高阻抗电弧炉的设计特点和应用

高阻抗电弧炉的设计特点和应用

高阻抗电弧炉的设计特点和应用

引言高阻抗电弧炉是一种高效率的新型炼钢炉,它具有一系列突出的优点:能大幅度地降低电能和电极消耗、能显著地减少对供电电网的短路冲击和谐波污染。

高阻抗电弧炉吸取了近25年来出现的所有电弧炉炼钢新技术,再加上泡沫渣的成功应用,使得一直发展缓慢的交流电弧炉在电弧稳定性、效率和对电网短路冲击减少方面均可同直流电弧炉相媲美。

本文介绍了带饱和电抗器和固定电抗器的高阻抗电弧炉。前者具有高超的伏安特性,使短路电流很小,基本上达到了恒电流电弧炉特性。

1 高阻抗电弧炉的供电电源1.1 对供电可靠性的要求电弧炉属于热加工设备,如果中途停电,会造成很大的损失:使电耗和原材料增加,使产品质量下降,甚至造成整炉钢水报废,炉子越大损失越大。根据有关规范规定,电弧炉属于二级负荷。

对于炉子容量在50t及以上的电弧炉通常由两路独立高压电源供电,炉容较小的可由一路高压电源供电。

1.2 公共供电点的确定电弧炉的公共供电点系指其与电力系统相连接的供电点,并接有其他用户负荷。对公共供电点的要求主要考虑以下因素:

1)供电变压器容量要能适应电弧炉负荷特性的要求;

2)由电弧炉负荷引起的公共供电点的电压波动和电压闪变值、以及谐波电流值不得超过国标GBl4549-93中的允许值;

3)由电弧炉负荷引起的公共供电点的电压不对称度不得超过2%。

电弧炉的公共供电点有两种情况,其一是电弧炉系统直接与电力系统相连接;其二是电弧炉系统通过企业总变电所与电力系统相连接。电弧炉一般不由车间变电所供电。

当电弧炉由企业总变电所母线供电时,为了防止对其他负荷供电质量产生不良影响,一般要求供电变压器的容量为电炉变压器容量的2.5倍以上。当不能满足此要求时,或增大供电变压器容量;或采用专用中间变压器供电,这需要经过技术经济比较来确定。

当采用专用中间变压器供电时,该变压器容量的选择,应与电炉变压器经常过负荷运行状

高阻抗电弧炉的设计特点和应用

高阻抗电弧炉的设计特点和应用 引言高阻抗电弧炉是一种高效率的新型炼钢炉,它具有一系列突出的优点:能大幅度地降低电能和电极消耗、能显著地减少对供电电网的短路冲击和谐波污染。 高阻抗电弧炉吸取了近25年来出现的所有电弧炉炼钢新技术,再加上泡沫渣的成功应用,使得一直发展缓慢的交流电弧炉在电弧稳定性、效率和对电网短路冲击减少方面均可同直流电弧炉相媲美。 本文介绍了带饱和电抗器和固定电抗器的高阻抗电弧炉。前者具有高超的伏安特性,使短路电流很小,基本上达到了恒电流电弧炉特性。 1 高阻抗电弧炉的供电电源1.1 对供电可靠性的要求电弧炉属于热加工设备,如果中途停电,会造成很大的损失:使电耗和原材料增加,使产品质量下降,甚至造成整炉钢水报废,炉子越大损失越大。根据有关规范规定,电弧炉属于二级负荷。 对于炉子容量在50t及以上的电弧炉通常由两路独立高压电源供电,炉容较小的可由一路高压电源供电。 1.2 公共供电点的确定电弧炉的公共供电点系指其与电力系统相连接的供电点,并接有其他用户负荷。对公共供电点的要求主要考虑以下因素: 1)供电变压器容量要能适应电弧炉负荷特性的要求; 2)由电弧炉负荷引起的公共供电点的电压波动和电压闪变值、以及谐波电流值不得超过国标GBl4549-93中的允许值; 3)由电弧炉负荷引起的公共供电点的电压不对称度不得超过2%。 电弧炉的公共供电点有两种情况,其一是电弧炉系统直接与电力系统相连接;其二是电弧炉系统通过企业总变电所与电力系统相连接。电弧炉一般不由车间变电所供电。 当电弧炉由企业总变电所母线供电时,为了防止对其他负荷供电质量产生不良影响,一般要求供电变压器的容量为电炉变压器容量的2.5倍以上。当不能满足此要求时,或增大供电变压器容量;或采用专用中间变压器供电,这需要经过技术经济比较来确定。 当采用专用中间变压器供电时,该变压器容量的选择,应与电炉变压器经常过负荷运行状

