传标记,例如:具有抗生素的抗性基因,便于对阳性克隆的鉴别和筛选。 ④载体DNA须易于生长和操作。 (2)基因工程中使用的载体。到目前为止,基因工程中使用的载体基本上均来自微生物,主要包括6大类:质粒载体,λ噬菌体载体,柯斯质粒载体,M13噬菌体载体,真核细胞的克隆载体,人工染色体等。原核生物大肠杆菌的克隆载体比较见表10-1。

相关文档
最新文档