准晶体的发现及应用

准晶体的发现及应用

一.准晶体的定义

准晶体是一种介于晶体和非晶体之间的固体。物质的构成由其原子排列特点而定。原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,介于这两者之间的叫做准晶体。20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着以色列人达尼埃尔·谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。

二.准晶体的结构

银铝准晶体的原子模型

物质的构成由其原子排列特点而定。晶体是指原子呈周期性排列的固体物质,单晶体都具有有规则的几何形状,像食盐晶体是立方体、冰雪晶体为六角形。而原子呈无序排列的则叫做非晶体,非晶体没有一定的外形,介于这两者之间的叫做准晶体。也就是说,准晶体具有完全有序的结构,然而又不具有晶体所应有的空间周期性。

人们普遍认为,准晶体存在偏离了晶体的三维周期性结构,因为单调的周期性结构不可能出现五重轴,但准晶体的结构仍有规律,不像非晶态物质那样的近距无序,仍是某种近距有序结构。

尽管有关准晶体的组成与结构规律尚未完全阐明,它的发现在理论上已对经典晶体学产生很大冲击,以致国际晶体学联合会建议把晶体定义为衍射图谱呈现明确图案的固体(any solid having an essentially discrete diffraction diagram)来代替原先的微观空间呈现周期性结构的定义。

三.准晶体的发展历程

准晶体的发现,是20世纪80年代晶体学研究中的一次突破。

1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无平移周期性的合金像,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。

准晶体是1982年发现的,具有凸多面体规则外形的,但不同于晶体的固态物质,它们具有晶体物质不具有的五重轴。如图给出的含钬-镁-锌三种金属的准晶体的正十二面体外型。已知的准晶体都是金属互化物。2000年以前发现的所有几百种准晶体中至少含有3种金属,如Al65Cu23Fe12,Al70 Pd21Mn9等。但最近发现仅2种金属也可形成准晶体,如Cd57Yb10〔Natur e,2000,408:537〕。有关准晶体的组成与结构的规律仍在研究之中。有关组成问题值得重视的事实如:组成为Al70Pd21Mn9的是准晶体而组成的Al60Pd2 5Mn15却是晶体。有关结构问题,人们普遍认为,准晶体存在偏离了晶体的三维周期性结构,因为单调的周期性结构不可能出现五重轴,但准晶体的结构仍有规律,不像非晶态物质那样的近距无序,仍是某种近距有序结构。尽管有关准晶体的组成与结构规律尚未完全阐明,它的发现在理论上已对经典晶体学产生很大冲击,以致国际晶体学联合会最近建议把晶体定义为衍射图谱呈现明确图案的固体(any solid having an essentially discrete diffractio n diagram)来代替原先的微观空间呈现周期性结构的定义。在实际上,准晶体已被开发为有用的材料。例如,人们发现组成为铝-铜-铁-铬的准晶体具有低摩擦系数、高硬度、低表面能以及低传热性,正被开发为炒菜锅的镀层;Al65Cu23Fe12十分耐磨,被开发为高温电弧喷嘴的镀层。

四.准晶体发现者获2011年度诺贝尔化学奖

诺贝尔奖评选委员会第102次颁出化学奖2011年度诺贝尔化学奖于北京时间10月5日揭晓,以色列理工学院的丹尼尔-谢德曼(Daniel Shechtman)因“发现准晶体”而一人独享了这一殊荣。

今年70岁的舍特曼将获得1000万瑞典克朗(约合140万美元)的奖金。舍特曼发现了准晶体,这种材料具有的奇特结构,推翻了晶体学已建立的概念。许多年以来,凝聚态物理学家们仅仅关心晶态的固体物质。然而,在过去的几十年,他们逐渐把注意力转向“非晶”材料,如液体或非晶体,这些材料中的原子仅在短程有序,被称为缺少“空间周期性”。

1982年,舍特曼在美国霍普金斯大学工作时发现了准晶,这种新的结构因为缺少空间周期性而不是晶体,但又不像非晶体,准晶展现了完美的长程有序,这个事实给晶体学界带来了巨大的冲击,它对长程有序与周期性等价

的基本概念提出了挑战。

五.准晶体的应用

准晶材料的应用主要作为表面改性材料,以及作为增强相弥散分布于结构材料中。在实际生活中,准晶体早已被开发为有用的材料。像我们最常见的不粘锅炊具,因为准晶材料具有耐蚀耐磨等特点,用于不粘锅表面更抗腐。

在隔热性能方面,相比泡沫、纤维、金、银、镍、铝箔等传统隔热材料,准晶体具有密度小、耐蚀和耐氧化的优点,在航空和汽车工业的发动机等部件中,有非常大的应用价值。

以前,航空航天工业中,飞机座舱和驾驶舱内常用泡沫塑料、超细玻璃棉、高硅氧棉等材料,而现在,科学家们正研究用准晶体材料来替代这些传统材料。此外,准晶体还被用作太阳能工业薄膜材料。因为准晶体具有特殊的光学性能(高的红外传导率)和足够的热稳定性(抗氧化及扩散稳定性),可应用于太阳热能工业。

此外,准晶体材料还可以作为结构材料增强相的应用、储氢材料、半导体材料以及热致发电材料等。目前各国化学家也正在研究准晶体材料在真空镀膜、离子注入、激光处理、电子轰击、电镀等方法制备准晶膜的应用。

在生物学中,Bernal 和 Fankuchen (1937) 对纯化的TMV(烟草花叶病毒)制剂应用了X射线分析法。他们获得了病毒(粒体)杆宽度的准确估值,而且表明用盐使病毒沉淀产生的、有规则地进行二维排列的针形体应为准晶体(parac rystal)而非真晶体。