电弧炉炼钢车间的设计方案

1电弧炉炼钢车间的设计方案 1.1电炉车间生产能力计算 1.1.1电炉容量和座数的确定 在进行电炉炉型设计之前首先要确定电弧炉的容量和座数,它主要与车间的生产规模,冶炼周期,作业率有关。 在同一车间,所选电炉容量的类型一般认为不超过两种为宜。座数也不宜过多,一般设置一座或两座电炉。为了确定电炉的容量和座数,首先要估算每次出岗量q : y G q a ητ8760= 式中 G a —车间产品方案中确定的年产量,80万t ; τ—冶炼周期,55min=0.917h ; η—作业率,年日历天数 年作业天数=η×100% 本设计取90%; Y —良坯收得率,连铸一般95%~98%,本设计取98%; 带入数据计算得 q=95.0t 。 根据估算出的每次出钢量选取HX 2-100系列一座,以下是主要技术性能: 1.1.2电炉车间生产技术指标 (1)产量指标 年产量80万t ; 小时出钢量: (2)质量指标 钢坯合格率 98%; (3) 作业率指标

作业率:90% (4)材料消耗指标 a金属材料消耗 一般为废钢、返回废钢、合金料于脱氧合金。 b炼钢扶住材料消耗 石灰、以及其他造渣材料和脱氧粉剂。 c耐火材料消耗 主要用于炉衬的各种耐火砖以及钢包的耐火材料。 d其它原材料消耗 电极和工具材料。 e动力热力消耗指标 主要为电能和各种气体和燃油等。车间设计产品大纲见下表: (5)连铸生产技术指标 连铸比 铸坯成坯率 连铸收得率 (6)生产的钢种:主要生产Q215,年产量80万吨,连铸坯尺寸选取200×200mm方坯; 1.2 电炉车间设计方案 1.2.1电炉炼钢车间设计与建设的基础材料 (1)建厂条件 1)各种原料的供应条件,特别是钢铁材料来源; 2)产品销售对象及其对产品质量的要求; 3)水电资源情况,所在地区的产品加工,配件制作的协作条件; 4)交通运输条件,水路运输及地区公铁路的现状与发展计划; 5)当地气象,地质条件; 6)环境保护的要求; 在上述各项主要建厂条件之中,原材料条件对于工艺设计的关系尤为密切重要。 (2)工艺制度 确定工艺制度是整个工艺设计的基本方案,是设备选择,工艺布置等一系列问题的设计基础。确定工艺制度的主要依据是产品大纲所规定的钢种,生产规模,原材料条件以及后步工序的设计方案。 1)冶炼方法:利用超高功率电弧炉进行单渣冶炼,然后进行炉外精炼; 2)浇注方法:采用全连铸; 3)连铸坯的冷却处理与精整:铸坯在冷床上冷却并精整; 4)在技术或产量方面应留有一定的余地。 1.2.2电炉炼钢车间的组成

PCB的阻抗设计

PCB的阻抗设计 1、阻抗的定义: 在某一频率下,电子器件传输信号线中,相对某一参考层,其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗……的一个矢量总和。 当信号在PCB导线中传输时,若导线的长度接近信号波长的1/7,此时的导线便成为信号传输线,一般信号传输线均需做阻抗控制。PCB制作时,依客户要求决定是否需管控阻抗,若客户要求某一线宽需做阻抗控制,生产时则需管控该线宽的阻抗。 当信号在PCB上传输时,PCB板的特性阻抗必须与头尾元件的电子阻抗相匹配,一但阻抗值超出公差,所传出的信号能量将出现反射、散射、衰减或延误等现象,从而导致信号不完整、信号失真。 2、计算阻抗的工具: 目前大部分人都用Polar软件:Polar Si8000、Si9000等。 常用的软件阻抗模型主要有三种: (1)特性阻抗,也叫单端阻抗;(2)差分阻抗,也叫差动阻抗;(3)共面阻抗,也叫共面波导阻抗,主要应用于双面板阻抗设计当中。

