数列与不等式的综合问题突破策略1

数列与不等式的综合问题突破策略1
数列与不等式的综合问题突破策略1

数列与不等式的综合问题突破策略

类型1:求有数列参与的不等式恒成立条件下参数问题

求数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数f (x )在定义域为D ,则当x ∈D 时,有f (x )≥M 恒成立?f (x )min ≥M ;f (x )≤M 恒成立?f (x )max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.

【题1】 等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >

1231111

n

a a a a ++++……恒成立的正整数n 的范围. 【题1】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围. 【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1. 由等比数列的性质知数列{

1n a }是以11a 为首项,以1q 为公比的等比数列,要使不等式成立, 则须1(1)1n a q q -->111(1)

11n a q q

--,把a 2

1=q -18代入上式并整理,得q -18(q n -1)>q (1-1n q ),

q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n ≥20.

【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用. 【题2】设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【题2】 第(1)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n +1≥a n 转化为关于n 与a 的关系,再利用a ≤f (n )恒成立等价于a ≤f (n )min 求解. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,

由此得S n +1-3 n +1=2(S n -3n ).

因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n ∈N *, ① (2)由①知S n =3n +(a -3)2 n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2,

a n +1-a n =4×3 n -1+(a -3)2 n -2=2 n -2·[12·(32

)n -2

+a -3],

当n ≥2时,a n +1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32

)n -2

+a -3≥0,

∴a ≥-9,

综上,所求的a 的取值范围是[-9,+∞)

【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.

类型2:数列参与的不等式的证明问题

此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.

【题3】 数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.

(1)求数列{a n }的通项公式; (2)设p 、q 都是正整数,且p ≠q ,证明:S p +q <1

2

(S 2p +S 2q ).

【题3】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(1)小题;第(2)小题利用差值比较法就可顺利解决.

【解】 (1)设等差数列{a n }的公差是d ,依题意得,??? a 1+2d =74a 1+6d =24,解得??? a 1=3

d =2

∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. (2)证明:∵a n =2n +1,∴S n =

1()

2

n n a a +=n 2+2n . 2S p +q -(S 2p +S 2q )=2[(p +q )2+2(p +q )]-(4p 2+4p )-(4q 2+4q )=-2(p -q )2,

∵p ≠q ,∴2S p +q -(S 2p +S 2q )<0,∴S p +q <1

2

(S 2p +S 2q ).

【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.

【题4】已知数列{}n a 中,113,21(1)n n a a a n +==-≥ (1)设1(1,2,3)n n b a n =-=,求证:数列{}n b 是等比数列;

(2)求数列{}n a 的通项公式

(3)设1

2n

n n n c a a +=?,求证:数列{}n c 的前n 项和13n S <.

【题4】(1)由121n n a a +=-得到112(1)n n a a +-=-,即1

1

21

n n a a +-=-……2分

【点评】关于数列求和与不等式相结合的问题,常结合裂项相消或错位相减法放缩求和.

【题5】已知数列{}n a 满足11111,,224n

n n a a a n N ++??

==∈ ???

.

(1)求数列{}n a 的通项公式;

(2)若数列{}n b 的前n 项和2

n s n =,112233n n n T a b a b a b a b =+++

+,求证:3n T <.

【题5】(1)1

122111124,41124n n n n n

n n n

a a a a a a +++++??

???=∴=?? ???

, 又11221111

,,2244

a a a a ==?∴=,

{}n a ∴是公比为12的等比数列,12n

n a ??

∴= ???

