钛合金阳极氧化

钛合金阳极氧化
钛合金阳极氧化

钛合金阳极氧化

钛是地壳中储量较丰富的元素之一,它在地壳中的丰度约为0.64%,在结构金属中仅次于铝、镁和铁居第四位,1791 年英国矿物爱好者W.Gregoy 在黑色磁铁矿中发现了化学元素Ti,在分析这种钛铁矿时把它称为Menachanite;1795 年,德国化学家Klaproth 在分析匈牙利Boinik 出产的一种红金石时,发现一种新的金属,称其为titanium。钛及钛合金在工程上应用较晚,直到1952 年才正式作为结构材料使用,这主要是因为钛和氧、氮、氢和碳等元素有很强的亲和力,并易产生化学作用,致使钛及其合金的生产成本较高的缘故。近年来钛及钛合金因其具有优良的机械性能在现代工业中得到了广泛应用。

钛合金作为工程结构材料,与其它金属相比,钛合金具有密度小,相当于铁的57%;比强度高,如Ti-6A1-4V 钛合金的比强度为21.7,而LY12 铝合金为16.7;高耐酸性,纯钛在硝酸以及在常温5 %以下的硫酸、盐酸、磷酸中有较好的耐腐蚀性,在海水中几乎不被腐蚀;同时钛合金拥有优良的高、低温力学性能,TC11钛合金能在600 ℃的高温下长期稳定工作,在-200 ℃低温下仍能保持很好的塑性;另外,钛合金还具有无磁、良好的弹性、形状记忆、吸氢、超导、低阻尼、高抗冲击强度、耐压、抗震、与复合材料有良好的相容性等性能。

钛及其合金作为21 世纪最重要的工程金属,以其优异的性能而被广泛用于航空航天、舰船、汽车、医疗、化工等行业。但钛合金不耐磨,与其它金属易产生接触腐蚀等问题限制了其应用范围。因此适当的表面处理以增强钛合金的耐蚀性、耐磨性及装饰性具有重要的现实意义。传统的钛合金表面处理技术有许多不足之处,例如,工艺复杂、成本高、电解液对环境不友好等。

钛合金的特性

(1)钛合会的最主要性能之一是密度小,比强度高。钛的密度为4.5 g/cm 3,在常用金属中只有铝的密度为2.7 g/cm’比它轻,但铝合金的强度较低,而低碳锏7.86 g/ca。、不锈钢8 0 g/cm、铜8 9 g/cm,都比钛要高。由于钛合金的高比强度,用钛合金代替钢和铝合金降低机体结构重量是相当可观的,同时它是缩小结构体积的优选材料,在相同空间尺寸条件下,使它能够代替那些因空间受限的铝合金及钢构件,这对于提高飞机结构寿命及性能具有重要意义。

(2)钛及其合金另一个突出的性能是其优良的抗蚀性。金属的抗腐蚀性能与金属的固有性质有关,各种金属的热力学稳定性,可以根据它们的标准平衡电位来大致评定,一般来说,标准平衡电位越高(即越正)、标志该金属热力学稳定性越高,金属离子化倾向越小,越不易受到腐蚀;反之同理。虽然钛是一种化学性质比较活泼的余属,其标准平衡电位较低(负),在介质中的热力学腐蚀倾向大,但实际上钛在许多介质中是很稳定的,这是因为它的钝化倾向很强,与氧有很大的亲和力,在空气中或含氧的介质中氧化,钛表面生成一层具有很好的耐腐蚀性能的氧化膜,阻隔了钛及其合金基体进一步氧化腐蚀,这就决定了钛及其合金具有很好的化学腐蚀抗力。同时,由于钛及其合金表面形成了这一层具有良好防护性能并且电阻率较高的表面膜,钛合金的电化学腐蚀抗力实际上也表现为该表面膜的电化学腐蚀抗力,因此,钛及其钛合金具有优异的电化学腐蚀抗力。

(3)钛合金与复合材料有很好的相溶性。出于复合材料具有高比强度、高比刚度、耐疲劳胜能好、工艺性好等优点,随着先进复合材料设计及工艺技术的日趋成熟,和钛合会一样,先进复合材料尤其是碳纤维环氧复合材料(GECM)的应用F1益增长,已用于多种飞机的垂尾、方向舵、机翼等重要结构。由于碳纤维独特的电化学性能,其电极电位较正,与偶接金属材料电连接后,在腐蚀介质中会导致电极电位较负的金属腐蚀速率加快。

我们工艺研究工作的内容及方法有如下几方面:

(1)钛合会阳极化工艺(分为前处理、阳极氧化、后处理三部分) ①对材料试样(片)的前处理效果会直接影响后面阳极氧化工艺的质量,需要研究的是内容是除油、酸洗,通过试验确定:除油液和酸沈液的组成和工艺条件,以及具体操作。

②阳极氧化是本研究课题的关键技术,进行工艺实验研究的途径及方法是:选用不同类型的阳极化电解液的配方、阳极化工艺参数(电压、电流、温度、时侧、PH值),制取各种阳极化工艺条件下的氧化膜试样(片),通过对这些氧化膜试样的颜色、外观、对比试验和性能测试,综合考察阳极化工艺参数对成膜的影响,筛选并确定适合所以选定钛合金材料最佳的阳极化工艺电解液配方、工艺条件及具体操作。③后处理的目的是保护阳极氧化膜,防止膜被污染提高膜的耐磨性及防变色能力,拟采用热水封闭方法。.

(2)氧化膜基本性能测试用金相显微镜观察阳极化氧化膜层的表面显微组织及表面形貌,用电子能谱仪进行表面化学状态及表层元素分析。通过对比、分析,评定氧化膜层质量。

(3)接触腐蚀实验接触腐蚀试验既是对本阳极化丁艺研究的目的——防止和减轻钛合金与其它金属接触产生电偶腐蚀的效果的验证;又是对阳极化工艺配方、工艺条件及实验研究的评定。通过阳极化后的钛合金试样(片)与铝合金、不锈钢、磷化或镀锌钢材料接触,在一定的腐蚀介质(盐雾试验)中形成接触偶,观察、测定它们接触腐蚀前后外观变化、腐蚀增重和抗拉强度的变化.进行对比分析、综合评价,以确定最佳配方及工艺参数。

(1)钛合金的阳极氧化概况

阳极氧化是钛及其合金常用的一种表面防护处理方法。钛的阳极氧化是指以电化学方式使阳极上生成氧,并与阳极钛表面进行反应形成氧化膜的方法。最近研究表明包括铝、镁、钛、钽、钒、铌和锆等在内的许多金属及其合金都能进行阳极氧化处理生成保护膜,但以商业规模利用阳极氧化技术的只有铝、镁、钛及其合金。