准晶体的发现及应用

准晶体的发现及应用 一.准晶体的定义 准晶体是一种介于晶体和非晶体之间的固体。物质的构成由其原子排列特点而定。原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,介于这两者之间的叫做准晶体。20世纪80年代初以前,科学界对固态物质的认识仅限于晶体与非晶体,而随着以色列人达尼埃尔·谢赫特曼的一次偶然发现,固体物质中一种“反常”的原子排列方式跳入科学家的眼界。从此,这种徘徊在晶体与非晶体之间的“另类”物质闯入了固体家族,并被命名为准晶体。 二.准晶体的结构 银铝准晶体的原子模型 物质的构成由其原子排列特点而定。晶体是指原子呈周期性排列的固体物质,单晶体都具有有规则的几何形状,像食盐晶体是立方体、冰雪晶体为六角形。而原子呈无序排列的则叫做非晶体,非晶体没有一定的外形,介于这两者之间的叫做准晶体。也就是说,准晶体具有完全有序的结构,然而又不具有晶体所应有的空间周期性。 人们普遍认为,准晶体存在偏离了晶体的三维周期性结构,因为单调的周期性结构不可能出现五重轴,但准晶体的结构仍有规律,不像非晶态物质那样的近距无序,仍是某种近距有序结构。 尽管有关准晶体的组成与结构规律尚未完全阐明,它的发现在理论上已对经典晶体学产生很大冲击,以致国际晶体学联合会建议把晶体定义为衍射图谱呈现明确图案的固体(any solid having an essentially discrete diffraction diagram)来代替原先的微观空间呈现周期性结构的定义。

三.准晶体的发展历程 准晶体的发现,是20世纪80年代晶体学研究中的一次突破。 1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无平移周期性的合金像,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。 准晶体是1982年发现的,具有凸多面体规则外形的,但不同于晶体的固态物质,它们具有晶体物质不具有的五重轴。如图给出的含钬-镁-锌三种金属的准晶体的正十二面体外型。已知的准晶体都是金属互化物。2000年以前发现的所有几百种准晶体中至少含有3种金属,如Al65Cu23Fe12,Al70 Pd21Mn9等。但最近发现仅2种金属也可形成准晶体,如Cd57Yb10〔Natur e,2000,408:537〕。有关准晶体的组成与结构的规律仍在研究之中。有关组成问题值得重视的事实如:组成为Al70Pd21Mn9的是准晶体而组成的Al60Pd2 5Mn15却是晶体。有关结构问题,人们普遍认为,准晶体存在偏离了晶体的三维周期性结构,因为单调的周期性结构不可能出现五重轴,但准晶体的结构仍有规律,不像非晶态物质那样的近距无序,仍是某种近距有序结构。尽管有关准晶体的组成与结构规律尚未完全阐明,它的发现在理论上已对经典晶体学产生很大冲击,以致国际晶体学联合会最近建议把晶体定义为衍射图谱呈现明确图案的固体(any solid having an essentially discrete diffractio n diagram)来代替原先的微观空间呈现周期性结构的定义。在实际上,准晶体已被开发为有用的材料。例如,人们发现组成为铝-铜-铁-铬的准晶体具有低摩擦系数、高硬度、低表面能以及低传热性,正被开发为炒菜锅的镀层;Al65Cu23Fe12十分耐磨,被开发为高温电弧喷嘴的镀层。 四.准晶体发现者获2011年度诺贝尔化学奖 诺贝尔奖评选委员会第102次颁出化学奖2011年度诺贝尔化学奖于北京时间10月5日揭晓,以色列理工学院的丹尼尔-谢德曼(Daniel Shechtman)因“发现准晶体”而一人独享了这一殊荣。 今年70岁的舍特曼将获得1000万瑞典克朗(约合140万美元)的奖金。舍特曼发现了准晶体,这种材料具有的奇特结构,推翻了晶体学已建立的概念。许多年以来,凝聚态物理学家们仅仅关心晶态的固体物质。然而,在过去的几十年,他们逐渐把注意力转向“非晶”材料,如液体或非晶体,这些材料中的原子仅在短程有序,被称为缺少“空间周期性”。 1982年,舍特曼在美国霍普金斯大学工作时发现了准晶,这种新的结构因为缺少空间周期性而不是晶体,但又不像非晶体,准晶展现了完美的长程有序,这个事实给晶体学界带来了巨大的冲击,它对长程有序与周期性等价

对准晶体的认识——固体物理学小论文

对准晶体的认识 ****** ******班 *** **号 摘要:准晶体是一种介于晶体和非晶体之间的固体。准晶体有下属一些性质:均一性、各向异性、对称性、自限性、最小性能性、稳定性。 关键词:准晶体对称性准晶体的性能准晶体的应用 1 准晶体的基本特征 1.1 准晶体的概念 准晶体是同时具有长程准周期性平移序和非晶体 学旋转对称性的固态有序相。相对于晶体可以用一种单 胞在空间中的无限重复来描述。 准晶体也可以定义为:准晶是由两种(或两种以上 “原胞”在空间无限重复构成的这些“原胞”的排列具 有长程的准周期平移序和长程指向序。 1.2 准晶体的基本性质 1.2.1 准晶体的均一性 均一性指晶体、准晶体在其任一部位上都具有相同性质的特性。晶体结构中 的任何质点都是在3维空间作周期性的重复分 布。因此对于从同一晶体中分割出来的各个部分 而言它们必定具有完全相同的内部结构,从而它 们所表现出的各项性质也必定完全一致亦即都 是均一的。准晶体的结构与晶体结构虽然有所不 同,但仍然都是有序结构,准晶体分割出来的不 同部分放大或缩小都与整体结构仍然有相同结 构特征,因此宏观反映出来的准晶性质仍然具有 均一性。 1.2.2 准晶体的各向异性 各向异性指晶体、准晶体的性质因观察研究方向的不同而表现出差异的特性。晶体、准晶体结构中质点排列的方式和间距在不同的方向进行观察研究时其各项 性质将表现出一定的差异来,这种差异与它们的结 构的对称性直接有关这就是晶体、准晶体都具有各 向异性的根源。 1.2.3 准晶体的对称性 对称性是指晶体、准晶体中的相同部分如外形 上的晶面、晶棱,内部结构中的相同面网、行列或 原子、离子等,能够在不同的方向或位置上有规律