(2)21n b n =-,

231135232122222n n n n n T ---=

++++……①, 2341

11352321

222222n n n n n T +--=+++++②, ①-②得: 2311112222132322222222

n n n n n n T ++-+=++++-=-, 23

32

n n n T +∴=- 3n T ∴<

【题6】已知α为锐角,且12tan -=α,

函数)4

2sin(2tan )(2

π

αα+

?+=x x x f ,数列{a n }的首项

)(,2

1

11n n a f a a ==

+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1;

⑶ 求证:),2(211

11111*21N n n a a a n ∈≥<++++++<

【题6】⑴1)12(1)

12(2tan 1tan 22tan 2

2=---=-=

ααα 又∵α为锐角 ∴42πα= ∴1)4

2sin(=+πα x x x f +=2

)(

⑵ n n n a a a +=+2

1 ∵2

11=a ∴n a a a ,,32都大于0

∴02

>n a ∴n n a a >+1

⑶ n

n n n n n n a a a a a a a +-=+=+=+111)1(11121 ∴1

1

111+-=+n n n a a a

∴13221211

11111111111+-++-+-=++++++n n n a a a a a a a a a 1

111211++-=-=n n a a a ∵4321)21(22=+=a , 14

3

)43(23>+=a , 又∵n n a a n >≥+12

∴131>≥+a a n ∴21

211

<-<+n a ∴211

1111121<++++++<

n

a a a 【题7】已知数列{}n a 满足(

)111,21n n a a a n N *

+==+∈

(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足n n b n b b b b a )1(4444

1111

321+=---- ,证明:{}n a 是等差数列;

(3)证明:

()23111123

n n N a a a *++++<∈ 【题7】(1)121+=+n n a a ,)1(211+=+∴+n n a a ……………………2分

故数列}1{+n a 是首项为2,公比为2的等比数列。……………………3分

n n a 21=+∴,12-=n n a …………………………………………4分

(2)n n b n b b b b a )1(4444

1111

321+=---- ,n n nb n b b b 24

)

(21=∴-+++ ……………5分

n n nb n b b b =-+++2)(221 ①

1121)1()1(2)(2+++=+-++++n n n b n n b b b b ②

②—①得n n n nb b n b -+=-++11)1(22,即1)1(2+-=-n n b n nb ③……………………8分

212)1(++=-+∴n n nb b n ④

④—③得112-++=n n n nb nb nb ,即112-++=n n n b b b ……………………9分 所以数列}{n b 是等差数列

(3)1111

212211211-++=-<-=n n n n a a ………………………………11分 设132111++++=n a a a S ,则)111(211322n a a a a S ++++< )1(2111

2+-+=n a S a …………13分

3

213212112<-=-<

++n n a a a S ………………………………14分 【题8】数列{}n a 满足41

1=a ,()),2(2111N n n a a a n n

n n ∈≥--=--. (1)求数列{}n a 的通项公式n a ;

(2)设21

n

n a b =,求数列{}n b 的前n 项和n S ; (3)设2

)12(sin π

-=n a c n n ,数列{}n c 的前n 项和为n T .

求证:对任意的*

∈N n ,7

4

【题8】(1)12)1(1---=n n n a a ,])1(1)[2()1(111

---+-=-+∴n n n n a a ,………3分 又3)1(11

=-+a

,∴数列()?

??

???-+n n a 11是首项为3,公比为2-的等比数列.……5分 1

)2(3)1(1--=-+n n n a , 即1

23)1(11+?-=--n n n a . ………………6分 (2)12649)123(1

121+?+?=+?=---n n n n b .

9264321)

21(1641)41(19-+?+?=+--??+--??=n n S n n n n n . ………………9分

(3)1)1(2

)12(sin

--=-n n π

1

231

)1()2(3)1(1

11+?=----=∴---n n n n n c . ……………………10分 当3≥n 时,则1

231

123112311311

2+?+++?++?++=-n n T <21221121

1321])(1[28112312312317141--+

=?+?+?++--n n 7

484488447612811])21(1[6128112=<=+<-+=-n . 321T T T << , ∴对任意的*∈N n ,7

4

【题9】已知数列{}n a 的前n 项和为n S ,且对于任意的*

n N ∈,恒有2n n S a n =-,设

2log (1)n n b a =+.

(1)求证:数列{1}n a +是等比数列;

(2)求数列{}{},n n a b 的通项公式n a 和n b ;

(3)若1

2n

b n n n

c a a +=?,证明:1243

n c c c ++

+<

. 【题9】(1)当1=n 时,1211-=a S ,得11=a .