(2)钛合金的阳极氧化膜层特征

研究表明,水溶液、有机溶剂和水/有机溶剂这三种体系均可以作为钛阳极氧

化电解液,用非水溶液和熔盐电解时,钛阳极上生成的氧化膜比较薄,电阻值大、静电电容值高、漏泄电容值高、漏泄电流小,是一种高介电质氧化钛薄膜。而用水溶液电解时,得到的电化学沉积物容易聚集成较大的颗粒,形成多孔状氧化膜,且氧化物薄膜较厚,生成干涉性发色氧化膜。这种氧化膜主要起着装饰性和防蚀保护的作用,是目前在钛合金阳极氧化工艺研究中最常用的电解液配方体系。研究结果表明钛阳极氧化过程中,电解液的浓度和温度以及电流密度等因素对氧化钛薄膜的生长影响小,而外加电压才是影响氧化钛薄膜生长厚度的最主要的因素。钛阳极氧化形成的TiO2 薄膜的厚度与槽电压成正比,而钛的发色色调则随着氧化钛薄膜厚度的不同而变化,于是得到了阳极氧化的槽电压与钛表面干涉色之间的关系。据此很容易通过调整槽电压来控制钛表面所生成的氧化膜的厚度,进而达到精细控制钛的发色色调,使钛表面按要求显现出黄、绿、青、粉红等各种色彩的目的。

针对目前钛合金表面处理存在的问题,研究并开发出钛合金新型表面处理工艺。研究工作主要包括以下两个方面:

1. 研究并开发了一种钛合金新型抑弧阳极氧化工艺。采用脉动电压阳极氧化技术,在钛合金表面可形成一层光滑致密,厚约2-10 μm,硬度为350-600 HV 阳极氧化膜。研究了电解液组分、氧化电压等工艺参数对膜层厚度和硬度的影响。采用扫描电子显微镜(SEM)检测膜层微观形貌,采用电子能谱(EDS)

和X 射线衍射(XRD)分析膜层元素组成和结构组成。研究表明:电解液组

分、氧化电压对氧化过程和氧化膜性能会产生影响。膜层分析表明:膜层主要

还是由Ti 和O 元素组成,同时膜层表面还含有Ni 和P 元素;XRD 图谱除了

有Ti 的衍射峰外还含有TiO2 晶态峰,可见膜层是由晶态和非晶态物质混合组成的氧化膜层。

2. 研究了一种钛合金表面直接电镀镍的新工艺。通过在瓦特镀镍液中添加金属络合剂和金属阳极活化溶解添加剂,对钛电极先采用阳极脉冲电流活化,再对活化后的钛电极进行阴极脉冲电流沉积,在钛合金表面获得了结合力优良的镍镀层。研究了电解液组分、工艺参数对镀层结合力的影响。结果表明,当在硫酸

镍电解液中添加40 g/L 阳极活化添加剂和采用1.4 A/dm2 阳极脉冲电流对钛合金进行电化学处理时,可使钛合金产生活性溶解,将脉冲电流切换为阴极电沉积后,便可在钛合金表面沉积一层结合力优良的镍镀层。文章讨论了脉冲阴、阳极平均电流密度,占空比,频率,电解液组分浓度等电解参数对镍镀层质量的影响,发现当硫酸镍为80 g/L、氯化镍为40 g/L、柠檬酸三钠为15 g/L、葡萄糖酸钠为12 g/L、硼酸为35 g/L、阳极活化添加剂为40 g/L;温度为60 ℃、pH 值为3.5 左右、频率f 为80 Hz、占空比为20 %、阴极电流密度为1.4 A/dm2 时所获得镍镀层的结合力最佳。

镁合金作为21 世纪“绿色”工程金属,除具有比重小、比强度和比刚度高、导热导电性能好等特点外,还兼有良好的阻尼减震和电磁屏蔽性能,已成为现代汽车、电子、通讯等行业的首选材料。钛合金具有化学稳定性好。比强度高、密度低、耐蚀及中温性能稳定等特性.而且具有在温度高达400℃~500℃的环境条件下仍能保持自身的强度等优异性能。所以广泛应用于航天、航空、化工及生物医疗等各个领域,已成为广泛应用化学工业和航空航天工业中的新型结构材料。(1)钛合金阳极化形成

由于钛合金硬度低,抗磨减摩性能差,高温后易粘连限制了其应用。施行阳极化可克服这些难题,钛合金阳极氧化技术是较传统、成熟的表面处理技术,它采用直流叠加方波脉冲电流进行钛合金的阳极氧化可以得到没有粉化和烧焦的氧化膜所生成的氧化膜致密。

该氧化膜主要用作粘结合和涂漆底层。氧化时,先在5min内将电压升至9—10V.然后保持电压18~22min。零件出槽后(在溶液干燥前)应立即清洗,胶接前不允许进行碱清理、腐蚀、溶剂擦洗或其他表面处理,并在氧化膜干燥后2h内转入控制污染的涂底胶和胶接工艺。并应在72h内涂底胶。随着阳极氧化膜层的增厚。阳极氧化电流下降.因此在阳极氧化过程中为了保持电流密度的恒定。必须借助整流器来提高电压。阳极氧化结束时的电压取决于膜层的厚度,在最大膜层厚度情况下。槽电压超过250V。钛合金零件在阳极氧化过程中是在电压高于打火点电压下进行的,一般溶液的打火点电压是80~90V.在阳极氧化过程中继续提高电压,在零件的表面上会观察到打火现象。

(2)钛合金阳极氧化的工艺流程

装挂-化学除油-流动热水洗-流动冷水洗_阳极氧化-流动冷水洗-拆卸零件-检验_(返修)-入库(或胶接、涂漆等)。

钛合金零件要装夹在钛合金制作的夹具上,化学除油可参考一般的化学除油溶液,阳极氧化电压较高时应注意防触电安全,对于较大的零件应延长冷水清洗的时间以达到冷却的目的。长期使用的氧化溶液,由于钛合金的某些溶液,造成钛离子的聚集,应控制钛含量不大于59,L。氧化膜层要求完全覆盖,没有划痕、破损和烧伤,检查膜层的厚度应达到规定的要求。

(3)钛合金阳极化的退除

经检验不合格的膜层按表l选择其中的1种方法返修。

(4)钛合金阳极化其他方法及条件

在葡萄糖酸钠和磷酸电解液体系中对钛合金TCl0、TA2、TCl、TC3进行阳极化,通过控制电压,可得到不同的颜色。该方法工艺简单,温度范围广,无需安装加热制冷设备。一般的工艺流程:打磨-冷水洗-酒精清洗-冷水洗-丙酮擦洗-冷水洗-浸蚀-水洗-阳极氧化-冷水洗-沸水填充-吹干。

主要工序说明:

(1)浸蚀液配方。

氢氟酸(d=1.13) 4%

硝酸(出1.52) 20%

蒸馏水余量

(2)阳极氧化电解液。

磷酸(d=1.71) 5~100ml/L

C6H1107Na 150一250g/L

双氧水25—35 ml/L

硫酸铈05—2g/l

pH 4—5

温度25—50℃

时间5~15min

交流电氧化,用调压器升压,成膜电压14~97V。

(3)填充。氧化后经蒸馏水80—90℃填充10~20min后吹干.氧化膜不易被污染。即使用脏手触摸污染后,经水洗吹干后亦能恢复原有的鲜艳色彩。

钛及其钛合金被广泛应用并得以快速发展,主要是得益于航空航天技术发展的迫切需要,航空工业的钛需求量现已占世界钛材料总量的近一半。航空用材料主要有铝合金、钢铁材料、复合材料和钛合金.目前,前二者的用量正在逐步的减少,而复合材料、钛合金的使用比例则正在逐渐扩大,据报道,到八十年代,国外军用飞机上的钛用量已占其结构重量的15~40%,并且这种增长趋势还将继续下去,在我国的飞机制造工业上,钛合余的应用也日益增长。

钛合金在先进飞机上获得大量应用,其主要原因之一是钛合会的高比强度,结构材料的强度密度比是一个重要的工程指标,它在工业化年代得到显著的提高,现代先进材料(碳钎维复合材料等)的强度密度比与原始材料(如铸铁)的相比提高了50倍’“,作为一种轻型高强度的金属结构材料,用钛合金代替钢和铝合金而降低飞机重量是相当可观、有效的,同时能够克服受到空间限制部位的要求;其另一主要原因是钛合金具有工作温度范围较宽的优点,从零下--269℃至零上600℃:优良的腐蚀抗力是钛及其合金又一突出的优点,特别是在海水和海洋大气中抗腐蚀性能很高;飞机制造中使用了多种材料,钛合金与其它材料的相容性也比较好,如钛合金与碳纤维有相近的电极电位和热膨胀系数,与复合材料的柏容性较好。这诸多优点使钛及其合金在航空工业上具有广泛的应用,按其用途而言,飞机上钛合余零部件可大致分为三种类型:非结构零部件(如军机中液压、冷气、操纵等系统零件及导管)、发动机零部件(如发动机压气机盘、时片及机匣等)、飞机结构件(如机身、起落架、机翼承力构件及紧固件等)。

钛合金阳极氧化

钛合金阳极氧化 钛是地壳中储量较丰富的元素之一,它在地壳中的丰度约为0.64%,在结构金属中仅次于铝、镁和铁居第四位,1791 年英国矿物爱好者W.Gregoy 在黑色磁铁矿中发现了化学元素Ti,在分析这种钛铁矿时把它称为Menachanite;1795 年,德国化学家Klaproth 在分析匈牙利Boinik 出产的一种红金石时,发现一种新的金属,称其为titanium。钛及钛合金在工程上应用较晚,直到1952 年才正式作为结构材料使用,这主要是因为钛和氧、氮、氢和碳等元素有很强的亲和力,并易产生化学作用,致使钛及其合金的生产成本较高的缘故。近年来钛及钛合金因其具有优良的机械性能在现代工业中得到了广泛应用。 钛合金作为工程结构材料,与其它金属相比,钛合金具有密度小,相当于铁的57%;比强度高,如Ti-6A1-4V 钛合金的比强度为21.7,而LY12 铝合金为16.7;高耐酸性,纯钛在硝酸以及在常温5 %以下的硫酸、盐酸、磷酸中有较好的耐腐蚀性,在海水中几乎不被腐蚀;同时钛合金拥有优良的高、低温力学性能,TC11钛合金能在600 ℃的高温下长期稳定工作,在-200 ℃低温下仍能保持很好的塑性;另外,钛合金还具有无磁、良好的弹性、形状记忆、吸氢、超导、低阻尼、高抗冲击强度、耐压、抗震、与复合材料有良好的相容性等性能。 钛及其合金作为21 世纪最重要的工程金属,以其优异的性能而被广泛用于航空航天、舰船、汽车、医疗、化工等行业。但钛合金不耐磨,与其它金属易产生接触腐蚀等问题限制了其应用范围。因此适当的表面处理以增强钛合金的耐蚀性、耐磨性及装饰性具有重要的现实意义。传统的钛合金表面处理技术有许多不足之处,例如,工艺复杂、成本高、电解液对环境不友好等。 钛合金的特性 (1)钛合会的最主要性能之一是密度小,比强度高。钛的密度为4.5 g/cm 3,在常用金属中只有铝的密度为2.7 g/cm’比它轻,但铝合金的强度较低,而低碳锏7.86 g/ca。、不锈钢8 0 g/cm、铜8 9 g/cm,都比钛要高。由于钛合金的高比强度,用钛合金代替钢和铝合金降低机体结构重量是相当可观的,同时它是缩小结构体积的优选材料,在相同空间尺寸条件下,使它能够代替那些因空间受限的铝合金及钢构件,这对于提高飞机结构寿命及性能具有重要意义。 (2)钛及其合金另一个突出的性能是其优良的抗蚀性。金属的抗腐蚀性能与金属的固有性质有关,各种金属的热力学稳定性,可以根据它们的标准平衡电位来大致评定,一般来说,标准平衡电位越高(即越正)、标志该金属热力学稳定性越高,金属离子化倾向越小,越不易受到腐蚀;反之同理。虽然钛是一种化学性质比较活泼的余属,其标准平衡电位较低(负),在介质中的热力学腐蚀倾向大,但实际上钛在许多介质中是很稳定的,这是因为它的钝化倾向很强,与氧有很大的亲和力,在空气中或含氧的介质中氧化,钛表面生成一层具有很好的耐腐蚀性能的氧化膜,阻隔了钛及其合金基体进一步氧化腐蚀,这就决定了钛及其合金具有很好的化学腐蚀抗力。同时,由于钛及其合金表面形成了这一层具有良好防护性能并且电阻率较高的表面膜,钛合金的电化学腐蚀抗力实际上也表现为该表面膜的电化学腐蚀抗力,因此,钛及其钛合金具有优异的电化学腐蚀抗力。 (3)钛合金与复合材料有很好的相溶性。出于复合材料具有高比强度、高比刚度、耐疲劳胜能好、工艺性好等优点,随着先进复合材料设计及工艺技术的日趋成熟,和钛合会一样,先进复合材料尤其是碳纤维环氧复合材料(GECM)的应用F1益增长,已用于多种飞机的垂尾、方向舵、机翼等重要结构。由于碳纤维独特的电化学性能,其电极电位较正,与偶接金属材料电连接后,在腐蚀介质中会导致电极电位较负的金属腐蚀速率加快。