选择共面阻抗设计的原因是:双面板板厚决定了阻抗线距离,下面的参考面比较远,信号非常弱,必须选择距离较近的参考面,于是就产生了共面阻抗的设计。 3、安装软件Polar Si9000,然后打开Polar Si9000软件。熟悉一下常用的几个阻抗模型: (1)下图是外层特性阻抗模型(也叫单端阻抗模型):

(2)下图是外层差分阻抗模型: (3)内层差分阻抗模型常用以下三种:

下面是共面的常用模型: (4)下图是外层共面单端阻抗模型: (5)下图是外层共面差分阻抗模型:

4、怎样来计算阻抗? 各种PP及其组合的厚度,介电常数详见PP规格表,铜厚规则按下图的要求。

普通电弧炉设计与电极升降控制

普通电弧炉的一般设计与电极升降控制

摘要: 为了提高所熔炼速度和钢水的质量、减少电能及电极的消耗量、保证维持规定的电气工作条件,使设备获得较高的生产率。从电弧炉的一般设计概况,到电弧炉电极的升降控制。系统了解电弧炉中存在的缺点与不足。通过分析,更好的提高电气控制的稳定性,提高电网提高熔炼速度。 关键词:电弧炉、短网电流、电极升降。

目录 一、电弧炉的简介及特点 1.电弧炉简介 2.电弧炉特点 二、电弧炉的一般设计 1.电弧炉组成部分 2.炉体设计 3.变压器设计 4.短网电流的计算 5.电极直径计算 6.电极升降计算 7.其他相关参数 三、电极升降自动控制 1.调节器的组成及工作原理 2.调节器的结构原理 四、小结 五、参考文献

一、电弧炉的简介及特点 1.电弧炉简介 电弧炉是利用电极间电弧产生的热能冶炼金属的一种设备。电弧炉炼钢就是靠电极与炉料之间放电产生的电弧,使电能在弧光中转变为热能,并借助辐射和电弧的直接作用加热并熔化金属和炉渣,冶炼出各种成分的钢和合金。 现代化炼钢电弧炉均为直接加热、炉底不导电式电炉。该电炉按直接加热金属的原理工作,电弧发生在每一电极与炉料之间,

己熔化的金属则形成负荷的中心点。 2.电弧炉的特点 电弧炉进行冶炼,电弧炉是一个多变量、非线性、大滞后、强藕合、时变、随机干扰较强的系统,使得系统电极位置、电弧长度、电弧电流以及系统功率很难保持最佳工作状态。电极升降调节系统是电弧炉的重要组成部分,其工作性能的好坏直接影响钢的产量、质量和能源消耗。在电弧炉冶炼过程中,三相交流电弧炉的电力负载是不稳定的、不对称的;无功冲击及闪变;产生谐波电流。 电弧炉的整个炼钢过程一般分为熔化期、氧化期、还原期三个时期,由于各个时期所完成的任务不同,因而相应地对冶炼温度和功率的要求也不同。 (熔化期)开始熔化阶段,固体炉料熔化,能量需求最大。 (氧化期)初精炼及加热阶段。 (还原期)精炼期,此阶段输入能量只需平衡热损耗。 在废钢冶炼时电弧炉的工作特性为:

PCB常用阻抗设计及叠层

PCB阻抗设计及叠层 目录 前言 (4) 第一章阻抗计算工具及常用计算模型 (7) 1.0 阻抗计算工具 (7) 1.1 阻抗计算模型 (7) 1.11. 外层单端阻抗计算模型 (7) 1.12. 外层差分阻抗计算模型 (8) 1.13. 外层单端阻抗共面计算模型 (8) 1.14. 外层差分阻抗共面计算模型 (9) 1.15. 内层单端阻抗计算模型 (9) 1.16. 内层差分阻抗计算模型 (10) 1.17. 内层单端阻抗共面计算模型 (10) 1.18. 内层差分阻抗共面计算模型 (11) 1.19. 嵌入式单端阻抗计算模型 (11) 1.20. 嵌入式单端阻抗共面计算模型 (12) 1.21. 嵌入式差分阻抗计算模型 (12) 1.22. 嵌入式差分阻抗共面计算模型 (13) 第二章双面板设计 (14) 2.0 双面板常见阻抗设计与叠层结构 (14) 2.1. 50 100 || 0.5mm (14) 2.2. 50 || 100 || 0.6mm (14) 2.3. 50 || 100 || 0.8mm (15) 2.4. 50 || 100 || 1.6mm (15) 2.5. 50 70 || 1.6mm (15) 2.6. 50 || 0.9mm || Rogers Er=3.5 (16) 2.7. 50 || 0.9mm || Arlon Diclad 880 Er=2.2 (16) 第三章四层板设计 (17) 3.0. 四层板叠层设计方案 (17) 3.1. 四层板常见阻抗设计与叠层结构 (18) 3.10. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (18) 3.11. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (19) 3.12. SGGS || 50 55 60 || 90 95 100 || 1.6mm (20) 3.13. SGGS || 50 55 60 || 85 90 95 100 || 1.0mm 1.6mm (21) 3.14. SGGS || 50 55 75 || 100 || 1.0mm 2.0mm (22) 3.15. GSSG || 50 || 100 || 1.0mm (22)

