线性代数实践课作业

线性代数实践课作业
线性代数实践课作业

华北水利水电学院

行列式的计算方法

课程名称:线性代数

专业班级:电子信息工程 2012154班

成员组成:

联系方式:

2013年10月27日

摘要:

行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本`最常用的工具.本质上,行列式描述的是在n维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.尤其在讨论方程组的解,矩阵的秩,向量组的线性相关性,方阵的特征向量等问题时发挥着至关重要的作用,所以掌握行列式的计算方法显得尤其重要。

关键词:

行列式,范德蒙行列式,矩阵,特征值,拉普拉斯定理,克拉默法则。

The calculation method of determinant

Abstract:

Determinant is an important research object of linear algebra, is one of the most basic of linear algebra ` the most commonly used tools. In essence, the determinant is described in n dimensional space, a parallel polyhedron volume which is formed by the linear transformation, it is widely used in solving linear equations, the matrix, the calculation of calculus, etc. Especially in the discussion of solving systems of nonlinear equations, matrix rank, vector linear correlation, the problem such as characteristic vector of play a crucial role, so to master the calculation method of determinant is especially important

Key words:

Determinant vandermonde determinant, matrix, eigenvalue, the Laplace's theorem, kramer rule.

正文:

1 引言

行列式的概念最初是伴随着方程组的求解而发展起来的,它不论是在线性代数,多项式理论还是微积分中都有广泛应用,所以掌握行列式的计算是十分必要的. 为此,我在查阅部分参考资料的基础上,结合自己的学习实践,对行列式的计算总结了十一种方法.常规做法都是用行列式的性质和相关定理来求解.以下是对一些典型类型的行列式的计算,以拓宽行列式的解题思路,下面依次说明其求解方法和过程.

2 行列式的计算方法 2.1 定义法

n 阶行列式的定义展开式式中包含!n 项,当n 较大时,利用定义进行计算就会很麻烦,

只有当行列式中0比较多时考虑利用定义算行列式,这样可以大大减少行列式展开的项数.

计算0

001

00002000010

n n -.

解 根据行列式的定义,行列式展开式的每一项都是n 个元素的乘积,这些元素来自行列式不同的行和不同的列,由于行列式中只有一个非零项!)1(21n n n =?-? ,这一项的

逆序数为1-n ,有计算可得!)1(1

n D n n --=.

2.2 利用行列式的性质计算

例: 一个n 阶行列式n

ij D a =的元素满足,,1,2,

,,ij ji a a i j n =-= 则称D n

为反对称行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,

,ii a i n ==

故行列式D n 可表示为1213112

23213

233123000

n n

n n n

n

n

a a a a a a D a a a a a a -=-----,由行列式的性质A A '

=,

1213112

23213

2331230000

n n n n n

n

n

a a a a a a D a a a a a a -----=-1213112

23213

23312300(1)00

n n n n n

n

n

a a a a a a a a a a a a -=------(1)n n D =-

当n 为奇数时,得D n =-D n ,因而得D n = 0.

2.3 化为三角形行列式

若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。

化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。

原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。

计算行列式 1

231

1

2123321

2511

3311231 ------=

n n n n n n n n

n n A .

解 首先将行列式的第一行乘以()1-加到第n ,,3,2 行,再将其第1,2,,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得

()()()!11

020013210

000

1

002000200010001231)

1(1

2

12

1-=-=---=

----n n n n n n n A n n n n

)(

2.4.降阶法(按行(列)展开法)

降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地

是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是根据行列式的特点,先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

计算20阶行列式20123181920

2

121718193

2

1

161718201918

3

2

1

D = [分析]这个行列式中没有一个零元素,若直接应用按行(列)展开法逐次降阶直至化许许

多多个2阶行列式计算,需进行20!*20-1次加减法和乘法运算,这人根本是无法完成的,更何况是n 阶。但若利用行列式的性质将其化为有很多零元素,则很快就可算出结果。

注意到此行列式的相邻两列(行)的对应元素仅差1,因此,可按下述方法计算:

解:

11

2020118(1,

(2,

,20)

19)

11111112318192021

1

1112

121718193

111

1

13

2

1

161718191111

1

201918

32120

11

111

1111113

0222240022221(1)221200000221

00

i i

i i i c c r r D ++==-+---=---------=?-?=-?18

2

2.5 递(逆)推公式法

递推法是根据行列式的构造特点,建立起

的递推关系式,逐步推下去,

从而求出 的值。 有时也可以找到 与 , 的递推关系,最后利用 , 得

的值。

[注意]用此方法一定要看行列式是否具有较低阶的相同结构如果没有的话,即很难找出递推关系式,从而不能使用此方法。

计算行列式β

ααββ

αβααββ

ααββ

α+++++=

1

0000010001000

n D .