钛合金表面处理

钛合金表面处理 引言 钛在高温下易于与空气中的O、H、N等元素及包埋料中的Si、Al、Mg等元素发生反应,在铸件表面形成表面污染层,使其优良的理化性能变差,硬度增加、塑性、弹性降低,脆性增加。 钛的密度小,故钛液流动时惯性小,熔钛流动性差致使铸流率低。铸造温度与铸型温差(300℃)较大,冷却快,铸造在保护性气氛中进行,钛铸件表面和内部难免有气孔等缺陷出现,对铸件的质量影响很大。 因此,钛铸件的表面处理与其它牙用合金相比显得更为重要,由于钛的独特的理化性能,如导热系数小、表面硬度、及弹性模量低,粘性大,电导率低、易氧化等,这对钛的表面处理带来了很大的难度,采用常规的表面处理方法很难达到理想的效果。必须采用特殊的加工方法和操作手段。 铸件的后期表面处理不仅是为了得到平滑光亮的表面,减少食物及菌斑等的积聚和粘附,维持患者的正常的口腔微生态的平衡,同时也增加了义齿的美感;更重要的是通过这些表面处理和改性过程,改善铸件的表面性状和适合性,提高义齿的耐磨、耐蚀和抗应力疲劳等理化特性。 一、表面反应层的去除 表面反应层是影响钛铸件理化性能的主要因素,在钛铸件研磨抛光前,必须达到完全去除表面污染层,才能达到满意的抛光效果。通过喷砂后酸洗的方法可完全去除钛的表面反应层。 1. 喷砂:钛铸件的喷砂处理一般选用白刚玉粗喷较好,喷砂的压力要比非贵金属者较小,一般控制在0.45Mpa以下。因为,喷射压力过大时, 砂粒冲击钛表面产生激烈火花,温度升高可与钛表面发生反应,形成二次污染,影响表面质量。时间为15~30秒,仅去除铸件表面的粘砂、表面烧结层和部分和氧化层即可。其余的表面反应层结构宜采用化学酸洗的方法快速去除。 2. 酸洗:酸洗能够快速完全去除表面反应层,而表面不会产生其他元素的污染。HF—HCl系和HF—HNO3系酸洗液都可用于钛的酸洗,但 HF—HCl系酸洗液吸氢量较大,而HF—HNO3系酸洗液吸氢量小,可控制HNO3的浓度减少吸氢,并可对表面进行光亮处理,一般HF的浓度在3%~5 %左右,HNO3的浓度在15%~30%左右为宜。 二、铸造缺陷的处理 内部气孔和缩孔内部缺陷:可等热静压技术(hot isostatic pressing)去

钛合金的微弧氧化

轻金属表表面处理 0908030227 彭睿

钛合金的微弧氧化 关键词钛合金微弧氧化氧化膜 摘要:着科学技术的发展与进步,钛及其合金的应用越来越广泛,虽然它们具有很多优良的性能,但其表面的耐磨、耐蚀性能还不能满足某些关键零部件的要求,尤其在航天、航空领域,微弧氧化技术的出现则较好地解决了这个问题。本文介绍了钛合金的微弧氧化基本原理、氧化膜特点、对氧化膜的影响因素、以及发展前景和一些问题。 前言:钛合金是一种以钛为基加入适量其他合金元素组成的合金,耐海水腐蚀性能优异。它具有重量轻、比强度大、热稳定性好等优良的综合性能,广泛应用于航空、航天以及民用工业中。但美中不足的是钛合金的表面硬度较低、耐磨性及耐腐蚀较差,特别是钛合金与其它金属接触时很容易发生接触腐蚀,严重制约了其进一步应用,为此国内外先后对钛合金表面进行了改性研究,以提高其表面性能。传统的表面改性技术有阳极氧化、PVD/CVD、离子注入、热喷涂及热氧化法等。钛合金阳极氧化膜厚度一般小于1um,达到2~3um已属不易,而且硬度较低,因此有必要发展新的低成本高性能的涂层制备技术。微弧氧化这一高新技术综合地解决了上述难题。微弧氧化又称微等离子体氧化,是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,生长出以基体金属氧化物为主的陶瓷膜层。 微弧氧化的概况 早在20世纪30年代初德国科学家A.Gunterschulze和H.Betz第一次报道了在高电场下浸在液体里的金属表面出现火花放电现象,火花对氧化膜具有破坏作用,在没有发现产生硬质层的条件下,做出了“为了得到高质量的涂层,就不应该用高于出现火花时的电压”的结论,但他们为火花阳极氧化奠定了初步的理论基础。这一观点一直延续到20世纪70年代,尽管少数学者对这一现象持保留观点,但始终没能彻底改变这个结论。1969年,前苏联科学家G.A.Markov在向铝及铝合金材料施加高于火花区电压时,突破性地获得了高质量的氧化膜,这种膜层具有很好的耐磨性和耐腐蚀性,他把这种在微电弧条件下通过氧化获得涂层的过程称为微弧氧化(Microarc Oxidation,MAO)。此后G.A..Markov课题组进行大量基础性研究,并在此基础上进行了应用研究。期间美国、德国对此技术也进行广泛的研究,其中包括实际应用。从文献上看,美国、德国、前苏联三国基本上各自独立地发展这项技术,相互之间文献引用很少№’7J。这一技术在20世纪80年代开始在世界范围内进行广泛交流。进入20世纪90年代,美国、德国、俄国、日本等国都加快了该项技术的研究开发工作。从文献看,所用电源模式各异,但研究结果表明,使用交流电源,在铝、镁、钛等合金表面生长的氧化膜的性能好于直流电源,因此交流模式是当今微弧氧化技术的重要发展方向。从前苏联到今天的俄罗斯,在该项技术上的研究与开发应用一直处于世界领先地位,在机理上提出了自己的理论,并且已成功应用于许多工业领域,如航空、纺织、石油、交通等部门。 其它国家如美国、德国等在该项技术上的研究及应用也有较高的水平。从20世纪90年代国内开始关注此项技术,主要有哈尔滨工业大学、北京师范大学、西