射频连接器的阻抗原理

阻抗匹配与史密斯(Smith)圆图:基本原理 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础 基础知识 在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

交流阻抗的原理与应用

交流阻抗的原理及应用-测聚苯胺修饰电极的电化学 性能 一、实验目的 (1)掌握交流阻抗法(EIS)的实验原理及方法。 (2)了解Nyquist图和Bode图的意义。 (3)学会用Zsimpwin软件对实验数据进行拟合。 二、实验原理 交流阻抗法(alternating current impedance,AC impedance)阻抗测量原本是电学中研究线性电路网络频率响应特性的一种方法,引用到研究电极过程,成为电化学研究中的一种实验方法。控制通过电化学系统的电流或电势在小振幅的条件下随时间按正弦规律变化,同时测量相应的系统电势或电流随时间的变化,此时电极系统的频响函数就是电化学阻抗。通过阻抗可以分析电化学系统的反应机理、计算系统的相关参数。交流阻抗法是一种以小振幅的正弦波电位(或电流)为扰动信号,益加在外加直流电压上,并作用于电解池,通过测童系统在较宽频率范围的阻抗谱,获得研究体系相关动力学信息及电极界面结构信息的电化学测量方法。对于一个电解池系统,当在电极两端施加一定电压时,阴阳极会构成一个回路,在这个回路中,电子和离子的传递受到一定的阻力的作用,包括:溶液的阻力,电极的阻力。而这些阻力正好可以用电阻R进行表征。再者,在电极和溶液界面上,两相中的剩余电荷会引起静电相互作用,以及电极表面与溶液中的各种粒子(溶剂分子、溶剂化了的离子和分子等)的相互作用。 复数阻抗的测量是以复数形式给出电极在一系列频率下的阻抗,不仅能给出阻抗的绝对值,还可给出相位角,可为研究电极提供较丰富的信息。 对于一个纯粹电化学控制的电极体系,可等效成如图2一1所示的电路。

图2一1测试电池的等效电路 图2一1中,R e 为溶液电阻,C P 为电极/溶液的双电层电容,R P 为电极电阻。此等效电 路的总阻抗为: 2 p 2p 22 22p 2p 2e 1jw -1R C R C R C RP R Z P P ωω+++= 其中,实部是 2 p 2p 2p e 1R C R R Z ω++ =, 虚部是 2p 2 p 2p 2p , ,R C 2ω1R j ωωZ -+= 对于每一个w 值,都有相应的Z ’与Z ’’,在复数阻抗平面内表示为一个点连接各w 的阻抗点,得到一条曲线,成为复数阻抗曲线,如图2一2所示。 当w→∞时,半圆与Z ’轴的交点即为电解质溶液的电阻Re ;当W→0时,半圆与Z , 轴的交点即为Re 十Rp 。一般情况下,电解质溶液的电阻Re ,可忽略,因此,根据半圆与Z ’轴的交点即可求得电极体系的电阻Rp ;当w=w xax 为半圆最高点的角频率)时,据公式q 可求得电极/溶液的双电层电容Cp 。

100吨交流电弧炉炼钢车间设计

毕业设计说明书 设计题目:100吨交流电弧炉炼钢车间设计 学 号:_________________________ 姓 名:_________________________ 专 业 班 级:_________________________ 李龙 冶金技术2班 0929302245 2012 年 05月20号

毕业设计说明书................................................................................................................... - 1 -文献综述. (2) 1.3现代电弧炉炼钢技术 (5) 1.4电弧炉炼钢的发展趋势 (6) 1.5电弧炉装备技术未来的创新发展 (6) 1.5.2我国正进人电炉炼钢高速发展时期 (7) 3.4.1、炉料入炉 (13) 第四章建设所选电弧炉炼钢工程的必要性和可行性分析 (13) 电弧炉车间设计 (18) 1.1电炉车间计算 (18) 11..1电炉容量和座数的确定 (18) 1.1.2电炉车间生产技术指标 (18) 参考文献.................................................................................................................................................. 致谢..........................................................................................................................................................