准晶体的性能及其应用

准晶体的性能及其应用 潘正根0943011041四川大学材料科学与工程学院 摘要:1984年底, 美国国家标准局的Shechtman 等人报导了他们在急冷Al-Mn 合金中观测到五次对称电子衍射图的相, 它不具有传统晶体学的对称性,称这种具有5次对称而无周期平移序的物质为准周期性晶体(准晶)。准晶体具有独特的属性,坚硬又有弹性、非常平滑,而且,与大多数金属不同的是,其导电、导热性很差,因此在日常生活中大有用武之地。科学家正尝试将其应用于其他产品中,比如不粘锅和发光二极管等。 1准晶的性能 1.1物理性能 1.1.1密度 准晶的密度比经过退火后得到的相同成分晶态相的密度约低2% , 这表明准晶中原子的排列虽然比较密集,但其有序度低于晶态合金。 1.1.2导电性 与金属的导电性质相比,准晶显示出一种迥然不同的性质。准晶一般有比较大的电阻;如在温度为4K 时二十面体准晶Al -Cu-Fe的电阻率ρ(4K)=4.3m Ω cm, I-Al-Cu-Ru 的电阻率ρ(4K)=30m Ω m。当温度不太高时,准晶的电阻随温度的增加而减少,在AlCuCo 二维准晶中, 沿10次轴这个周期方向, 电阻随温度升高而增大(圆圈), 与金属中的情况一致;而在与此正交的准周期方向, 电阻随温度升高而减小(圆点), 与半导体相似。这种反常的各向异性可能对制造电子器件有用。美国贝尔实验室也在进行类似的研究。

准晶的电阻与其组分浓度有关。实验发现,准晶的导电性能随样品质量的改善反而降低。准晶异常的导电性能反映准周期结构对物理性能的影响,它可以从准周期系统中电子结构的异常性中得到解释。 1.1.3导热性 与普通金属材料相比, 准晶材料的导热性较差。在室温下准晶的导热率比铝和铜低两个数量级、比不锈钢低一个数量级,与常用的高隔热材料ZrO2 相近。与准晶的电阻率一样,准晶的导热性也具有负的温度系数,并且对准晶结构的完整性也较为敏感,即准晶结构越完整其导热性越差。此外,准晶的热扩散系数和比热容都随温度的升高而增大。 1.1.4磁性能 这里主要介绍实验研究较多的Al-Mn系二十面体准晶的磁性研究成果。根据研究Al-Mn 系准晶合金的直流和交流磁化率与温度之间的关系发现 ,其磁化率与温度之间遵守居里-外斯规律, 显示负的居里温度,并在约10K时存在自旋玻璃转变。由直流磁化率与温度的关系求出含Mn为20a t%的Al-Mn及Al-Mn-Si系准晶合金的平均有效磁矩为1. 4μB。通过进一步的核磁共振、核比热与磁比热以及饱和磁矩的研究发

晶体 晶粒 晶胞 晶格

晶体 晶体即是内部质点在三维空间呈周期性重复排列的固体。目录 • • • • • • • 展开 概述

晶体有三个特征 (1)晶体有整齐规则的几何外形; (2)晶体有固定的,在熔化过程中,温度始终保持 晶体 不变; (3)晶体有的特点。 物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。 晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。 是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。如玻璃。外形为无规则形状的固体。 晶体的共性 合成铋单晶 1、长程有序:晶体内部原子在至少在微米级范围内的规则排列。 2、均匀性:晶体内部各个部分的宏观性质是相同的。 3、各向异性:晶体中不同的方向上具有不同的。 4、对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。 5、:晶体具有自发地形成封闭几何多面体的特性。 6、:晶体具有沿某些确定方位的晶面劈裂的性质。 7、最小内能:成型晶体内能最小。 8、晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。 晶体组成 组成晶体的结构微粒(、、)在空间有规则地排列在一定的点上,这些有一定的几何形状,叫做晶格。排有结构粒子的那些点叫做晶格的结点。、、食盐的晶体模型,实际上是它们的晶格模型。 晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。固体可分为晶体、非晶体和三大类。 具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由予以鉴定。 晶体内部结构中的质点(原子、离子、分子)有规则地在呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种

准晶体材料的性质与应用

准晶体材料的性质与应用 准晶体是一种介于晶体和非晶体之间的材料,其结构具有一定的有序性,但不符合传统晶体的周期性。准晶体具有许多特殊的性质,因此在材料科学、物理学等领域有着广泛的应用。 1. 准晶体的性质 准晶体的最显著特点是其结构对称性具有五重、八重等轴对称性,而非传统的三重对称性。这种特殊的结构对称性在某些情况下可以表现出类似于激发物质的行为,使准晶体具有独特的物理和化学性质。例如,准晶体具有很强的非线性光学效应、声学波的负折射、显微结构的“金点”等特殊性质。 准晶体的结构各异,但准晶体晶体的本质是长程有序的,这使得准晶体具有更高的热导率、强度和硬度,相比之下,非晶态材料通常有缺陷、孔隙和较差的热导率、强度和硬度。因此,准晶体在透声学、膜、电池、催化剂、纳米制造等方面有非常广泛的应用前景。 2. 准晶体在透声学中的应用

透声学是一种将短波长声波传输到材料中的方法,从而产生负 群速的科技。准晶体有效地抑制了声子传播,因此可以通过孔隙 设计和微结构分析来制造出适用于透声学应用的板材。准晶体透 声学板材有更高的声学透射率和声学反射率,并能够有效地压制 噪声和声振幅,广泛地应用于静音室设备、汽车、船舶等领域。 3. 准晶体在膜制造中的应用 准晶体是一种理想的膜材料,具有优异的硬度、热导率和生物 相容性。这种材料可以被用作人工心脏和人工血管等医疗器械, 用于治疗心血管疾病。此外,准晶体膜还可以用作高温膜电容器 和面层硬盘及其他数据存储设备的新型材料。 4. 准晶体在电池领域中的应用 准晶体具有可缩放性,这意味着可以将其用于制造锂离子电池、钠离子电池和锂硫电池等大型储能设备。这种物性可以让电池内 的电解液更加均匀地分布,并减少了表面粘附问题,改善了电池 的寿命和储能效率。