阳极氧化工艺流程

阳极氧化工艺流程 阳极氧化已经慢慢淘汰了,现在已经升级到了微弧氧化,可以做镁和铝合金产品,原理都是一样,通过有机溶剂做为介质,采用尖端放电,在产品表面生成保护膜,类似於陶瓷层。外观除了一些起跑引起的颜色问题,是很难看出来的,主要通过,盐雾、耐摩擦、电导率、电击穿等测试来判定膜层的好坏。工艺:除油--水洗--水洗--阳极反应--水洗--封闭--烘烤铝 制品阳极氧化工艺流程铝制品阳极氧化通用的工艺流程如下:铝工件→上挂具→脱脂→水洗→碱蚀→水洗→出光→水洗→阳极氧化→水洗→去离子水洗→染色或电解着色→水洗→去离子水洗→封闭→水洗→下挂具对于要求高光亮度的铝制品,可采用如下的工艺流程:铝工件→机械抛光→脱脂→水洗→中和→水洗→化学或电化学抛光→水洗→阳极氧化→水洗→去离子水洗→染色或电解着色→水洗→去离子水洗→封闭→水洗→机械光亮铝及铝合金阳极氧化着色工艺流程(图) 铝及铝合金阳极氧化着色工艺规程1、主题内容与适用范围:本规程规定了铝及铝合金阳极氧化、着色、电泳生产的工艺和操作的技术要求及规范。2、工艺流程(线路图)基材→装挂→脱脂→碱蚀→中和→阳极氧化→电解着色→封孔→电泳涂漆→固化→卸料包装→入库3、装挂:3.1装挂前的准备。3.1.1 检查导电梁、导电杆等导电部位能否充分导电、并定期打磨、清洗或修理。3.1.2准备好导电用的铝片和铝丝。3.1.3检查气动工具及相关设备是否正常。3.1.4核对流转单或生产任务单的型号、长度、支数、颜色、膜厚等要求是否与订单及实物相符。3.1.5根据型材规格(外接圆尺寸、外表面积等)确定装挂的支数和间距、色料间距控制在型材水平宽度的1.2倍左右,白料间距控制在型材宽度的1倍左右。3.1.6选择合适的挂具,确保正、副挂具的挂钩数与型材的装挂支数一致。3.2 装挂:3.2.1装挂时应先挂最上面一支,再固定最下面一支,然后将其余型材均匀排布在中间、并旋紧所有铝螺丝。3.2.2装挂前在型材与铝螺丝间夹放铝片,以防型材与挂具间的导电不良而影响氧化、着色或电泳。3.2.3装挂时,严禁 将型材全部装挂在挂具的下部或上部。3.2.4装挂的型材必须保持一定的倾斜度(>5°)以 利于电泳或着色时排气,减少斑点(气泡)。3.2.5装挂时必须考虑型材装饰面和沟槽的朝向、防止色差、汽泡、麻点产生在装饰面上。3.2.6易弯曲、变形的长型材,在型材的中间部位增加一支挂具或采用铝丝吊挂以防型材间碰擦或触碰槽内极板,而擦伤或烧伤型材表面。3.2.7选用副杆挂具时,优先选用插杆,采用铝丝绑扎时,一定要间隔均匀,露头应小于25mm。3.2.8截面大小、形状悬殊的型材严禁装挂在同一排上。3.2.9装挂或搬运型材,必须戴好干净手套,轻拿轻放、爱护、防护好型材表面,严禁野蛮操作。3.2.10装挂或搬运型材时必须加强自检和互检,不合格的型材严禁装挂,表面沾有油污或铝屑(毛刺)的型材必须采取适当的措施处理干净。3.2.11剔除不合格型材后,必须按订单支数及时补足。 3.2.12装挂区的型材不宜存放太久,以防废气腐蚀型材表面。3.2.13认真填写《装挂记录》和《氧化工艺流程卡》上装挂部分的记录,准确计算填写每挂氧化面积,随时核对订单,确

镁合金防腐蚀方案汇总

镁合金防腐蚀方案汇总 化学转化处理 镁合金的化学转化膜按溶液可分为:铬酸盐系、有机酸系、磷酸盐系、KMnO4系、稀土元素系和锡酸盐系等。 传统的铬酸盐膜以Cr为骨架的结构很致密,含结构水的Cr则具有很好的自修复功能,耐蚀性很强。但Cr具有较大的毒性,废水处理成本较高,开发无铬转化处理势在必行。镁合金在KMnO4溶液中处理可得到无定型组织的化学转化膜,耐蚀性与铬酸盐膜相当。碱性锡酸盐的化学转化处理可作为镁合金化学镀镍的前处理,取代传统的含Cr、F或CN等有害离子的工艺。化学转化膜多孔的结构在镀前的活化中表现出很好的吸附性,并能改镀镍层的结合力与耐蚀性。 有机酸系处理所获得的转化膜能同时具备腐蚀保护和光学、电子学等综合性能,在化学转化处理的新发展中占有很重要的地位。 化学转化膜较薄、软,防护能力弱,一般只用作装饰或防护层中间层。 阳极氧化 阳极氧化可得到比化学转化更好的耐磨损、耐腐蚀的涂料基底涂层,并兼有良好的结合力、电绝缘性和耐热冲击等性能,是镁合金常用的表面处理技术之一。 传统镁合金阳极氧化的电解液一般都含铬、氟、磷等元素,不仅污染环境,也损害人类健康。近年来研究开发的环保型工艺所获得的氧化膜耐腐蚀等性能较经典工艺Dow17和HAE有大程度的提高。优良

的耐蚀性来源于阳极氧化后Al、Si等元素在其表面均匀分布,使形成的氧化膜有很好的致密性和完整性。 一般认为氧化膜中存在的孔隙是影响镁合金耐蚀性能的主要因素。研究发现通过向阳极氧化溶液中加入适量的硅-铝溶胶成分,一定程度上能改善氧化膜层厚度、致密度,降低孔隙率。而且溶胶成分会使成膜速度出现阶段性快速和缓慢增长,但基本上不影响膜层的X 射线衍射相结构。 但阳极氧化膜的脆性较大、多孔,在复杂工件上难以得到均匀的氧化膜层。 金属涂层 镁及镁合金是最难镀的金属,其原因如下: (1)镁合金表面极易形成的氧化镁,不易清除干净,严重影响镀层结合力; (2)镁的电化学活性太高,所有酸性镀液都会造成镁基体的迅速腐蚀,或与其它金属离子的置换反应十分强烈,置换后的镀层结合十分松散; (3)第二相(如稀土相、γ相等)具有不同的电化学特性,可能导致沉积不均匀; (4)镀层标准电位远高于镁合金基体,任何一处通孔都会增大腐蚀电流,引起严重的电化学腐蚀,而镁的电极电位很负,施镀时造成针孔的析氢很难避免; (5)镁合金铸件的致密性都不是很高,表面存在杂质,可能成为