PCB常用阻抗设计及叠层

PCB 阻抗设计及叠 层 目 录 、八— 刖言 ............................... 第一章阻抗计算工具及常用计算模型 1.0阻抗计算工具 .............. 1.1阻抗计算模型 ............... 1.11. 1.1 2. 1.13. 1.14. 1.15. 1.16. 1.17. 1.18. 1.19. 1.20. 1.21. 1.2 2. 外层单端阻抗计算模型 ............ 外层差分阻抗计算模型 ............ 外层单端阻抗共面计算模型 ........ 外层差分阻抗共面计算模型 ........ 内层单端阻抗计算模型 ............ 内层差分阻抗计算模型 ............ 内层单端阻抗共面计算模型 ........ 内层差分阻抗共面计算模型 ........ 嵌入式单端阻抗计算模型 .......... 嵌入式单端阻抗共面计算模型 ..... 嵌入式差分阻抗计算模型 .......... 嵌入式差分阻抗共面计算模型 ..... 8 9 .9 10 10 11 11 第二章双面板设计 ................................. 2.0双面板常见阻抗设计与叠层结构 ............ 2.1.50 100 II 0.5mm ...................... 2.2. 50 II 100 II 0.6mm .................... 2.3. 50 II 100 II 0.8mm .................... 2.4. 50 II 100 II 1.6mm .................... 2.5. 50 70 II 1.6mm ....................... 2.6. 50 II 0.9mm II Rogers Er= 3.5 .......... 2.7. 50 II 0.9mm || Arlo n Diclad 880 Er=2.2 第三章四层板设计 ................................. 3.0.四层板叠层设计方案 ..................... 3.1.四层板常见阻抗设计与叠层结构 ........... 12 12 13 14 14 14 14 15 15 15 16 16 17 17 18 3.10. SGGS II 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm 3.11. SGGS II 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm 3.12. SGGS II 50 55 60 || 90 95 100 || 1.6mm ............................. 3.13. SGGS II 50 55 60 II 85 90 95 100 II 1.0mm 1.6mm .................... 3.1 4. SGGS II 50 55 75 II 100 II 1.0mm 2.0mm ............................. 3.1 5. GSSG II 50 II 100 II 1.0mm ......................................... 18 19 20 21 22 22

40吨电弧炉炉体设计

目录 一、电弧炉简介及其发展趋势 (2) 二、电弧炉炉型算及变压器功率确定 (3) 1、电弧炉设计要求 (3) 2、电弧炉炉型计算 (4) 3、炉子的变压器功率及电极参数确定 (8) 三、电弧炉耐火材料的损毁机理及选择 (11) 1、炉衬损毁机理 (11) 2、炉顶用耐火材料 (12) 3、炉墙用耐火材料 (13) 4、炉底和出钢槽用耐火材料 (14) 附录 (16)