准晶体的发现与应用

准晶体的发现与应用 周宸材料科学与工程2009051005 2011-12-13 2011年的诺贝尔化学奖公布之后,科学界“天本地裂”。来自以色列的科学家丹尼尔·舍特曼因发现准晶体而获奖。准晶体颠覆了常年来的权威,打破了晶体学固有的格局。所以,我对准晶体很感兴趣,于是查找了许多文献资料。 准晶体的定义是,物质的构成由其原子排列特点而定。原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,准晶是一种介于晶体和非晶体之间的固体。准晶具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。 1982年,海法市以色列理工学院的丹尼尔?谢赫特曼(Daniel Shechtman)发现,一种铝锰合金好像具有五重对称性,也就是说,当其中的原子形成的图案旋转五分之一周(72度)时,图案看起来基本上是相同的。其他研究人员都嘲笑该发现,因为当时这种排列被认为在数学上是不可能做到的。然而,科学家们最终认识到,通过自身的排列,图案达到几乎重复但永远也不能重复时,固体中的原子可以得到这样的对称,变成“准晶体”。 先来讲一下为什么准晶体一直不被认为存在。就像孩子们的简单游戏所证明的那样,该解释对晶体可能拥有的对称性提出了限制。假如你想通过排列一模一样的瓷砖来铺盖桌面,利用重复的三角形瓷砖可以完成这项含有技巧的任务,所以有可能制造出具有三重对称性的晶体;利用四边形和六边形瓷砖也可以完成这项任务,因此也可以制造出四重和六重对称性的晶体。但是,利用五边形瓷砖无法完成这项任务,因为瓷砖之间总会有空隙。于是,不可能存在具有可重复排列的五重对称性晶体。因此,准晶体难以存在。 但是,科学家可以这样做。1982年4月8日上午,在马里兰州盖瑟斯堡市国家标准与技术研究院工作期间,谢赫特曼取了铝锰合金样品,为了防止结晶,他事先将样品速冻,并向其中发射了电子束。如果这种材料中存在有序排列的原子,电子就会通过原子的表面衍射出来,并且以特定的角度显现出探测器可以辨认的图案。谢赫特曼看到的衍射图案不同于以往看到的任何图案:它是亮点构成的同心圆,每个圆圈内有10个点。这些圈符表明,不可能的对称性是存在的。谢赫特曼用尽一切办法,一再检查自己的实验。但是,都得到了一样的结果。1 试验明确的说明,就算不能铺满平面,五边形也能组成相对对称的具有长程周期性的结构,这就是所谓的准晶体。 其实,现实生活中,准晶体的图案也是早为大家所熟知,却没有激发以前的科学家的灵感,不得不说是一种遗憾。例如,马赛克镶嵌工艺。数量上有限的、不同形状的瓷砖拼在一起,形成的图案从不重复。阿拉伯艺术家早在13世纪时就运用了这样的镶嵌工艺来装饰建筑物,例如当时装饰的西班牙格拉纳达市的阿尔汉布拉宫。20世纪60年代和70年代的时候,数学家们企图发现最少用多少块瓷砖就可以拼出这种非周期性的图案。20世纪70年代中期,彭罗斯得出答案:仅用两块菱形瓷砖作为一套就可以做到这一点。看一看彭罗斯图案,你就可以发现其中有许多五边形和十边形。 晶体学家阿伦?麦凯(Alan Mackay)利用圆圈代表彭罗斯瓷砖砖角处的原子,建造了一

单晶、多晶、非晶、准晶、微晶的区别

单晶、多晶、非晶、微晶、无定形、准晶的区别何在? 要理解这几个概念,首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚! 自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。 晶体共同特点: 均匀性:晶体内部各个部分的宏观性质是相同的。 各向异性:晶体种不同的方向上具有不同的物理性质。 固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形:理想环境中生长的晶体应为凸多边形。 对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为 离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书(郭可信,王仁卉著)。 与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态). 晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。 有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。 科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。 再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因

准晶体的发现及意义

准晶体的发现及意义 提要: 准晶是一种介于晶体和非晶体之间的固体,具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。1982年准晶体的发现,给晶体学界带来了巨大的冲击,此后的数十年里,人们对于准晶体的探索从未停止,2009年,自然界发现天然准晶体化合物,时至今日,准晶体的原子排列组成与结构规律尚未被完全解析。 正文: 原子呈周期性排列的固体物质叫做晶体,原子呈无序排列的叫做非晶体,准晶是一种介于晶体和非晶体之间的固体。准晶体具有完全有序的结构,然而又不具有晶体所应有的平移对称性,因而可以具有晶体所不允许的宏观对称性。物质的构成由其原子排列特点而定[1]。 以色列科学家丹尼尔-谢赫特曼(Daniel Shechtman)因发现准晶体而一人独享了2011年诺贝尔化学奖:2011年,70岁的谢赫特曼将获得1000万瑞典克朗(约合140万美元)的奖金,他发现了准晶体,这种材料具有的奇特结构,推翻了晶体学已建立的概念。许多年以来,凝聚态物理学家们仅仅关心晶态的固体物质。然而,在过去的几十年,他们逐渐把注意力转向“非晶”材料,如液体或非晶体,这些材料中的原子仅在短程有序,被称为缺少“空间周期性”。 准晶体的结构在20世纪之前就已经被建筑师熟知,例如在伊朗伊斯法罕的清真寺,上面瓷砖的图案就是按照准晶样式排列。 1961年,数学家王浩提出了用不同形状的拼图铺满平面的拼图问题。数学家们已经知道,可以用单一形状的拼图拼满一个平面,例如任意形状的四边形或者正六边形,但是当增加拼图单元的种类时,就能够构造出更多的拼满一个平面的方法。两年后,王浩的学生Robert Berger构造了一系列不具有周期性的拼图方法。之后铺满平面所需要的拼图种类越来越少,1976年Roger Penrose构造了一系列只需要两种拼图的方法,这种方法拼出来的图案具有五次对称性。

诺贝尔化学奖得主(1901-2020)