解:将行列式按第n 列展开,有21)(---+=n n n D D D αββα,

112112(),(),n n n n n n n n D D D D D D D D αβαβαβ-------=--=-

得 n n n n n n D D D D D D βαβ

αβα=-==-=-----)()(122

3221 。 同理得 n n n D D αβ=--1

, ??

???≠--=+=++.,;

,)1(11

βαβ

αβαβααn n n n n D

2.6 利用范德蒙行列式

根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去; ...) 把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。

计算行列式122221122

12

12121122

111

111n n n

n n n n n n n n

x x x D x x x x x x x x x x x x ------+++=

++++++

解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到

把新的第n -1行的-1倍加到第n 行,便得范德蒙行列式

1

2

2

2212

1

1

1

112111()n

n i j n i j n n n n

x x x D x x x x x x x x ≥>≥---==

-∏

2.7.加边法(升阶法)

加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。 它要求:1 保持原行列式的值不变; 2 新行列式的值容易计算。根据需要和原行列式的特点选取所加的行和列。加边法适用于某一行(列)有一个相同的字母外,也可用于其第 列(行)的元素分别为 n-1 个元素的倍数的情况。

计算n 阶行列式121

2121

2

n n n n n

x a a a a x a a D a a a a a x a ++=

+

解:110

n

n

n

a a D D =

1211

002,,11

001

n i a a a x i n x x

-=+--第行减第1行

121

10000000

n

j n j a a a a x

x x x

=+=

11n j n

j a x x =??=+ ??

?∑

2.8数学归纳法

是同型的行列式时,可考虑用数学归纳法求之。 一般是利用不完全归

纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是

用来证明行列式等式。因为给定一个行列式,要猜想其值是比较难的,所以是先给定其值,然后再去证明。(数学归纳法的步骤大家都比较熟悉,这里就不再说了)

计算n 阶行列式12

2

11000

100

00

1n

n

n n x x D x a a a a a x

----=

-+

解:用数学归纳法. 当n = 2时,21221

1

()x

D x x a a a x a -=

=+++212x a x a =++ 假设n = k 时,有 12

121k k k k k k D x a x a x a x a ---=+++

++

则当n = k +1时,把D k +1按第一列展开,得

11

k k k D xD a ++=+1111

()k k k k k x x a x a x a a --+=++

+++12111k k k k k x a x a x a x a +-+=++

+++

由此,对任意的正整数n ,有1

2121n n n n n n D x a x a x a x a ---=+++++

2.9 拆开法

拆项法是将给定的行列式的某一行(列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,把一个复杂的行列式简化成两个较为简单的。使问题简化以利计算。

计算行列式 n D =

11

2122

1

2

n n n n

a a a a a a a a a λλλ+++

n D =12

122

1

2

n n n n

a a a a a a a a a λλ++1

222

00

n n n n

a a a a a λλλ+++12200

n n

n

a a a a λλ=

11n D λ-+

1211n n a D λλλ-=+= (12)

11n

i

n i i

a λλλλ=??=+ ???

∑ 2.10数学归纳法

数学归纳法多用于证明题.用数学归纳法计算n 阶行列式,需要对同结构的低阶行列式进行计算,从中发现规律并得出一般性结论,然后用归纳法证明其正确性.

证明

αα

αααn cos cos 210

00

cos 210001cos 21

0001cos =

.

证明 第二数学归纳法.2=n 时,

α

αcos 21

1cos 2=

D =αα2cos 1cos 22

=-.

结论成立.假设对级数小于n 的行列式,结论成立,则

21cos 2---=n n n D D D α,

由假设

αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n

代入前一式得

]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D n

=αααααn n n cos sin )1sin(cos )1cos(=---. 故对一切自然数n 结论成立.

2.11利用拉普拉斯展开法

拉普拉斯定理的四种特殊情形

1)

0nn nn mm

mn mm A A B C B =? 2)

nn

nm

nn mm mm

A C A

B B =? 3)

0(1)nn mn nn mm mm

mn

A A

B B

C =-? 4)

(1)0

nm nn mn nn mm mm

C A A B B =-?