钛及钛合金阳极氧化着色层结构及拉伸性能

钛及钛合金阳极氧化着色层 结构及拉伸性能 脱祥明 李 楠(北京有色金属研究总院,北京100088) (联大应用文理学院) 关键词: 氧化膜 组成 结构 性能 1 前 言 60年代俄罗斯建造一座钛包覆经阳极氧化、象征火箭发射台的纪念碑。70年代英国、美国、日本等都十分重视钛阳极氧化工艺的研究,试制了装饰品、手表壳、彩色画等,并申请了发明专利权。 国内也研究了用阳极氧化的方法在钛板和钛镀层表面获得彩色画的工艺,并进一步推广钛制品进入装饰品和工艺美术等领域。 阳极氧化膜具有比钛更高的硬度、强度、耐蚀性及耐磨性,是理想的装饰层和保护层。 2 试验方法 2.1 试验材料 采用工厂生产Υ26mm的TA2纯钛及TC4钛合金棒材。热处理制度为TA2 700℃/1h,空冷;TC4为750℃/1h,空冷。 将制备好的金相试样及标准拉伸试样(TC4、TA2)洗净,干燥后进行氧化着色试验。 2.2 阳极氧化着色试验 试验设备采用阳极氧化着色仪,系直流电源,其可调的直流电压为0~150V。电解液采用5%酒石酸铵溶液。在试样阳极氧化过程中,主要控制电压,电压不同氧化膜厚度不同。在光的干涉下各种不同厚度的氧化膜呈现出各种颜色,详见表1。 表1 氧化膜颜色随电压的变化 电压U/V20306085110颜色棕蓝黄红绿 根据这个原理,把制备好的试样与电源的阳极连接,用阴极毛笔蘸上电解液后,在试样上进行氧化,调节电压,即可得到所需要的氧化膜厚度。 3 试验结果 3.1 氧化膜的表观与增重 拉伸试样进行阳极氧化着色,电压增高,氧化膜的厚度增加,也就是说氧化后的试样重量也增加。在电压为20~60V 时,呈现棕色、蓝色、黄色,重量均增加0.3mg;在电压为85V时呈现红色,重量增加到0.6mg;在电压为110V时呈现绿色,重量增加到1.1m g[1,2]。氧化后重量增加与电压之间关系详见图1。 3.2 氧化膜的组成及结构 第21卷 第3期 稀 有 金 属 1997年5月DOI:10.13373/https://www.360docs.net/doc/1c4185468.html, ki.cjr m.1997.03.017

钛合金微弧氧化

钛合金微弧氧化技术 1.钛合金微弧氧化概述 微弧氧化( Microarc oxidation,MAO) 又称微等离子体氧化(Micmplasma oxidation,MPO),由于在研究这项技术的过程中,对微弧氧化本质认识的不同,因此在发展过程中出现了不同的术语:阳极火花沉积,火花放电阳极氧化,等离子体电解阳极化处理,而一般称为微弧氧化或微等离子体氧化。 微弧氧化是指把有色金属放在电解液中,利用微弧放电在金属表面原位生长氧化膜的技术。该氧化膜具有优良的性质,主要应用于机械、电气、汽车、武器装备、航天和航空等行业的关键零部件的表面处理,解决表面的高温烧蚀、磨损和腐蚀等问题。比如,俄罗斯在制造洲际弹道导弹子母弹的生产过程中应用了微弧氧化技术,水上快艇高速发动机缸体下套与活塞经过微弧氧化处理后,耐磨性提高了几十倍,这些都是其它表面处理技术无法代替、无法比拟的。 早在20世纪30年代初德国科学家A.Gunterschulz和H.Betz 第一次报道了在高电场下浸在液体里的金属表面出现火花放电现象,火花对氧化膜具有破坏作用在没有发现产生硬质层的条件下,做出了“为了得到高质量的涂层,就不应该用高于出现火花时的电压”的结论,但他们为火花阳极氧化奠定了初步的理论基础。这一观点一直延续到2 0世纪7 O年代,尽管少数学者对这一现象持保留观点,但始终没能彻底改变这个结论。 1969年,前苏联科学家G.A.Markov 在向铝及铝合金材料施加高于火花区电压时,突破性地获得了高质量的氧化膜,这种膜层具有很好的耐磨性和耐腐蚀性,他把这种在微电弧条件下通过氧化获得涂层的过程称为微弧氧化( Microarc Oxidation,MAO) 。此后G.A. 一Markov 课题组进行大量基础性研究,并在此基础上进行了应用研究。期间美国、德国对此技术也进行广泛的研究,其中包括实际应用。从文献上看,美国、德国前苏联三国基本上各自独立地发展这项技术,相互之间文献引用很少。这一技术在20世纪80年代开始在世界范围内进行广泛交流。 钛合金具有重量轻、比强度大、热稳定性好等优良的综合性能,广泛应用于航空、航天以及民用工业中。但美中不足的是钛合金的表面硬度较低、耐磨性及耐腐蚀较差,特别是钛合金与其它金属接触时很容易发生接触腐蚀,严重制约了其进一步应用,为此国内外先后对钛合金表面进行了改性研究,以提高其表面性能。传统的表面改性技术有阳极氧化、P V D /C V D、离子注入、热喷涂及热氧化法等。钛合金阳极氧化膜厚度一般小于1μm,达到2~3μm己属不易,而且硬度低,目前仅在装饰涂层方面有所应用。P V D/C V D、离子注入及热氧化法在涂层制备过程中需要保持高温,在一定程度上改变了基体与涂层的结构,使基体的力学性能明显变坏( 塑性恶化) ;P V D/C V D及离子注入法需要昂贵的真空或气氛保护条件,制备成本明显提高;而热氧化法能耗大、时间长及劳动强度大,得到的涂层不均匀。因此有必要发展新的低成本高性能的涂层制备技术。微弧氧化这一高新技术综合地解决了上述难题,在实践中取得了很好的效果。 2.微弧氧化膜生成的基本原理及生长过程 微弧氧化是从普通阳极氧化发展而来的,它的基本原理是:突破了传统的阳极氧化对电流、电压的限制,把阳极电压由几十伏提高到几百伏,当电压达到某一临界值时,击穿阀金属表面形成的氧化膜(绝缘膜),产生微弧放电并形成放电通道,在放电通道内瞬间形成高温高压并伴随复杂的物理化学过程,使金属表面原位生长出性能优良的氧化膜。 在微弧氧化过程中,把工件放人电解槽中,通电后工件表面现象及膜层生长过程具有明