∵n a S n n -=2,∴当2≥n 时,)1(211--=--n a S n n , 两式相减得:1221--=-n n n a a a ,∴121+=-n n a a . ∴)1(222111+=+=+--n n n a a a ,

∴}1{+n a 是以211=+a 为首项,2为公比的等比数列. (2)由(1)得n n n a 22211=?=+-,∴*,12N n a n n ∈-=.

∴*22,2log )1(log N n n a b n n n ∈==+=. (3)12+=n n n n a a c ,2

1112++++=n n n n a a c ,

由}{n a 为正项数列,所以}{n c 也为正项数列,

从而2

142)12(212)12(222221=--<--==++++n n n n n n n n a a c c ,所以数列}{n c 递减. 所以11121121)21()21(21c c c c c c c n n -++++<+++ 342

11)21(11

. 另证:由1

21

121)12)(12(211---=--=++n n n n n n c ,

所以 +---+---=+++)1

21

121()121121(322121n c c c

34

11

21112112111<<--=---++n n n .

类型3:求数列中的最大值问题

求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标

函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.

【题10】 等比数列{a n }的首项为a 1=2002,公比q =-1

2

(1)设f (n )表示该数列的前n 项的积,求f (n )的表达式; (2)当n 取何值时,f (n )有最大值.

【题10】 第(1)小题首先利用等比数列的通项公式求数列{a n }的通项,再求得f (n )的表达式;第(2)小题通过商值比较法确定数列的单调性,再通过比较求得最值.

【解】 (1)a n =2002·(-12)n -1,f (n )=2002n

·(-12

)n(n -1)

2

(2)由(1),得|f(n +1)||f(n)|=2002

2n ,则

当n ≤10时,|f(n +1)||f(n)|=2002

2n >1,∴|f (11)|>|f (10)|>…>|f (1)|,

当n ≥11时,|f(n +1)||f(n)|=2002

2

n <1,∴|f (11)|>|f (12)|>|f (13)|>…,

∵f (11)<0,f (10)<0,f (9)>0,f (12)>0, ∴f (n )的最大值为f (9)或f (12)中的最大者.

∵f(12)f(9)=200212·(1

2)66

20029·(12

)36

=20023·(12)30=(2002

2

10)3>1, ∴当n =12时,f (n )有最大值为f (12)=200212·(1

2

)66.

【点评】 本题解答有两个关键:(1)利用商值比较法确定数列的单调性;(2)注意比较f (12)与f (9)的大小.整个解答过程还须注意f (n )中各项的符号变化情况.

类型4:求解探索性问题

数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.

【题11】 已知{a n }的前n 项和为S n ,且a n +S n =4. (1)求证:数列{a n }是等比数列;

(2)是否存在正整数k ,使S k+1-2

S k -2

>2成立.

【题11】 第(1)小题通过代数变换确定数列a n +1与a n 的关系,结合定义判断数列{a n }为等比数列;而第(2)小题先假设条件中的不等式成立,再由此进行推理,确定此不等式成立的合理性.

【解】 (Ⅰ)由题意,S n +a n =4,S n +1+a n +1=4,

由两式相减,得(S n +1+a n +1)-(S n +a n )=0,即2a n +1-a n =0,a n +1=1

2a n ,

又2a 1=S 1+a 1=4,∴a 1=2,∴数列{a n }是以首项a 1=2,公比为q =1

2

的等比数列.

(Ⅱ)由(Ⅰ),得S n =2[1―(12

)n ]

1―12=4-22-n .

又由S k+1-2S k -2>2,得4-21-k

-24-22-k -2

>2,整理,得23<21-k <1,即1<2 k -1<32,

∵k ∈N *,∴2k -1∈N *,这与2k -1∈(1,3

2

)相矛盾,故不存在这样的k ,使不等式成立.

【点评】 本题解答的整个过程属于常规解法,但在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.

【题12】已知数列{a n }和{b n }满足:a 1=λ,a n +1=2

3

a n +n -4,

b n =(-1)n (a n -3n +21),其

中λ为实数,n 为正整数.