诺贝尔化学奖得主 (1901-2020) 年份 获奖者 国籍 获奖原因 1901年 雅各布斯·亨里克斯·范托夫 荷兰 “发现了化学动力学法则和溶液渗透压” 1902年 赫尔曼·费歇尔 德国 “在糖类和嘌呤合成中的工作” 1903年 斯凡特·奥古斯特·阿伦尼乌斯 瑞典 “提出了电离理论” 1904年 威廉·拉姆齐爵士 英国 “发现了空气中的惰性气体元素并确定了它们在元素周期表里的位置” 1905年 阿道夫·冯·拜尔 德国 “对有机染料以及氢化芳香族化合物的研究促进了有机化学与化学工业的发展” 1906年 亨利·莫瓦桑 法国 “研究并分离了氟元素,并且使用了后来以他名字命名的电炉” 1907年 爱德华·比希纳 德国 “生物化学研究中的工作和发现无细胞发酵” 1908年 欧内斯特·卢瑟福 英国 “对元素的蜕变以及放射化学的研究” 1909年 威廉·奥斯特瓦尔德 德国 “对催化作用的研究工作和对化学平衡以及化学反应速率的基本原理的研究” 1910年 奥托·瓦拉赫 德国 “在脂环族化合物领域的开创性工作促进了有机化学和化学工业的发展的研究” 1911年 玛丽·居里 波兰 “发现了镭和钋元素,提纯镭并研究了这种引人注目的元素的性质及其化合物” 1912年 维克多·格林尼亚 法国 “发明了格氏试剂” 保罗·萨巴捷 法国 “发明了在细金属粉存在下的有机化合物的加氢法” 1913年 阿尔弗雷德·维尔纳 瑞士 “对分子内原子连接的研究,特别是在无机化学研究领域” 1914年 西奥多·威廉·理查兹 美国 “精确测定了大量化学元素的原子量” 1915年 里夏德·维尔施泰特 德国 “对植物色素的研究,特别是对叶绿素的研究” 1916年 未颁奖 1917年 未颁奖 1918年 弗里茨·哈伯 德国 “对从单质合成氨的研究” 1919年 未颁奖 1920年 瓦尔特·能斯特 德国 “对热化学的研究” 1921年 弗雷德里克·索迪 英国 “对人们了解放射性物质的化学性质上的贡献,以及对同位素的起源和性质的研究” 1922年 弗朗西斯·阿斯顿 英国 “使用质谱仪发现了大量非放射性元素的同位素,并且阐明了整数法则” 1923年 弗里茨·普雷格尔 奥地利 “创立了有机化合物的微量分析法” 1924年 未颁奖 1925年 里夏德·阿道夫·席格蒙迪 德国 “阐明了胶体溶液的异相性质,并创立了相关的分析法” 1926年 特奥多尔·斯韦德贝里 瑞典 “对分散系统的研究”

准晶体的发现、研究及应用前景

准晶体的发现、研究及应用前景 王一贺 3120000170 1984年,舍特曼在美国霍普金斯大学工作时发现了准晶,其实自然界早已经有准晶体的踪影。2009年,在意大利佛罗伦萨自然科学史博物馆的一块古老岩石中,意大利和美国科学家发现了天然准晶体化合物的“芳踪”,如图2所示,他们把这种由铝、铜和铁三元合金系组成的新矿物质命名为Icosahedrite(取自正二十面体)。而这种天然准晶体似乎来自45亿年前的一块陨石,它可能是一种最古老的矿物质,形成于太阳系的诞生。这种新的结构因为缺少空间周期性而不是晶体,但又不像非晶体,准晶展现了完美的长程有序,这个事实给晶体学界带来了巨大的冲击,它对长程有序与周期性等价的基本概念提出了挑战。准晶体没有周期性,但具有准周期性。准周期是指质点的排列具有长程有序,但不体现周期重复。根据三维物理空间中材料呈现的维数,可以把准晶体分为三维准晶体、二维准晶体和一维准晶体。准晶体的各项性质,取决于其本身的化学组成和内部结构。一切准晶体的内部结构都共同遵循准晶体的空间准周期格子规律,并由此可以导出一切准晶体所共有的性质。由于准晶体结构中缺陷极为普遍,准晶体颗粒又十分细小(微米级),而且还具有一些向晶态、玻璃态过渡的现象,因此准晶体的性质常常偏离理想状态。理论上的准晶体应有下述一些性质:均一性、各向异性、对称性、自限性、最小内能性、稳定性。 准晶体的性能主要包含以下三方面内容。第一,导电性能。与金属的导电性质相比,准晶体显示出一种迥然不同的性质。准晶体一般有比较大的电阻。当温度不太高时,准晶体的电阻随温度的增加而减少。准晶体的电阻与其组分浓度有关。实验发现,准晶体的导电性能随样品质量的改善反而降低。准晶体异常的导电性能反映准周期结构对物理性能的影响。第二,磁性能。对高电阻的准晶的磁阻,当温度不高时,准晶体磁致电阻情况很复杂,但若温度大于100K时,磁阻将随外场的增加而减少。这时的Kohler规律不在适用。第三,热性能。准晶体的热性能一般不高,即它的导热系数K很小,且与温度密切有关。 准晶体的用途 准晶材料具有的一系列性能特点,有较高的硬度、低摩擦系数、不粘性、耐蚀、耐腐等,使其从高技术领域如应用于航空航天器机翼和机身的表面涂层、航空发动机叶片上的热障膜以代替传统的氧化锆和锆钇氧化物,到一般工业领域如用于轻合金表面涂层等。但准晶体材料在常温环境下呈脆性,这大大限制了准晶体的应用。准晶材料的应用主要作为表面改性材料,以及作为增强相弥散分布于结构材料中。 准晶材料的应用主要作为表面改性材料,以及作为增强相弥散分布于结构材料中。在实际生活中,准晶体早已被开发为有用的材料。像我们最常见的不粘锅炊具,因为准晶材料具有耐蚀耐磨等特点,用于不粘锅表面更抗腐。