阳极氧化的工艺简介与维护

阳极氧化的工艺简介与维护 (1)铝氧化的概念:铝及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用,在铝制品(阳极)上形成一层氧化膜的过程称为阳极氧化。(2)铝氧化的优点:1:铝材轻,易造形。2:工艺流程简单,控制易。3:各种单色或双色外观选择。4:氧化膜硬度高,耐损耗(硬度为200—400HV)。5:耐气候强。(3)硫酸阳极氧化的工艺特点:成分简单稳定,操作容易,成本低廉,常温阳极氧化可获得厚5-25UM的无色透明,多孔吸附性强,容易着色的氧化膜。(4)氧化膜的生成过程:氧化膜的生成是在生长和溶解这对矛盾运动中发生和发展的。(5)装饰性阳极氧化常见工艺流程:工件——前处理——氧化处理——染色——封孔——成品A:前处理工艺:A1除油:由于铝材在前段工艺加工过程中,一方面由于环境因素以及储存堆放搬运会使铝材上粘附有灰尘等污物,另外加工过程中会用到各式各样的油脂,如拉伸油,保护腊等,因此除油工艺就变得非常重要,否则就会使后面的工艺受到影响,主要是因为铝材表面粘附有油污会使工件处理后表面状况不均匀从而影响最后产品的表面状况。化学除油是利用热碱溶液对油脂的皂化和乳化作用,以出去皂化性油脂;利用表面活性剂的乳化作用除去非皂化性油脂。A2碱蚀:碱蚀的目的是除去残存的自然氧化膜,脱脂溶解基体的残留物,深入基体表面的油脂等污物,除去工件表面的变质合金层,消除模具痕,划伤等其它表面缺陷,调整和整平基体表使其均匀一致。碱蚀的各成分和工艺条件的影响:1:氢氧化钠:碱蚀槽中的岢性碱系指游离量。其含量对于保障碱蚀质量,防止水解均起重要作用。40克每升以下碱蚀速度随氢氧化钠升高而加快,几乎成线性关系;50-60克每升之间碱蚀速度基本相同;大于70克每升碱蚀速度又随浓度升高而加快,所以控制在50-60克每升最好。2:温度:随温度升高,碱蚀速度呈线性升高,温度大于70摄氏度易产生过腐蚀,温度过高还会导致晶间腐蚀加剧,温度低于40度碱蚀速度很慢,挤压丝纹不易消除。最好在50-60下使用。3:时间:碱蚀时间受碱浓度,温度,铝离子容存量的影响,通常在50-60克每升碱量和50-60摄氏度下碱蚀2-5分钟是适当的。时间太短挤压纹不能消除,太长则易产生过腐蚀。A3化学抛光:通常为了获得较光亮的外观,可以有选择性的对铝型材进行化学抛光,配制化学抛光药水时需遵守浓硫酸的稀释原则。A4打砂,有时我们需要获得粗细均匀的砂面效果,需要对工件进行打砂或喷砂处理,通常用的较多的为酸性打砂。A5除渍,通常碱蚀,打砂,化学抛光后都必须进行除渍处理,除去工件表面的灰膜。B阳极氧化氧化膜特点:1透明度高:一般硫酸氧化膜无色,透明度高,易染色。铝越纯,其氧化膜透明度越高,合金元素Si,Fe,Mn会使透明度下降。2性能好:耐蚀性,耐磨性,硬度好。3颜色与氧化条件密切相关,当电流密度,溶液温度变化时,膜颜色也变化。4成本低:硫酸价格低,操作简单,电解电压低,耗电少,电解液中不含有毒物质。氧化槽溶液配方与工艺条件配 方工艺参数硫酸 (A.R) 160-200克每升铝离 子少于20克每升温 度 18-23摄氏度电 压 12-15伏电流密 度 0.8-2.0安每平方分米阴极材 料纯铝或铅锡合金板时 间 20-60分钟搅

镁合金阳极氧化膜的制备及其耐腐蚀性能研究【开题报告】

毕业论文开题报告 化学工程与工艺 镁合金阳极氧化膜的制备及其耐腐蚀性能研究 一、选题的背景、意义 镁是地球上储量最丰富的元素之一,除地壳表层金属矿所含的质量分数为1.93%外,在盐湖及海洋中也存在着十分可观的镁储存量。镁合金是以镁为基加入其他元素组成的合金,镁及其合金具有许多优良的特性。它的密度小(1.8g/cm3镁合金左右),约为铝的2/3、铁的1/4;比强度很高,弹性模量大,消震性好,承受冲击载荷能力比铝合金大,耐有机物和碱的腐蚀性能好,具有良好的导电、导热性、电磁屏蔽性、尺寸稳定性、机加工性能以及再循环利用的性能。 镁合金过去主要应用于航空航天领域,进10年来,随着汽车工业的发展,镁合金的应用最得到了很大的发展。由于环境保护和节省燃料的要求,通常以降低汽车重量来节省能耗,其中一项重要措施就是采用镁合金零件来取代原先的铝合金或钢制零件,由于各种数码产品的飞速跟新换代,对其外观和质量都提出了更高要求。用量轻、刚性好、金属光泽好、电磁屏蔽性好的镁合金取代塑料用在外壳上可获得很好的效果。 随着人们对环境保护意识的日益增强,镁合金无铬表面转化处理技术取得了很大的发展,对环境影响已经大大减小。国内的镁合金阳极氧化处理工艺与国外相比差距较大,大部分无铬电解液配方仅停留在实验阶段,无法投入到实际生产中。因此,对镁合金进行适当的表面处理来提高其耐蚀性能具有非常重要的意义。 二、相关研究的最新成果及动态 2.1 传统工艺 有关镁合金阳极氧化技术产生于20世纪,直到1951年以后,HAE和DOW l7工艺的相继出现才使阳极氧化技术在镁合金防护处理中应用成为可能。HAE工艺是碱性电解液的代表,而Dow Chemical company研发的DOW l7是酸性电解液的代表,在镁合金阳极氧化发展进程中两者起了重要的作用。后来又开发了Anomag 工艺、Magoxid-Coat工艺和Tagnite工艺等。其具体工艺如表1所示。

镁合金防腐蚀技术的现状及发展方向

浅谈镁合金防腐蚀技术的现状及发展方向 摘要:镁合金以其强度、比模量和优异的力学性能,已在众多领域受到广泛关注。但是,由于镁合金化学活性高、耐蚀性能差的缺陷制约了其应用范围。因此,镁合金的表面防护处理(耐腐蚀)极为重要。 关键词:镁合金防腐蚀表面处理现状发展方向 前言:镁合金由于具有质轻兼顾,易于回收等诸多优点,正在成为钢铁、铝合 金、工程塑料的一种重要替代材料。但镁是极活泼的金属,耐蚀性极差,在潮湿空气和中性、酸性溶液中都容易受到腐蚀。耐蚀性能差成为制约镁合金扩大应用的主要因素之一。改善镁合金的耐蚀性主要有两条途径,一是通过添加合金元素,减少杂质含量,进行适当的热处理等方法改善合金材料本身的耐蚀性,二是对镁合金制品进行适当的表面处理,实现和外部环境的隔绝,阻碍腐蚀的发生。镁合金表面处理常用的方法有化学氧化、电化学氧化、电镀等。 镁在地壳中储量丰富,仅次于铝、铁居第三位。镁属于轻金属,密度为1.74g/cm3,约为铝的2/3、钢的1/5,作为结构性材料有着非常广泛的应用前景。镁合金具有密度小,比强度、比刚度高,阻尼性、切削加工性、导电导热性好,电磁屏蔽能力强,尺寸稳定,易回收等优点,使镁合金在航空工业、汽车、机械设备、电子产品等领域有着非常广阔的应用前景,被称为“21世纪的绿色工程材料”。我国是世界原镁生产和出口大国。但是,我国镁合金的研究和应用开发却相对滞后,其中一个重要的原因是镁合金的防腐问题没有很好地解决。镁是所有工业合金中化学活性最高的金属元素,其标准电极电位为-2.37V,在常用介质中的电位也相当低。镁合金在大气中的耐蚀性主要取决于大气的湿度与污染程度,腐蚀形成的氧化膜(MgO),但氧化膜多孔而疏松,会使腐蚀加剧,并且会阻碍表面处理的进行。在潮湿的空气、含硫气氛和海洋大气中均会遭受严重的化学腐蚀。另外,镁合金与其它金属接触时,一般作为阳极发生电化学腐蚀,阴极是与镁直接有外部接触的异种金属,也可以是镁合金内部的第二相或杂质相,后者在宏观上表现为全面腐蚀。要扩大镁合金使用范围,充分发挥其优越性能,更好的服务人类,就必须解决腐蚀的问题。一方面是从镁合金材质的本身着手,开发更耐腐蚀的镁合金;另一方面就是进行适当的表面处理。 1.镁合金表面处理的常见方法 镁合金的表面处理方法主要有:阳极氧化处理、微弧氧化处理、化学转化膜 处理、有机涂层或有机镀膜、金属涂层(热喷涂防护层)、激光表面改性、气相沉积和离子注入等。 1.1阳极氧化处理 镁合金阳极氧化膜耐蚀性高,也可以作为涂装的底层。镁在阳极氧化的过程 中先形成一层致密的阻挡层,当氧化膜达到一定厚度时,由于其拉应力过大而发生局部断裂,膜层下面的金属又逐渐生成新的膜,整个膜层不断增厚。这种膜不仅包含了合金元素的氧化物,而且还包含了溶液中通过热分解并沉淀到镁合金工件表面的其他氧化物。 镁合金可以在酸性溶液中阳极化,也可以在碱性溶液中阳极化。早期的阳极化是利用含铬的有毒化合物的处理液,如Dow17,Cr22以及HAE,这三种工艺都是 MDCC移动开发者大会精彩荟萃智能硬件移动开发产品体验粉丝经济社交游戏