(1)对任意实数λ,证明数列{a n }不是等比数列;

(2)试判断数列{b n }是否为等比数列,并证明你的结论;

(3)设0<a <b ,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,

都有a <S n <b ?若存在,求λ的取值范围;若不存在,说明理由.

【题12】第(1)小题利用反证法证明;第(2)小题利用等比数列的定义证明;第(3)小题属于存在型问题,解答时就假设a <S n <b 成立,由此看是否能推导出存在存在实数λ. 【解】 (1)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即

(23λ-3)2=λ(49λ-4)?49λ2-4λ+9=4

9

λ2-4λ?9=0,矛盾,所以{a n }不是等比数列. (2)解:因为b n +1=(-1)n +1

[a n +1-3(n +1)+21]

=(-1)n +1(23a n -2n +14)=-23(a n -3n -21)=-2

3

b n ,

又b 1=-(λ+18),所以

当λ=-18时,b n =0(n ∈N *),此时{b n }不是等比数列;

当λ≠-18时,b 1=-(λ+18)≠0,由上可知b n ≠0,∴b n+1b n =-2

3(n ∈N *).

故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-2

3

为公比的等比数列.

(3)由(2)知,当λ=-18,b n =0(n ∈N *),S n =0,不满足题目要求;.

∴λ≠-18,故知b n =-(λ+18)×(-23)n -1,于是S n =-35(λ+18)·[1-(-2

3

)n ]

要使a <S n <b 对任意正整数n 成立,即a <--35(λ+18)·[1-(-2

3

)n ]<b ,(n ∈N *).

得a 1-(-23)n <-35(λ+18)<b 1-(-23

)

n

,(n ∈N *) ①

令f (n )=1-(-23)n ,则当n 为正奇数时,1<f (n )≤53,当n 为正偶数时5

9

≤f (n )<1;

∴f (n )的最大值为f (1)=53,f (n )的最小值为f (2)=5

9

,

于是,由①式得59a <-35(λ+18)<3

5

b ,

∴-b -18<λ<-3a -18,(必须-b <-3a ,即b >3a ).

当a <b <3a 时,由-b -18≥-3a -18,不存在实数满足题目要求; 当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b ,且λ的取值范围是(-b -18,-3a -18). 【点评】 存在性问题指的是命题的结论不确定的一类探索性问题,解答此类题型一般是从存在的方面入手,寻求结论成立的条件,若能找到这个条件,则问题的回答是肯定的;若找不到这个条件或找到的条件与题设矛盾,则问题的回答是否定的.其过程可以概括为假设——推证——定论.本题解答注意对参数λ及项数n 的双重讨论.

【题13】设数列{}{}n n b a ,满足3,4,6332211======b a b a b a ,

且数列{}()++∈-N n a a n n 1是等差数列,数列{}()

+

∈-N n b n 2是等比数列.

(1)求数列{}n a 和{}n b 的通项公式;

(2)是否存在+

∈N k ,使??

? ??∈-21,0k k b a ,若存在,求出k ,若不存在,说明理由.

【题13】(1)由已知212-=-a a ,123-=-a a

∴公差()121=---=d ………1分

31)1()(121-=?-+-=-∴+n n a a a a n n ………2分 )()()(113121--++-+-+=∴n n n a a a a a a a a )4(0)1()2(6-+++-+-+=n

[]2

)1()4()2(6--+-+=n n =2

18

72+-n n ………4分

由已知22,4221=-=-b b ………5分

所以公比2

1

=q

()1

112142122--?

?

?

???=??? ??-=-∴n n n b b ………6分 n

n b ??

?

???+=∴2182………7分

(2)设k k b a k f -=)(

k

2171928222k k ??

????=-+-+??? ? ?????????

2k

17491872242k ??????

=---?+?? ? ?????????

………8分

所以当4≥k 时,)(k f 是增函数.………10分

又21)4(=f ,所以当2≥k 时2

1

)(≥k f ,………12分

又0)3()2()1(===f f f ,………13分

所以不存在k ,使??