40吨电弧炉炉体设计说明书 一、电弧炉简介及其发展趋势 电弧炉是炼钢电炉的一种,也是目前世界上熔炼优质钢、特殊用途钢种的主要设备。电弧炉炼钢技术已有100年的历史,第二次世界大战后电炉炼钢才有较大发展,在最近的20年,电弧炉炼钢技术发展尤为迅速,电弧炉的应用带来了炼钢技术的革命。尽管全球粗钢年产总量的增长速度很缓慢,但以废钢为主要原料的电弧炉炼钢的产量所占的比重却在逐年上升。2001年,电弧炉炼钢占世界钢产量的40%,成为最重要的炼钢方法之一。与高炉铁水炼钢相比,其竞争优势在于投资费用和运行成本。自60年代中期提出电弧炉超高功率概念以来,电弧炉建造趋于大型化、高功率化,出现现了多种新型式的电弧炉。在发展大型电弧炉的过程中,美国曾用六支电极,由两台变压器供电,电弧炉为椭圆形。 发展大容量电炉和提高电炉自动化水平,采用大功率静止式动态补偿技术,用水冷构件代替耐火材料,炉盖第四孔直接排烟与电炉周围密封罩相连接的烟尘净化系统,炉盖第五孔机械化自动化加料系统,电炉使用还原铁比例逐渐扩大,炉外废钢预热,炉内燃料助燃,强化熔池用氧,开发底气搅拌系统和泡沫渣覆盖下的冶炼工艺,从冷却水和废气中回收热能,采用全连铸,发展纤维石墨电极和采用优质高效碱性镁碳炉衬等。 电弧炉炼钢得到迅速发展的主要原因: (1)废钢日益增多 (2)钢铁工业迅速增长。由于发电设备大型化和技术不断改进,可利煤用部分劣质粉发电,电的供应和价格比较稳定,使电炉炼钢有了比较可靠的基础。此外,电炉用废钢比高炉——转炉炼钢的能耗低。 (3)电炉趋向大型化、超高功率化,冶炼工艺化。 (4)投资少,基建速度快,基金回收速度。 (5)钢液温度、成份容易控制,品种适应性大,可冶炼多种牌号的钢,同时还能间断性生产。 电炉炼钢是世界各国生产特殊钢的主要方法,它具有一系列的优点: (1)电炉炼钢的设备投资少、基建速度快; (2)炼钢的热源来自于电弧,温度高达4000~6000℃,并直接作用于炉料,

特性阻抗之原理与应用

特性阻抗之原理與應用 Characteristic Impedance 一、前題 1、導線中所傳導者為直流(D.C.)時,所受到的阻力稱為電阻(Resistance),代表符號為R,數值單位為“歐姆”(ohm,Ω)。其與電壓電流相關的歐姆定律公式為: R=V/I;另與線長及截面積有關的公式為:R=ρL/A。 2、導線中所傳導者為交流(A.C.)時,所遭遇的阻力稱為阻抗(Impedance),符號為Z,單位仍為Ω。其與電阻、感抗及容抗等相關的公式為: Z =√R2 +(XL—Xc)2 3、電路板業界中,一般脫口而出的“阻抗控制”嚴格來說并不正确,專業性的說法應為“特性阻抗控制”(Characteristic Impedance Control)才對。因為電腦類PCB線路中所“流通”的“東西”并不是電流,而是針對方波訊號或脈沖在能量上的傳導。此種“訊號”傳輸時所受到的“阻力”另稱為“特性阻抗”,代表的符號是Zo。計算公式為:Zo = √L/C ,(式中L為電感值,C為電容值),不過Zo的單位仍為歐姆。只因“特性”的原文共有五個章節,加上三個單字一并唸出時拗口繞舌十分費力。為簡化起見才把“特性”一字暫時省掉。故知俗稱的“阻抗控制”,實際上根本不是針對交流電“阻抗”所進行的“控制”。且即使要簡化掉“特性”也應說成Controlled Impedance,或阻抗匹配才不致太過外行。 圖1 PCB元件間以訊號(Signal)互傳,板面傳輸線中所遭遇的阻力稱為“特性阻抗” 二、需做特性阻抗控制的板類 電路板發展40年以來已成為電機、電子、家電、通信(含有線及無線)等硬體必備的重要元件。若純就終端產品之工作頻率,及必須阻抗匹配的觀點來分類時,所用到的電路板約可粗分為兩大類:

电阻炉温度控制系统的设计说明

电炉温度控制系统设计

摘要 热处理是提高金属材料及其制品质量的重要技术手段。近年来随工业的发展, 对金属材料的性能提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展。电阻炉是热处理生产中应用最广泛的加热设备,加热时恒温过程的测量与控制成为了关键技术,促使人们更加积极地研制热加工工业过程的温度控制器。 此设计针对处理电阻炉炉温控制系统,设计了温度检测和恒温控制系统,实现了基本控制、数据采样、实时显示温度控制器运行状态。控制器采用51 单片机作为处理器,该温度控制器具有自动检测、数据实时采集处理及控制结果显示等功能,控制的稳定性和精度上均能达到要求。满足了本次设计的技术要求。 关键词:电阻炉,温度测量与控制,单片机