计算n 阶行列式n D ,其中

a

b

a b a

b a

b a

a a a D n

ββββ

β

β

β

βββββ

λ

=

.

解 如果从第三行开始每一行都减去第二行,再从第三列开始每一列都加上第二列, 使行列式种更多的元素为零.

先按上述分析对行列式进行变换

β

ββββββ

β

βλ

------=

a a

a a a a a

b

a

a a a D n

00

00

0000

β

βββ

β

β

β

λ

----+-=

a a a n a

b a

a

a

a

n

0000000

0)2()1(

)

2()2(2

20

0000)2(1-?-?---?

-+-=

n n a a a n a b a

n β

βββ

λ

)(

2)()]1()2([--?---+=n a n ab n a ββλλ.

3 结束语

行列式的计算方法有好多种,通过不同种解题方法,可以更好,更快地解决问题,但是在学习过程中要不断地创新总结,探索更好的方法。

参考文献

[1] 线性代数[M].科学出版社, 2007

[2] 胡金德 王飞燕.线性代数辅导[M].北京:清华大学出版社 [3] 徐甫华 张贤科.高等代数解题方法[M].北京:清华大学出版社 分工情况

线性代数上机作业题答案

线性代数机算与应用作业题 学号: 姓名: 成绩: 一、机算题 1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。 (1)计算A +B ,A -B 和6A (2)计算()T AB ,T T B A 和()100 AB (3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1 A -和1 B - (5)计算矩阵A 和矩阵B 的秩。 解 输入: A=round(rand(5)*10) B=round(rand(5)*10) 结果为: A = 2 4 1 6 3 2 2 3 7 4 4 9 4 2 5 3 10 6 1 1 9 4 3 3 3 B = 8 6 5 4 9 0 2 2 4 8 9 5 5 10 1 7 10 6 0 3 5 5 7 9 3 (1)输入: A+B 结果为:

ans= 10 10 6 10 12 2 4 5 11 12 13 14 9 12 6 10 20 12 1 4 14 9 10 12 6 输入: A-B 结果为: ans = -6 -2 -4 2 -6 2 0 1 3 -4 -5 4 -1 -8 4 -4 0 0 1 -2 4 -1 -4 -6 0 输入: 6*A 结果为: ans = 12 24 6 36 18 12 12 18 42 24 24 54 24 12 30 18 60 36 6 6 54 24 18 18 18 (2)输入: (A*B)' 结果为: ans = 82 112 107 90 135 100 121 107 83 122

80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: B'*A' 结果为: ans = 82 112 107 90 135 100 121 107 83 122 80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: (A*B)^100 结果为: ans = 1.0e+270 * 1.6293 1.6526 1.4494 1.5620 1.6399 1.9374 1.9651 1.7234 1.8573 1.9499 2.4156 2.4501 2.1488 2.3158 2.4313 2.0137 2.0425 1.7913 1.9305 2.0268 2.4655 2.5008 2.1932 2.3636 2.4815 (3)输入: D=det(A) 结果为: D = 5121 输入: D=det(B) 结果为:

线性代数试题及答案.

线性代数(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 12 11 =a a a a ,则=1 6 030322211211 a a a a 3。 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CA B =-1。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_ _2___________. 6. 设A为三阶可逆阵,??? ? ? ??=-1230120011 A ,则=*A 7。若A为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 23453 2011 11111 2 1403 54321=D ,则=++++4544434241A A A A A 9。 向量α=(2,1,0,2)T -的模(范数)______________ 。 10。若()T k 11=α与()T 121-=β正交,则=k

二、选择题(本题总计10分,每小题2分) 1。 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ ? D .r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8? B.8- C. 34?? D.3 4- 3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A *kA )(B *A k n )(C *-A k n 1)(D *A 5。 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____. )(A AC AB = 则 C B =)(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)()(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分.1-3每小题8分,4-7每小题9分) 1。 计算n 阶行列式22221 =D 22222 22322 2 12 2 2-n n 2 222 . 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2)3(1--. 3.求矩阵的逆 111211120A ?? ?=- ? ???