?

??∈21,0)(k f ………14分

(浙江专用)2020高考数学二轮复习 专题三 数列与不等式 第3讲 数列的综合问题学案

第3讲 数列的综合问题 [考情考向分析] 1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.与数列有关的不等式的证明问题是高考考查的一个热点,也是一个难点,主要涉及到的方法有作差法、放缩法、数学归纳法等. 热点一 利用S n ,a n 的关系式求a n 1.数列{a n }中,a n 与S n 的关系 a n =??? ?? S 1,n =1,S n -S n -1,n ≥2. 2.求数列通项的常用方法 (1)公式法:利用等差(比)数列求通项公式. (2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n . (3)在已知数列{a n }中,满足 a n +1 a n =f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n . (4)将递推关系进行变换,转化为常见数列(等差、等比数列). 例1 (2018·浙江)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足 b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n . (1)求q 的值; (2)求数列{b n }的通项公式. 解 (1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20,得8? ?? ??q +1q =20, 解得q =2或q =1 2. 因为q >1,所以q =2. (2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n . 由c n =? ?? ?? S 1,n =1, S n -S n -1,n ≥2,解得c n =4n -1(n ∈N * ). 由(1)可得a n =2 n -1 , 所以b n +1-b n =(4n -1)×? ?? ??12n -1 ,

数列难题放缩法的技巧

数列难题放缩法的技巧 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3 -b 3 =a 2 -b 2 ,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() [变式训练]已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 2. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分 母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 3. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+?=Λ,求证:2 )1(2)1(2 +< <+n a n n n 对所有正整数n 都成立。 4. 公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 例6. 已知函数1212)(+-=x x x f ,证明:对于* N n ∈且3≥n 都有1 )(+>n n n f 。 例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。 5. 换元放缩 对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

数列与不等式知识点及练习唐

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝对 值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①?? ?≥-==-) 2()111n S S n S a n n n (;② {}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:① )(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12.第一节通项公式 常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322 -+=n n S n ; ⑵12+=n n S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系: ???≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如 “ ) (1n f a a n n ?=+“;⑵迭加法、迭乘法公式:① 1 1232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----

高考数列与不等式压轴题(难题)

高考数列与不等式压轴题 1. 已知数列{}n a 为等差数列,且满足211n n n a a na +=-+,*n N ∈。 1) 求数列{}n a 的通项公式; 2) 求证: 12321 1111 ...ln 2n n n n a a a a ++++++++<. 3) 当01λ<<时,设1 ()2n n b a λ=-,(1)n n c a λ=-,数列1n n b c ?????? 的前n 项和为n T ,求证: 91 43 n n T n -> +。 2. (2013?蓟县一模)已知数列{}n a 中,11a =,*12311 23()2 n n n a a a na a n N +++++???+= ∈ 1) 求数列{}n a 的通项n a ; 2) 求数列2 {}n n a 的前n 项和n T ; 3) 若存在* n N ∈,使得(1)n a n λ≥+成立,求实数λ的取值范围. 3. (2010?无锡模拟)已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列. 1) 证明:数列{}n a 成等比数列的充要条件是13a =; 2) 设*5(1)()n n n b n a n N =--∈,若1n n b b +<对*n N ∈恒成立,求1a 的取值范围. 4. 已知数列{}n a 中,2 2(a a a =+为常数),n S 是{}n a 的前n 项和,且n S 是n na 与na 的等差中项. 1) 求数列{}n a 的通项公式; 2) 设数列{}n b 是首项为1,公比为2 3 - 的等比数列,n T 是{}n b 的前n 项和,问是否存在常数a ,使1012n a T ?<恒成立?若存在,求出a 的取值范围;若不存在,说明理由. 5. 已知数列{}n a 满足11a =,2*123()1 n n n n a a m a n N a +++=∈+。 1) 若恒有1n n a a +≥,求m 的取值范围. 2) 在31m -≤<时,证明: 121111 11112 n n a a a ++???+≥-+++ 3) 设正项数列{}n a 的通项n a 满足条件:*() 10()n n n a na n N +-=∈,求证:1 02 n a ≤≤ 。