晶体与非晶体的定义

最佳答案 晶体是有固定的熔点和沸点,而非晶体就没有固定的熔点和沸点。它们分子的空间排列一个有规律一个杂乱 大家知道,物质有三种聚集态:气体、液体和固体。但是,你知道根据其内部构造特点,固体又可分为几类吗?可分为晶体、非晶体和准晶体三大类。 晶体在合适的条件下,通常都是面平棱直的规则几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃(及其他非晶体如石蜡、沥青、塑料等)内部原子的排列则是杂乱无章的。准晶体是最近发现的一类新物质,其内部原子排列既不同于晶体,也不同于非晶体。 仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。一块加工过的水晶晶体与同样形状的玻璃(非晶体)外观上几乎看不出任何区别。同样,一层金属薄膜(通常是晶体)与一层准晶体金属膜从外观上也看不出差异。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。X光技术诞生以后,很快就被科学家用于固态物质的鉴定。如果利用X光技术对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。 由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差别。例如,晶体有固定的熔点(当温度高到某一温度便立即熔化),物理性质(力学、光学、电学及磁学性质等)表现出各向异性(比如光线在水晶中传播方向不同,速度也不一样)。而玻璃及其他非晶体(亦称为无定形体)则没有固定的熔点(从软化到熔化是一个较大的温度范围),物理性质方面则表现为各向同性。自然界中的绝大多数矿石都是晶体,就连地上的泥土沙石也是晶体,冬天的冰雪是晶体,日常见到的各种金属制品亦属晶体。可见晶体并不陌生,它就在我们的日常生活中。 人们通过长期认识世界、改造世界的实践活动,逐渐发现了自然界中各种矿物的形成规律,并研究出了许许多多合成人工晶体的方法和设备。现在,人们既可以从水溶液中获得单晶体,也可以在数千度的高温下培养出各种功能晶体(如半导体晶体、激光晶体等);既可以生产出重达数吨的大块单晶,也可研制出细如发丝的纤维晶体,以及只有几十个原子层厚的薄膜材料。五光十色丰富多彩的人工晶体已悄悄地进入了我们的生活,并在各个高新技术领域大显神通。 【晶体】具有规则几何形状的固体。其内部结构中的原子、离子或分子都在空间呈有规则的三维重复排列而组成一定型式的晶格。这种排列称为晶体结构。晶体点阵是晶体粒子所在位置的点在空间的排列。相应地在外形上表现为一定形状的几何多面体,这是它的宏观特性。同一种晶体的外形不完全一样,但却有共同的特点。各相应晶面间的夹角恒定不变,这条规律称为晶面角守恒定律,它是晶体学中重要的定律之一,是鉴别各种矿石的依据。晶体的一个基本特性是各向异性,即在各个不同的方向上具有不同的物理性质,如力学性质(硬度、弹性模量等等)、热学性质(热膨胀系数、导热系数等等)、电学性质(介电常数、电阻率等等)光学性质(吸收系数、折射率等等)。例如,外力作用在云母的结晶薄片上,沿平行于薄片的平面很容易裂开,但在薄片上裂开则非易事。岩盐则容易裂成立方体。这种易于劈裂的平面称为解理面。在云母片上涂层薄石蜡,用烧热的钢针触云母片的反面,便会以接触点为中心,逐渐化成椭圆形,说明云母在不同方向上导热系数不同。晶体的热膨胀也具各向异性,如石墨加热时沿某些方向膨胀,沿另一些方向收缩。晶体的另一基本特点是有一定的熔点,不同的晶体有它不相同的熔点。且在熔解过程中温度保持不变。 1 / 2

准晶体 (2)

准晶体 简介 准晶体是一类介于晶体和非晶体之间的特殊结构物质。与晶体具有一定的有序性,但又不完全符合晶体的周期性。准晶体的发现在材料科学领域引起了广泛的研究兴趣。本文将介绍准晶体的定义、发现历史、结构特点及应用领域等相关内容。 定义 准晶体是指具有长程有序但不具备完全晶体对称性的结构。相比于晶体的周期性排列,准晶体的周期性具有更高的复杂性。准晶体的单位结构具有多种不同的对称元素,如旋转对称、镜像对称和滑移对称等,使得准晶体具有多种不同的结构。 发现历史 准晶体的发现可以追溯到20世纪50年代末期。1961年,丹麦科学家贝尔内尔斯(Shechtman)在进行合金研究时,观察到了一种五角对称的晶体衍射图样,该发现与传统晶体的对称图案有所区别。然而,贝尔内尔斯的发现一度受到了科学界的质疑和争议,被认为是错误观察结果。经过多年的研究和探索,贝尔内尔斯的发现最终得到了确认,并于2011年获得了诺贝尔化学奖。 结构特点 准晶体的结构特点是其最具有特色的特征之一。准晶体的周期结构中存在不成比例的单位。这些单位覆盖了空间,通过旋转、滑移和倾斜等运动产生多种对称元

素。准晶体的对称性和周期性都是以高度复杂的方式出现的,使得准晶体呈现出丰富的结构多样性。 准晶体的结构通常可以通过X射线衍射、透射电子显微镜等实验技术进行表征。通过这些实验,可以建立准晶体的空间群、晶胞参数等参数,揭示准晶体的周期性和有序性。 应用领域 准晶体由于其特殊的结构和性质在多个领域具有广泛的应用潜力。 在材料科学领域,准晶体被用于开发新型合金材料。准晶体合金具有较高的强度、硬度和耐磨性等优异性能,广泛用于制造航空航天、汽车和电子设备等领域的高性能零件和工具。 准晶体还在表面涂层技术中得到应用。利用准晶体的特殊结构和性质,可以制 备出表面硬度高、磨损性能优良的涂层材料,用于提高复合材料和金属零件的表面性能和耐久性。 此外,准晶体还具有光学、电学和磁学等性质,被应用于光学器件、传感器、 电子器件以及催化剂等领域。 结论 准晶体作为一种介于晶体和非晶体之间的特殊结构,具有自身独特的周期性和 有序性。准晶体的发现和研究为材料科学领域带来了新的思路和机遇。通过对准晶体的深入研究,可以探索出更多的结构多样性和性能优异的材料,推动材料科学和工程的发展。

科学家从失败到成功的小故事

科学家从失败到成功的小故事 人人渴望成功,但在失败时千万不要气馁。乐观地对待失败,成功就会向你招手。店铺精心为大家搜集整理了科学家从失败到成功的小故事,大家一起来看看吧。 科学家从失败到成功的小故事篇1 1864年9月3日这天,寂静的斯德哥尔摩市郊,突然爆发出一连串震耳欲聋的巨响,滚滚的浓烟霎时间冲上天空,一股股火苗直往上窜。仅仅几分钟时间,一场惨祸发生了。当惊恐的人们赶到出事现场时,只见原来屹立在这里的一座工厂已荡然无存,无情的大火吞没了一切。火场旁边,站着一位30多岁的年青人,突如其来的惨祸和过度的刺激,已使他面无血色,浑身不住地颤抖着——这个大难不死的青年,就是后来流芳百世的大化学家诺贝尔。 诺贝尔眼睁睁地看着自己所创建的硝化甘油炸药的实验工厂化为灰烬。人们从瓦砾中找出了5具尸体,其中一个是他正在大学读书的、活泼可爱的小弟弟,另外4人也是和他朝夕相处的亲密的助手。烧得焦烂的5具尸体,令人惨不忍睹。 诺贝尔的母亲得知小儿子惨死的噩耗,悲痛欲绝。年老的父亲因太受刺激引起脑溢血,从此半身瘫痪。然而,诺贝尔在失败和巨大的痛苦面前却没有动摇。 惨案发生后,警察当局立即封锁了出事现场,并严禁诺贝尔恢复自己的工厂。人们像躲避瘟神一样避开他,再也没有人愿意出租土地让他进行如此危险的实验。 这一连串挫折并没有使诺贝尔退缩。几天以后,人们发现,在远离市区的马拉仑湖上,出现了一只巨大的平底驳船,驳船上并没有什么货物,而是摆满了各种设备,一个青年人正全神贯注地进行一项神秘的试验。他就是在大爆炸后被当地居民赶走了的诺贝尔! 大无畏的勇气往往会令死神也望而却步。在令人心惊胆颤的实验中,诺贝尔没有连同他的驳船一起葬身鱼腹,而是经过多次试验,他发明了雷管。雷管的发明是爆炸学上的一项重大突破。接着,他又在