线性代数课后作业答案(胡觉亮版)

第一章 1.用消元法解下列线性方程组: (1)??? ??=++=++=++. 5432,9753,432321 321321x x x x x x x x x 解 由原方程组得同解方程组 12323234,23,x x x x x ++=?? +=? 得方程组的解为13232, 2 3. x x x x =-?? =-+?令3x c =,得方程组的通解为 c x c x c x =+-=-=321,32,2,其中c 为任意常数. 2.用初等行变换将下列矩阵化成行阶梯形矩阵和行最简形矩阵: (2)???? ? ??--324423211123. 解 1102 232111232551232041050124442300000000r r ? ?- ?-???? ? ? ? ? -??→--??→- ? ? ? ? ?- ????? ? ?? ? ,得 行阶梯形:????? ? ?---0000510402321(不唯一);行最简形:???? ??? ? ? ? - -00004525 10212 01 3.用初等行变换解下列线性方程组: (1)?? ? ??=+-=+-=++.3,1142,53332321321x x x x x x x x

解 2100313357214110109011320019r B ? ? ??? ? ? ?=-??→- ? ? ?- ??? ? ?? ?M M M M M M , 得方程组的解为 9 20 ,97,32321=-==x x x . (2)??? ??=+++=+++=++-. 2222,2562, 1344321 43214321x x x x x x x x x x x x 解 114311143121652032101222200001r B --???? ? ? =?? →-- ? ? ? ????? M M M M M M , 得方程组无解. 第二章 1.(2) 2 2 x y x y . 解 原式()xy y x =-. (2)01000 020 00010 n n -L L L L L L L L L . 2.解 原式1 100 020 (1) 001 n n n +=-=-L L M M M L !)1(1n n +-

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数考试练习题带答案(6)

线性代数考试练习题带答案 说明:本卷中,A -1 表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式33 32 31 2322 21131211a a a a a a a a a =4,则行列式33 3231232221 13 1211 333222a a a a a a a a a =( ) A.12 B.24 C.36 D.48 2.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1 CB -1 B.CA -1B -1 C.B -1A -1C D.CB -1A -1 3.已知A 2 +A -E =0,则矩阵A -1 =( ) A.A -E B.-A -E C.A +E D.-A +E 4.设54321,,,,ααααα是四维向量,则( ) A.54321,,,,ααααα一定线性无关 B.54321,,,,ααααα一定线性相关 C.5α一定可以由4321,,,αααα线性表示 D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=n D.0

线性代数(本)习题册行列式-习题详解(修改)(加批注)

||班级: 姓名: 学号: 成绩: 批改日期: || 第 1 页 共 18 页 行列式的概念 一、选择题 1. 下列选项中错误的是( ) (A) b a d c d c b a - = ; (B) a c b d d c b a = ; (C) d c b a d c d b c a = ++33; (D) d c b a d c b a ----- =. 答案:D 2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ). (A)保持不变; (B)可以变成任何值; (C)保持不为零; (D)保持相同的正负号. 答案:C 二、填空题 1. a b b a log 1 1 log = . 解析: 0111log log log 1 1log =-=-=a b a b b a b a . 2. 6 cos 3sin 6sin 3 cos π π ππ = . 解析: 02cos 6sin 3sin 6cos 3cos 6 cos 3 sin 6sin 3 cos ==-=πππππππ π π 3.函数x x x x x f 1213 1 2)(-=中,3x 的系数为 ; x x x x x x g 2 1 1 12)(---=中,3x 的系数为 . 答案:-2;-2.

||班级: 姓名: 学号: 成绩: 批改日期: || 第 2 页 共 18 页 阶行列式n D 中的n 最小值是 . 答案:1. 5. 三阶行列式11342 3 2 1-中第2行第1列元素的代数余子式 等于 . 答案:5. 6.若 02 1 8 2=x ,则x = . 答案:2. 7.在 n 阶行列式ij a D =中,当i

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么? 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少? (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

修订版-线性代数习题三答案

第三章 线性方程组 一、温习巩固 1. 求解齐次线性方程组??? ??=-++=--+=-++0 51050363024321 43214321x x x x x x x x x x x x 解: 化系数矩阵为行最简式 ???? ? ????→?????? ??----=000001001-0215110531631121行变换A 因此原方程同解于? ? ?=+-=0234 21x x x x 令2412,k x k x ==,可求得原方程的解为 ???? ?? ? ??+??????? ??-=1001001221k k x ,其中21,k k 为任意常数。 2. 求解非齐次线性方程组?? ? ??=+=+-=-+8 31110232 2421321321x x x x x x x x 解:把增广矩阵),(b A 化为阶梯形 ?? ? ? ? ????→?????? ??---??→?????? ??--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A 因此3),(2)(=<=b A R A R ,所以原方程组无解。 3. 设)1,2,1,3(),1,1,2,3(--=--=βα。求向量γ,使βγα=+32。 解:??? ? ? --=-= 31,0,35,3)2(31αβγ 4. 求向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),T T T ααα=-==4(1,1,2,0),T α=- T )6,5,1,2(5=α的秩和一个极大线性无关组。 解:将51,ααΛ作为列向量构成矩阵,做初等行变换