用用放缩法证明与数列和有关的不等式

用放缩法证明与数列和有关的不等 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 a a ,又由条

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

数列与不等式的综合问题

数列与不等式的综合问题 测试时间: 120分钟 满分:150分 解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤 ) 1. [2016 ?银川一模](本小题满分15分)在等差数列{刘中,a i = 3,其前n 项和为S, 等比数 列{b n }的各项均为正数,b 1 = 1,公比为q (q z 1),且b 2+ S 2= 12, q = f 2. b 2 (1) 求 a n 与 b n ; …1 1 1 1 2 (2) 证明:3< S +§+…+ S <§. b 2 + S 2= 12 , 1 1 1 故 S +S +…+ s n = 1 —百.(12 1 1 因为n >2所以0<市三$于 1 2 1 2 所以21 —市<2, 1 1 1 1 2 即 3= S 1 + S 2+…+ s n <2.(15 分) 3 3a 2. [2017 ?黄冈质检](本小题满分15分)已知数列{◎}的首项a 1= , a n +1 = 二,n 5 2a n + 1 a 1 a 2 a n 2 1 1 (2) 记S = + — + ???+—,若$<100,求最大正整数 n . (1)设{a n }的公差为d ,因为 q + 6 + d = 12, 所以 6 + d q = 解得 q = 3 或 q =— 4(舍),d = 3.(4 分) 故 a n = 3+ 3( n — 1) = 3n , b n = 3n 1 .(6 分) ⑵证明:因为S n = n 3+ 3n (8分) 1 所以S n 3+ 3n 1 1 n n +1 .(10 分) 1 1 - 2 1 1 2- 3 1 1 3-4 + … + 1 1 n n +1

三角函数、数列、不等式练习题练习题1

三角函数、数列、不等式练习题 命题人:刁化清 一、选择题 1.对于任意的实数,,a b c ,下列命题正确的是 A .若22bc ac >,则b a > B .若0,≠>c b a ,则bc ac > C .若b a >,则 b a 11< D .若b a >,则22b c ac > 2. 设0 C .0()0f x < D .)(0x f 的符号不确定 7. 在等差数列{n a }中,若,8171593=+++a a a a 则=11a ( ) A. 1 B. -1 C. 2 D. -2 8.已知等差数列前n 项和为n S ,且,则13S 的值为 A .13 B .26 C .8 D .162 9.各项均为正数的等比数列{}n a 的前n 项和为S n ,若S 10=2,S 30=14,则S 40等于( ) A .80 B .30 C .26 D .16 10.在ABC ?中,角A B C 、、的对边长分别为a b c 、、,若2cos a c B =,则ABC ?的形状为 A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 {}n a 351024a a a ++=

基本不等式(很全面)

基本不等式 【知识框架】 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则22 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab +≤ +≤≤+

6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 【题型归纳】 题型一:利用基本不等式证明不等式 题目1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 题目2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 题目3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥

数列与不等式的综合问题突破策略1

数列与不等式的综合问题突破策略 类型1:求有数列参与的不等式恒成立条件下参数问题 求数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数f (x )在定义域为D ,则当x ∈D 时,有f (x )≥M 恒成立?f (x )min ≥M ;f (x )≤M 恒成立?f (x )max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【题1】 等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n > 1231111 n a a a a ++++……恒成立的正整数n 的范围. 【题1】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围. 【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1. 由等比数列的性质知数列{ 1n a }是以11a 为首项,以1q 为公比的等比数列,要使不等式成立, 则须1(1)1n a q q -->111(1) 11n a q q --,把a 2 1=q -18代入上式并整理,得q -18(q n -1)>q (1-1n q ), q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n ≥20. 【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用. 【题2】设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【题2】 第(1)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n +1≥a n 转化为关于n 与a 的关系,再利用a ≤f (n )恒成立等价于a ≤f (n )min 求解. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n , 由此得S n +1-3 n +1=2(S n -3n ). 因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n ∈N *, ① (2)由①知S n =3n +(a -3)2 n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2, a n +1-a n =4×3 n -1+(a -3)2 n -2=2 n -2·[12·(32 )n -2 +a -3], 当n ≥2时,a n +1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32 )n -2 +a -3≥0, ∴a ≥-9, 综上,所求的a 的取值范围是[-9,+∞) 【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视. 类型2:数列参与的不等式的证明问题 此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的. 【题3】 数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24. (1)求数列{a n }的通项公式; (2)设p 、q 都是正整数,且p ≠q ,证明:S p +q <1 2 (S 2p +S 2q ). 【题3】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(1)小题;第(2)小题利用差值比较法就可顺利解决. 【解】 (1)设等差数列{a n }的公差是d ,依题意得,??? a 1+2d =74a 1+6d =24,解得??? a 1=3 d =2 ,