目录 一、绪论 ....................................................................................................... - 1 - 1.1 选题背景........................................................................................ - 1 - 1.2 电阻炉国发展动态........................................................................... - 1 - 1.3 设计主要容 .................................................................................... - 2 - 二、温度测量系统的设计要求........................................................................... - 3 - 2.1 设计任务......................................................................................... - 3 - 2.2 系统的技术参数................................................................................ - 3 - 2.3 操作功能设计................................................................................... - 4 - 三、系统硬件设计........................................................................................... - 5 - 3.1 CPU选型........................................................................................ - 5 - 3.2 温度检测电路设计.............................................................................. - 6 - 3.2.1 温度传感器的选择..................................................................... - 6 - 3.2.1.1热电偶的测温原理 ......................................................... - 7 - 3.2.1.2 热电偶的温度补偿......................................................... - 7 - 3.2.2 炉温数据采集电路的设计.......................................................... - 8 - 3.2.2.1 MAX6675芯片.......................................................... - 8 - 3.2.2.2 MAX6675的测温原理................................................. - 9 - 3.2.2.3 MAX6675 与单片机的连接.......................................... - 10 - 3.3 输入/输出接口设计......................................................................... - 10 - 3.4 保温定时电路设计 .......................................................................... - 13 - 3.4.1 DS1302 与单片机的连接....................................................... - 13 - 3.5 温度控制电路设计............................................................................ - 14 - 系统硬件电路图...................................................................................... - 17 - 四、系统软件设计......................................................................................... - 19 - 4.1 软件总体设计 .................................................................................. - 19 - 4.2 主程序设计 ..................................................................................... - 19 - 4.3 温度检测及处理程序设计................................................................... - 20 - 4.4 按键检测程序设计............................................................................ - 23 - 4.5 显示程序设计 .................................................................................. - 25 - 4.6 输出程序设计 .................................................................................. - 27 - 4.7中值滤波 ......................................................................................... - 28 - 五、结论 ..................................................................................................... - 30 - 参考文献 ..................................................................................................... - 31 -

减轻对电网冲击的高阻抗电弧炉

减轻对电网冲击的高阻抗电弧炉 1 概述 随着半导体电力电子技术的发展与进步,各种变流变频装置已广泛用于工业及民用领域,煤矿提升机也比较普遍的采用晶闸管供电的直流拖动,称为提升机晶闸管电控系统 (SCR-D)。 晶闸管电控系统具有调速平稳准确、效率高、容易维护、可引入计算机监控等优点,目前国内大功率的矿井提升机采用较多。 但是晶闸管电控系统也会对电网产生一些不良影响。由于晶闸管变流器采用相切控制方式调节电压或电流,使电网正弦电压波形受到切割,并由此产生谐波电流,导致供电电网电压波形畸变。SCR-D系统在整个运行期间功率因数偏低(一般在0.02~0.8之间),同时启动无功冲击大,引起电网电压发生波动,尤其对于矿井提升机这类短时重复工作制的负荷,电压波动问题更加突出。综上所述,SCR-D系统对电网的不利影响主要表现在: ①产生谐波电流;②平均功率因数低;③起动无功冲击大。 1.1谐波电流问题 根据国内外有关技术文献及规程,电网谐波(分量)的定义为“对周期性交流量进行傅立叶级技术分解,得到的频率为基波频率整数倍的分量”。在假定发电机输出的电压为理想正弦波形的前提下电网的波形主要由具有非线形特性或者对电流进行周期性开闭的电器设备产生,这类设备分为以下两种: ⑴装有电力电子器件的设备,例如变流器、变频器、交流控制器、电视机等。 ⑵具有非线形电流电压特性的设备,例如感应炉、电弧炉、气体放电灯和变压器等。 随着晶闸管电路的广泛应用,这类设备成为主要的谐波源。 晶闸管在对电流进行相切控制时,正弦电流的一部分进入负载,转化为功率,另一部分能量返回电网,其频率为电网频率的整数倍。这部分电流称为谐波电流。因此,我们可将晶闸管变流器看作谐波电流源,整个电网作为他的负载。为了保证所有电器设备的正常工作,各工业国家都对谐波问题开展了深入的研究工作,并制定出了相应的规程标准。我国于1984年颁布了《电力系统谐波管理暂行规定》,后又于1993年发布了国家标准《电能质量:公用电网谐波》,规定了电网谐波的允许值。 我国《煤炭工业矿井设计规范》第16.1.13条规定:“电网中接有非线性用电设备的矿井,应采取措施将谐波电流危害限制在允许范围内。设计滤波电路时,宜结合无功补偿及控制因大容量谐波源所引起的电压闪变等因素确定。” 根据目前国际上的研究成果,谐波电流允许值应基于电网的电磁相容性水平,即不可能完全消除谐波,但应将其限制在一定的水平。 1.2功率因数问题 晶闸管装置基本上相当于上一个感性负载,随着控制角的改变,其功率因数也会发生变化。即使晶闸管装置副边接的是纯电阻,也具有感性特征。 晶闸管电路的功率因数通常较低,用于煤矿提升机的SCR-D系统根据工作状态,其自然功率因数在0.02~0.8之间变化,即起动阶段功率因数很低,等速段功率因数较高,根据开滦钱家营矿实测结果,提升机的平均功率因数为0.69。 1.3冲击电压降问题 大型负载起动时,须较多的无功功率,如电网容量较小,则会发生电压降落。周期性重复起动,会造成电压波动,甚至出现“闪变”。电网电压的稳定性是衡量电网电压质量的一个重要条件,而电压波动的允许值是与其出现的频度有关,国际《电能质量:电压允许波动和闪变》规定10kV电网的电压允许波动为2.5%。对于矿井提升机这类负载,考虑到技术经