线性代数复习题带参考答案(2)

线性代数考试题库及答案 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001000 ( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 1 10000 0100100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 003232 1 1112)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若21 3332 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 222123 21 12 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若573411111 3263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23500101 1 110403--= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数练习册习题及答案本

第四章 线性方程组 §4-1 克拉默法则 一、选择题 1.下列说法正确的是( C ) A.n 元齐次线性方程组必有n 组解; B.n 元齐次线性方程组必有1n -组解; C.n 元齐次线性方程组至少有一组解,即零解; D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B ) A.当0D ≠时,非齐次线性方程组只有唯一解; B.当0D ≠时,非齐次线性方程组有无穷多解; C.若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题 1.已知齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解, 则λ= 1 ,μ= 0 . 2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠, 则方程组有唯一解i x = i D D . 三、用克拉默法则求解下列方程组 1.832623x y x y +=??+=? 解: 8320 62 D = =-≠ 1235 32 D = =-, 28212 63 D = =- 所以,125,62D D x y D D = ===-

2.123123123 222310x x x x x x x x x -+=-?? +-=??-+-=? 解: 2131 12112122 130 3550111 01 r r D r r ---=--=-≠+--- 11222 10051 1321135 011011D r r ---=-+-=---, 2121215 052 1322 1310 10 1 101 D r r --=-+-=-----, 3121225 002 1122 115 1 1 110 D r r --=+=--- 所以, 3121231,2,1D D D x x x D D D = ===== 3.21 241832x z x y z x y z -=?? +-=??-++=? 解: 13201 0012 412041200 183 583 D c c --=-+-=≠- 13110110014114020 283285D c c -=-+=, 2322 11 2 102 112100 123 125 D c c -=-+=--, 313201 01 2 4120 4120 182 582 D c c =-=-- 所以, 3121,0,1D D D x y z D D D = =====

线性代数习题集(带答案)

______________________________________________________________________________________________________________ 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 0010 0100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 0011 0000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2

6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311 122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7 3 4 11111 3263 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 101 1110 40 3 --= D ,则D 中第四行元的余子式的和为( ).

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2 a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αααα-=___________。 (3) 二阶行列式2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 ,; C 1 ,; D 2 ,。 (3)三阶行列式2 31503 2012985 2 3 -=()。 A -70; B -63; C 70; D 82。

(4A 44 a b -;B () 2 2 2a b -;C 44b a -;D 44 a b 。 (5)n 阶行列式 0100002 000 1 000 n n -=()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号: (1)152332445166a a a a a a ;(2)215316426534a a a a a a ;(3)615243342516a a a a a a 答案:(1)正号;(2)负号。 【7】根据定义计算下列各行列式: (1)00001 00020 0030004000 50000 ;(2) 11 14 2223323341 44 000 00 a a a a a a a a ;(3)00010 20 0100 000 n n -;

第二学期线性代数第3次作业

本次作业是本门课程本学期的第3次作业,注释如下: 一、单项选择题(只有一个选项正确,共8道小题) 1. 设A为n阶方阵,且A2+A?5E=0,则(A+2E)?1=( )。 (A) A?E (B) A+E (C) 1 3 ( A?E ) (D) 1 3 ( A+E ) 正确答案:C 解答参考:A 2 +A?5E=0 ?A 2 +A?2E=3E?( A+2E )(A?E)=3E ?( A+2E ) ?1 = 1 3 (A?E) 2. 若n维向量α 1 ,α 2 ,?, α n 线性相关,β为任一n维向量,则( )。 (A) α 1 , α 2 ,?, α n ,β线性相关; (B) α 1 , α 2 ,?, α n ,β线性无关; (C) β一定能由α 1 , α 2 ,?, α n 线性表示; (D) α 1 , α 2 ,?, α n ,β的相关性无法确定。 正确答案:A 解答参考: 3. 设线性方程组{ 3 x 1 + x 2 =1, 3 x 1 +3 x 2 +3 x 3 =0 ,5 x 1 ?3 x 2 ?2 x 3 =1 }则此方程组。 (A) 有唯一解 (B) 有无穷多解 (C) 无解 (D) 有基础解系 正确答案:A 解答参考: 4. 设n维向量组α1,α2,?,αs,若任一维向量都可由这个向量组线性表出,必须有。 (A) s= n (B) s< n (C) s> n (D) s≥ n 你选择的答案:[前面作业中已经做正确] [正确] 正确答案:D 解答参考:

5. 设α 1 , α 2 , α 3 ,β,γ 都是4维列向量,且4阶行列式| α 1 , α 2 , α 3 ,β |=a ,| γ, α 1 , α 2 , α 3 |=b ,则4阶行列式| α 1 , α 2 , α 3 ,β+γ |= (A) a+b (B) ?a?b (C) a?b (D) b?a 正确答案:C 解答参考: 6. 设B,C 为4阶矩阵,A=BC , R(B)=4 , R(C)=2 ,且α 1 , α 2 , α 3 是线性方程组Ax=0 的解,则它们是 (A) 基础解系 (B) 线性相关的 (C) 线性无关的 (D) A,B,C都不对 你选择的答案:[前面作业中已经做正确] [正确] 正确答案:B 解答参考: 7. 设n维列向量α= ( 1 2 ,0,?,0, 1 2 ) T ,矩阵A=I?α α T ,B=I+2α α T ,则AB= (A) 0 (B) ?I (C) I (D) I+α α T 正确答案:C 解答参考: 8. 设矩阵A m×n的秩r(A)=m<,下述结论中正确的是> (A) A的任意m个列向量必线性无关 (B) A的任意一个m阶子式不等于零 (C) 齐次方程组Ax=0只有零解 (D) 齐次方程组Ax=0只有零解 你选择的答案: D [正确] 正确答案:D 解答参考: 二、判断题(判断正误,共5道小题)

线性代数练习题及答案

线性代数期中练习 一、单项选择题。 1. 12 021 k k -≠-的充分必要条件是( )。 (A) 1k ≠- (B) 3k ≠ (C) 1k ≠- 且3k ≠ (D) 1k ≠-或3k ≠ 2.若AB =AC ,当( )时,有B =C 。 (A) A 为n 阶方阵 (B) A 为可逆矩阵 (C) A 为任意矩阵 (D) A 为对称矩阵 3.若三阶行列式M a a a a a a a a a =3332 31 232221 13 1211 ,则=---------33 32 312322 2113 1211222222222a a a a a a a a a ( ) 。 (A) -6M (B) 6M (C) 8M (D) -8M 4.齐次线性方程组123123123 000ax x x x ax x x x x ++=?? ++=??++=?有非零解,则a 应满足( )。 (A) 0a ≠; (B) 0a =; (C) 1a ≠; (D) 1a =. 5.设12,ββ是Ax b =的两个不同的解,12,αα是0=Ax 的基础解系,则Ax b = 的通解是( )。 (A) 11212121()()2c c αααββ+-+ + (B) 11212121 ()()2 c c αααββ+++- (C) 11212121()()2c c αββββ+++- (D) 11212121 ()()2 c c αββββ+-++ 二.填空题。 6.A = (1, 2, 3, 4),B = (1, -1, 3, 5),则A ·B T = 。 7.已知A 、B 为4阶方阵,且A =-2,B =3,则| 5AB | = 。 | ( AB )-1 |= 。 8. 在分块矩阵A=B O O C ?? ??? 中,已知1-B 、1 -C 存在,而O 是零矩阵,则 =-1A 。

线性代数习题及解答

线性代数习题一 说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设行列式111213212223313233a a a a a a a a a =2,则111213 313233213122322333 333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .6 2.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1 B .E -A C .E +A D . E -A -1 3.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .?? ???A B 可逆,且其逆为-1-1? ? ???A B B .?? ??? A B 不可逆 C .?? ???A B 可逆,且其逆为 -1-1?? ???B A D .? ? ???A B 可逆,且其逆为 -1-1?? ??? A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是 ( ) A .向量组α1,α2,…,αk 中任意两个向量线性无关 B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0 C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示 D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)T B .(-2,0,-1,1)T C .(1,-1,-2,0)T D .(2,-6,-5,-1)T 6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1 B .2

相关文档
最新文档