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

数列与不等式专题练习[1]

数列与不等式专题练习 一、选择题 1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297 2.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .2 1 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113 -是此数列的第( )项 A .2 B .4 C .6 D .8 5.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A .513 B .512 C .510 D .8 225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 7.设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) A .1 B .1- C .2 D . 21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( ) A .1 B .0或32 C .32 D .5log 2 9.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( ) A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)2 51,251(++- 10.在ABC ?中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以 13为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对 11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( ) A .等差数列 B .等比数列 C .等差数列或等比数列 D .都不对 12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

专题3.3 数列与函数、不等式相结合问题(解析版)

一.方法综述 数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略 类型一数列中的恒成立问题 【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为() A.B. C.D. 【答案】A 【解析】 由题意得,则,等差数列的公差, . 由, 得, 则不等式恒成立等价于恒成立, 而, 问题等价于对任意的,恒成立. 设,, 则,即,

解得或. 故选:A. 【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得 ,借助裂项相消法得到,又 ,问题等价于对任意 的 , 恒成立. 【举一反三】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2 142,n n S S n n n N -++=≥∈,若 对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( ) A .()3,5 B .()4,6 C .[)3,5 D .[)4,6 【答案】A 类型二 数列中的最值问题 【例2】【浙江省湖州三校2019年高考模拟】已知数列满足 , ,则使 的正整数的最小值是( ) A .2018 B .2019 C .2020 D .2021

【数学】数列与不等式的交汇题型分析及解题策略

数列与不等式的交汇题型分析及解题策略 【命题趋向】 数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.如08年北京文20题(12分)中档偏上,考查数列与不等式恒成立条件下的参数问题、08年湖北理21题(12分)为中档偏上,考查数列与不等式交汇的探索性问题、08年江西理19题(12分)中等难度,考查数列求和与不等式的交汇、08年全国卷Ⅰ理22(12分)压轴题,难说大,考查数学归纳法与不等式的交汇,等等.预计在2009年高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题. 【考试要求】 1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2.理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。 4.理解不等式的性质及其证明. 5.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. 6.掌握分析法、综合法、比较法证明简单的不等式. 7.掌握简单不等式的解法及理解不等式│a│-│b│≤│a+b│≤│a│+│b│. 【考点透视】 1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇. 2.以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大. 3.将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想. 【典例分析】

数列与不等式的综合问题

数列与不等式的综合问题

数列与不等式的综合问题 测试时间:120分钟 满分:150 分 解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤) 1.[2016·银川一模](本小题满分15分)在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为 q (q ≠1),且b 2+S 2=12,q =S 2 b 2 . (1)求a n 与b n ; (2)证明:13≤1S 1+1S 2+…+1S n <2 3 . 解 (1)设{a n }的公差为d ,因为 ???? ? b 2+S 2=12,q =S 2 b 2 ,