电弧炉控制系统设计

2006 年 6 月南京

毕业设计(论文)中文摘要

目录

1 绪论 (1) 1.1 系统设计背景 (1) 1.2 设计要求与设计思路 (2) 2 电弧炉与PTI枪 (2) 2.1 电弧炉炼钢工作原理 (2) 2.2 电弧炉炼钢的发展现状 (3) 2.3 PTI枪系统组成 (3) 3 可编程控制器(PLC)简介 (7) 3.1 可编程序控制器的概述 (7) 3.2 PLC的工作原理 (7) 3.3 PLC发展现状与趋势 (8) 3.4 西门子S7-300PLC (8) 3.5 西门子STEP-7编程软件 (10) 4 碳仓系统总体设计要求 (13) 4.1 设计要求 (13) 4.2 功能要求 (15) 5 硬件设计 (16) 5.1 硬件组态 (16) 5.2 上载硬件实际组态到编程器 (16) 6 软件设计 (19) 6.1 料仓部分的程序设计 (19) 6.2 运行仓部分的程序设计 (21) 6.3 三路碳粉分配器部分的程序设计 (28) 7 程序调试 (35) 结论 (36) 致谢 (37) 参考文献 (38) 附录 A 碳仓控制系统源程序 (39)

1 绪论 据统计,目前全世界粗钢产量的30%由电炉生产,我国电炉钢也约占总钢产量的20%左右。电弧炉电气运行是电炉冶炼生产最基本的保障,它关系到冶炼工艺、

原料、电气、设备等诸多方面的问题,直接影响电炉炼钢生产的各项技术和经济指标,因此对其进行最佳化的研究意义重大,不但可保障冶炼工艺的顺行和充分发挥设备资源的作用,还能提高生产率,节能降耗。 可编程控制器是在继电器控制和计算机控制发展的基础上开发出来的,并逐渐发展成以微处理器为核心,把自动化技术,计算机技术,通讯技术融为一体的新型工业自动控制装置。随着微处理器、计算机、网络和数字通信技术的飞速发展,工业生产自动化控制技术已扩展到了几乎所有的工业领域。应用计算机网络技术来解决工业自动化任务已逐渐成为普通的技术。可编程序控制器是应用面最广、功能强

阻抗匹配的原理

阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 右图中R为负载电阻,r为电源E的内阻,E为电压源。由于r的存在,当R很大时,电路接近开路状态;而当R很少时接近短路状态。显然负载在开路及短路状态都不能获得最大功率。 根据式:

从上式可看出,当R=r时式中的 式中分母中的(R-r)的值最小为0,此时负载所获取的功率最大。所以,当负载电阻等于电源内阻时,负载将获得最大功率。这就是电子电路阻抗匹配的基本原理。 改变阻抗力 把电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线 由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为5 0欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为 100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电

总线传输时阻抗匹配的原理

在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。 这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。 当阻抗不匹配时,有哪些办法让它匹配呢? 第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。 第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。 第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。 阻抗匹配基础 标签:终端网络工作图形signal能源 2009-08-11 21:17 38690人阅读评论(11) 收藏举报 目录(?)[+]英文名称:impedance matching 基本概念

相关文档
最新文档