准晶体的发现及意义

准晶体的发现及意义 准晶体是一种介于晶体和非晶体之间的材料,它具有部分有序的结构。准晶体的发现对材料科学和材料工程领域有着重要的意义。本文将从准晶 体的发现历史、准晶体的结构和性质、准晶体的应用等方面进行探讨,并 阐述准晶体的意义。 一、准晶体的发现历史 准晶体的发现可以追溯到20世纪70年代末80年代初,当时石英晶 体的研究者通过电子显微镜观察到了一些有着五角或十边形对称的结构, 但其结构却不遵循晶格对称性规律。这些结构在当时被称为“假晶体”或“错误晶体”,直到1984年,丹尼斯·格拉迪赛夫和保罗·施泰因哈特 在对一种金银合金的研究中发现了具有五角对称性的结构,他们将其命名 为“准晶体”,并详细描述了其结构和性质。 二、准晶体的结构和性质 准晶体的结构既不是完全有序的晶体结构,也不是完全无序的非晶体 结构,而是介于两者之间的部分有序的结构。准晶体的结构特点是具有非 常复杂和多样性,它包含了晶体和非晶体中常见的一些几何元素,如孔隙、晶胞、聚集体等。准晶体的结构有时还会出现五角对称、十边形对称或其 他非晶体无法呈现的对称性。这种特殊的结构赋予了准晶体独特的物理和 化学性质。 准晶体具有许多独特的性质,例如低摩擦系数、低导热系数、高抗腐 蚀性、高硬度等。这些性质使得准晶体在材料科学和工程领域具有广泛的 应用前景。 三、准晶体的应用

1.复合材料领域:准晶体可以被用作增强材料的填充剂,提高复合材料的力学性能。它的高硬度和高抗腐蚀性使其成为一种理想的增强材料。 2.表面涂层技术:准晶体可以通过物理气相沉积、磁控溅射等技术制备成涂层,提高材料的表面硬度和抗磨损性能。 3.催化剂和储氢材料:准晶体也可以作为催化剂的载体,提高催化剂的效率和稳定性。此外,准晶体内部的孔隙结构可以用来储存氢气,有望应用于氢能源储存领域。 4.电子器件领域:准晶体具有比晶体更低的导热系数,可用于制备热导率较低的电子器件,降低热电偶效应。 此外,准晶体还在纳米技术、强化材料的设计等领域有着广泛的应用前景。 四、准晶体的意义 首先,准晶体的发现进一步丰富了材料世界的多样性,打破了对晶体和非晶体两种状态的传统认识。准晶体的特殊结构和性质为新材料的设计和制备提供了更多的可能性。 其次,准晶体的性质使其在许多领域具有广阔的应用前景。准晶体在材料的强化、涂层技术、催化剂等方面具有独特的优势,有望推动相关技术的发展和应用。 最后,准晶体研究的深入为科学家们提供了一个研究非晶态材料的新途径,对于揭示非晶态材料的结构和性质具有重要的借鉴意义。 总之,准晶体的发现和研究具有重要的理论和应用意义。准晶体的结构特点和性质为材料科学和工程领域的技术创新提供了新思路和新方向。

准晶体的结构化学

准晶体的结构化学 准晶体是一类介于晶体和非晶体之间的结构态,具有部分长程有序。 它的结构具有复杂的空间对称性,通常由多个不规则的基本单元组成,存 在着重复的局部位型。准晶体的研究促进了对材料科学的理解和应用领域 的发展,例如催化剂、合金、涂料等。 从结构化学的角度来看,准晶体的结构与晶体和非晶体有着明显的区别。晶体结构具有高度的长程有序性,原子或分子按照一定的规则排列, 形成周期性的晶格结构。非晶体是无规则排列的粒子,缺乏长程有序性。 而准晶体的结构介于两者之间,具有部分长程有序。 准晶体的结构是通过不规则的基本单元进行重复堆积而形成的。这些 基本单元称为准基元,其结构通常由对称的多面体组成。在准晶体中,准 基元沿着特定的方向和距离重复排列,形成局部有序的位型。准基元的堆 积方式可以通过准晶体的空间对称性来描述,常见的对称操作有旋转、反演、平移等。 准晶体的结构发展中,有两个重要的里程碑:12面体和icosahedra。12面体是准晶体最早被观察到的结构,由十二个面相等的等边三角形组成。20面体则由二十个相等的正五边形组成,也是准晶体中常见的结构。其中,五个五边形围绕一个中心点对称排列,形成一个基本单元。通过沿 着特定的方向和距离重复堆积,可以形成局部有序的准晶体结构。 准晶体的结构通过X射线衍射、电子衍射等实验技术进行研究。这些 技术可以提供准晶体结构的信息,如晶格参数、原子或分子的排列方式等。此外,计算机模拟方法也可以用于研究准晶体的结构。通过建立原子间的 相互作用模型,可以模拟准晶体的结构和性质。

准晶体具有一些独特的性质和应用。首先,准晶体具有较低的摩擦系数,使其在润滑和涂料领域有广泛应用。其次,准晶体具有良好的催化性能,用作催化剂可以提高反应速率和选择性。此外,准晶体的高强度和硬度使其成为理想的结构材料,可应用于合金和纳米材料的制备。 总结起来,准晶体是一类结构复杂、具有部分长程有序的材料。其结构是通过不规则的基本单元进行重复堆积而形成的,具有复杂的空间对称性。准晶体的研究促进了对材料科学的理解和应用领域的发展,具有广泛的应用潜力。