所以? ???? q +6+d =12,q =6+d q .解得q =3或q = -4(舍),d =3.(4分) 故a n =3+3(n -1)=3n ,b n =3n -1 .(6分) (2)证明:因为S n = n 3+3n 2 ,(8分) 所以1 S n =2n 3+3n =23? ?? ??1 n - 1n +1.(10分) 故1 S 1+1 S 2+…+1 S n = 23???? ??? ????1-12+? ????12-13+? ???? 13-14+…+? ????1n -1n +1 =23? ? ???1- 1n +1.(12分) 因为n ≥1,所以0<1n +1≤12,于是1 2≤1- 1 n +1 <1,

所以13≤23? ? ???1- 1n +1<23, 即13≤1S 1+1S 2+…+1S n <2 3 .(15分) 2.[2017·黄冈质检](本小题满分15分)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1 ,n ∈N *. (1)求证:数列???? ?? 1a n -1为等比数列; (2)记S n =1a 1+1a 2+…+1 a n ,若S n <100,求最 大正整数n . 解 (1)证明:因为1 a n +1=23+1 3a n , 所以1 a n +1-1=13a n -13=13? ?? ??1 a n -1. 又因为1a 1-1≠0,所以1 a n -1≠0(n ∈N * ), 所以数列???? ?? 1a n -1为等比数列.(7分)

数列和不等式的综合复习题新版

数列和不等式的综合复习I ?知识回顾 1. 等差数列的定义 (1) 文字语言:如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么 这个数列就叫做等差数列. — (2) 符号语言:a n +1 — a n = d(n € N). 2. 等差数列的通项公式 若等差数列{a n }的首项为a i ,公差为d,则其通项公式为 a n = a i + (n — 1)d . 推广:a n = a m + (n — m)d. 3. 等差中项 a + b 如果三个数a, A, b 成等差数列,贝U A 叫a 和b 的等差中项,且有 A= =+^ . 4. 等差数列的前n 项和公式 5. 等差数列的性质 (1) 等差数列{a n }中,对任意的 m n, p, q € N,若m+ n = p+ q,贝U a m + a n = a + a q .特殊的,若 m+ n= 2p ,贝U a m + a n = 2a p . (2) 等差数列{a n }中,依次每 m 项的和仍成等差数列,即 S m , Sm — S m , S 3m — S 2m ,…仍成等差数列. S 禺 a n +1 S (禺 6. 当项数为2n(n € N+),则S 偶一 S 奇=nd , = ------ ;当项数为2n — 1(n € N+),则S 奇一 S 偶=an,'= S t a n S 奇 n — 1 n ? 基础练习: 1. 已知等差数列{a n }的前n 项和为S n ,若a 1= 2, S= 12,贝U a 6= _____________________________ . 2. 在等差数列{a n }中, (1) 已知 a 4 + a 14= 2,贝U S 17=___________ ; (2) 已知 Sn = 55,贝U a 6 = _____________________ ; (3) 已知 S= 100, Si 6= 392,贝U S 24= ___________ . 3、 已知{a n }是公差不为0的等差数列,S n 是其前n 项和,若a ?a 3= a 4a 5, S= 1,则3的值是 ________________ 4、 设S n 是等差数列{a n }的前n 项和,若a 2= 7, S 7=— 7,则a ?的值为 _____________ . ? 判断或证明一个数列是否是等差数列 已知数列{a n }的各项均为正数,前 n 项和为S ,且满足2S = a 2 + n — 4. (1) 求证:{a n }为等差数列; (2) 求{a n }的通项公式. ? 等差数列的性质 1、 已知{a n }是等差数列,{S n }是其前n 项和.若a 1+ a 2=— 3, S 5= 10,则a g 的值是 _____________ 2、 在等差数列{a n }中,若 a 3+ a 4+ a 5+ a 6+ a ?= 25,贝U a 2+ a 8= ____________ ; 3、 已知等差数列{a n }的前n 项和为S ,且So= 10, So= 30,则So= _______________ . ? 等差数列中的最值问题) (1)若等差数列{a n }满足a ?+ a 8 + a g >0, a ? + ae<0,当n 取何值时,{a n }的前n 项和最大? 数列部分 (一)、等差数列 (1) S n = na 1 + n ( n —1)d . (2) S n (a + a n )

相关文档
最新文档