准晶体解释

质疑和嘲笑声包括著名化学家、两届诺贝尔奖得主莱纳斯·鲍林在内的一些化学界权威纷纷质疑谢赫特曼的发现。即便如此,谢赫特曼也并未动摇自己的信念。在 1984 年夏,他们向《应用物理杂志 ( Journal of Applied Physics) 》投了一篇稿件,可是,立即遭到了编辑的拒绝,稿件被退了回来。 晶体的定义应当是 晶体是内部质点在3维空间呈周期性重复排列的固体 或者说 晶体是具有周期平移格子构造的固体。 准晶体的定义应当是 准晶是同时具有长程准周期性平移序和非晶体学旋转对称性的固态有序相。相对于晶体可以用一种单胞在空间中的无限重复来描述 准晶体也可以定义为:准晶是由两种(或两种以上“原胞”在空间无限重复构成的这些“原胞”的排列具有长程的准周期平移序和长程指向序 三维准晶、二维准晶和一维准晶指立体,平面、线条。 准周期性:一些事物运动的规律性不是很强,例如经济的运行,周期就有长有短,像这种不固定的周期就称准周期,以区别于上述意义上的周期.准,本来就是相近相似的意思.所以准周期就是近似意义上的周期。 二十面体准晶因具有磁各向异性而降低了磁导率 纳米畴就是具有纳米结构的晶体,它的边界叫畴。 Laves相的晶体结构有三种类型:①MgCu2型属立方晶系,②MgZn2型属六方晶系,③MgNi2属六方晶系 晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。 毫米级大块准晶难以制备的原因: 生成过程包括成核和长大两个过程。一般是通过极冷淬火,准晶物质通常是伴随过饱和固溶体和其它金属间化合物一起形成的。准晶体形成过程虽然还不太楚,但大致可以有以下种基本情况,气体-准晶体,溶体、熔体-准晶体,晶体-准晶体,玻璃-准晶体。 光学性能(高的红外传导率)和足够的热稳定性(抗氧化及扩散稳定性)

从失败走向成功的名人例子

从失败走向成功的名人例子 生命中最值得荣耀的,不是没有失败,而是在每次失败后都能勇敢地站起来。要相信,彩虹总在风雨后,阳光总在乌云后,成功总在失败后。店铺精心为大家搜集整理了从失败走向成功的名人例子,大家一起来看看吧。 从失败走向成功的名人例子篇1:在嘲笑中走向成功 达尼埃尔·谢赫特曼是以色列科学家,他1941年生于以色列特拉维夫的一个乡村,父母都是农民。1972年,他在以色列工学院获得博士学位,并留校任教。 由于谢赫特曼习惯用怀疑的眼光审视一切,因而在工作和生活中也就难免与他人产生磕磕碰碰。或者说,他过得不是那么如意,甚至有人嘲笑他是个疯子。 1982年,41岁的谢赫特曼在美国霍普金斯大学从事研究工作。这年4月8日,他在大学的实验室里用电子显微镜观察铝锰合金时,意外地发现了一种特殊的固体物质。他异常兴奋,把这种固体物质命名为“准晶体”。 谢赫特曼把自己的新发现告诉了同事,但没有人能理解,更没有人相信。他不但没有得到与同事分享惊喜的欢乐,反而遭到了无情的嘲笑。因为在传统理论看来,固体物质只有两种存在形式,要么是晶体,要么是非晶体,不可能有第三种,这就是说根本不可能有什么“准晶体”的存在形式。 谢赫特曼千方百计地试图说服同事,“准晶体”确实是客观存在的事实,但几个月过去了,一切皆是徒劳,不仅没人愿意听他的解释,反而嘲笑他是个疯子。实验室的主管走到他面前,把一本书放在桌子上,不屑地说:“你为什么不读读这个?你所说的新发现是完全违背科学基本常识的,是绝对不可能存在的。”更令人意想不到的是,他竟然被要求离开霍普金斯大学的研究小组。 一年后,无奈的谢赫特曼返回了以色列工学院,开始与材料学专家伊兰·布勒希一道继续从事对“准晶体”的研究。可是,他依然没有

准晶的衍射花样特点-概述说明以及解释

准晶的衍射花样特点-概述说明以及解释 1.引言 1.1 概述 准晶是介于晶体和非晶体之间的一种特殊结构形态,具有高度有序的排列但又缺乏周期性重复性。在衍射学中,准晶体的衍射花样呈现出独特的特点,与晶体和非晶体的衍射花样有所不同。研究准晶的衍射花样特点,不仅能够深入了解准晶的结构特征,还有助于拓展准晶在材料科学领域的应用。 本文将对准晶的衍射花样特点进行深入探讨,从准晶的定义开始,逐步介绍准晶的结构特点以及衍射花样的具体特征。通过分析准晶的衍射花样,我们可以更好地理解准晶的独特性质,并展望准晶在材料科学领域的潜在应用。 1.2 文章结构 文章结构部分应该包括对整篇文章的框架和组织方式进行简要的介绍,让读者了解文章的整体结构和内容安排。可以描述文章分为引言、正文和结论三个部分,分别介绍了准晶的定义、结构特点以及衍射花样,最后对准晶的衍射花样特点进行总结,并展望其在未来的应用领域。通过文章结构的介绍,读者可以更好地理解整篇文章的主题和内容安排,方便他们阅读和理解文章的要点和观点。

1.3 目的: 本文旨在探讨准晶的衍射花样特点,通过对准晶的定义、结构特点和衍射花样进行详细分析,深入了解准晶材料在衍射中的独特表现。通过本文的研究,可以更好地认识准晶材料的特性和特点,为准晶研究领域的发展提供理论支撑和实验依据。同时,也希望通过对准晶衍射花样特点的探讨,拓展准晶材料在材料科学领域的应用潜力,为相关领域的研究和发展提供启示和指导。 2.正文 2.1 准晶的定义 准晶是介于晶体和非晶体之间的一类特殊结构材料。与晶体不同的是,准晶不具有长程有序性,即准晶的原子或分子并不按照规则的周期性排列,但仍然具有一定的局部有序性。与非晶体相比,准晶则具有一定的局部周期性结构。 准晶的特征在于其具有多种不同尺度的周期性结构特点,展现出多重比例的有序性。准晶结构常常是以单位胞中的若干个简单原子或分子结合形成的一定形式的细胞,这些细胞之间通过一定规则的排列组合而成。由于准晶结构较为复杂,其在X射线衍射图谱中呈现出独特的花样特点,与晶体和非晶体的衍射花样有明显不同之处。

相关文档
最新文档