铝阳极氧化工艺

铝阳极氧化 工艺 铝阳极氧化工艺 第一部分工艺流程 一、工艺流程及工艺条件 1、铝阳极氧化处理流程如下: 脱脂→水洗×2→(酸蚀→水洗×2)→碱蚀→水洗×2→中和→ →锡盐着色(红底香槟色系)→ →单锡盐着色(古铜色系)→ 水洗×2→氧化→水洗×2→→镍锡盐着色(古铜色系)→→ →硒盐着色(钛金色系)→ →锰盐着色(金黄色系)→ →水洗×2→封闭→水洗→水洗(或热水洗)→晾干 →纯水洗→电泳→纯水洗→纯水洗→滴干→烘烤 二.设备材质: 管道材料:PVC 槽体材料:PVC或PP 第二部份化工工艺 1.槽液组成及化学品简介 第一步:脱脂 选用化学品:Potencer AC 酸性脱脂剂AC是为铝及铝合金设计的专业清洗配方。适用于常温浸

渍脱脂。对铝材的侵蚀很小,但能有效清除表面的各种油污,及去除 自然氧化膜,且不会如碱蚀产生大量气体和黑污。对水质要求低,水 洗容易。低泡沫、避免脱脂槽泡沫过多而溢流。 使用条件: AC 浓度: 4~7%(体积比) 时间: 2~10 分钟(视油污及处理流程而定) 温度:20~30℃ 开槽方法:先加入槽体积一半的水,然后加入计算量的AC,搅拌5min 左右,再补加水至规定体积。 第二、三步:自来水水洗 第四步:酸蚀 选用化学品:Potencer C-11 Potencer C-11是精心研发使用于铝材酸蚀砂面作业中。能快速 整平、消除铝材表面的模具痕,获得美观的磨砂外观,并可大量降低 铝材损耗。 使用条件: 开槽浓度:Potencer C-11 80~160克/升; 温度:常温~50℃。 时间: 3~ 6分钟。 须使用过滤设施。 开槽方法:先加入槽体积一半的水,然后在搅拌下慢慢加入计算量的C-11,再补加水至规定体积。控制温度在规定范围,放一根废铝材反 应30min左右,取出,即可试生产。 第五、六步:自来水水洗 (第四、五、六步在有的厂家没有应用) 第七步:碱蚀 选用化学品:Potencer ADD及氢氧化钠

镁合金微弧阳极氧化膜的特性

镁合金微弧阳极氧化膜的特性/杨丽娜等?45l? 镁合金微弧阳极氧化膜的特性+ 杨丽娜赵晴 (南昌航空工业学院材料科学与工程系,南昌330034) 摘要采用扫描电镜(SEMl、x射线衍射(xRD)等方法初步研究了镬合仓微孤氧化膜的成分、相组成厦其彤貌特征。结果表明,在微孤氧化处理过程中,镁合金基体中的合金元素Al向表面扩散进入氧化膜层,微弧氧化处理液组分中的元素也进入了氧化膜层。氧化膜主要由MgO、M&si04、MgAl。04和不定形相组成。在微孤氧化过程中,氧化膜中首先产生的物相为立方结构的MgO,随着氧化时间的延长,氧化膜中出现晶态的MgAl。(X及M&si(X。 关键词镁合金徽弧氧化表面形貌相结构 ThePropertiesofC∞tingFomledbyMicroarcOxidation蚰Magll鹋i哪Alloys YANGLinaZHAoQing (Sch00l。fMateI_iaISci印ceandEng;neerillg,NanchngInstitu把。fAeronauticalTechnology,Nanchng330034) Abs咖tThe surfaceⅡ10rphology,eleI丁lentconstitutionandphasecon“tutionofceram{ccoatiIlgarestudiedbyusingSEMandXRⅡTheresultsshowthatintheprocessof血croarco五dation,Alelernentinmagnesiumalloydiffusesincoatillgandtheelem∞tintheelectr01ytealso“fusesincoatiTlg.ThecoatiTlgisrnainlyrnadeupofM90,M&siq,MgAl2qandafnorphismphs已Intheprocessofmcroarco菇dation,thefirstphaseformedinthecoatillgiscubicM90,astiⅡ1e90eson,。rthorhombicM92Si04andMgAk04appearinthecoating. Keywo阿s【Tlagnesiuma110拍,micmarcoxldation,su血cen10rph0Iogy,phsesturcture 镁合金因比重小、比强度高、振动衰减系数大及良好的电磁屏蔽性能成为一种非常理想的现代工业结构材料,早期被广泛地应用于航空航天工业,目前在交通、光电仪器、电子工业、电讯、音响材料等领域也有了极大的发展。但镁的电极电位很低,具有极其活泼的化学活性,因此必须采取切实有效的防护处理措施增强其耐蚀性能,才能使镁合金在工业中发挥其优良的性能。传统的镁合金防护措施主要有化学镀、电镀、化学氧化及阳极氧化等,但都存在着膜层薄、耐蚀性差及工序复杂等问题。微弧阳极氧化是在阳极氧化基础上发展起来的新技术.它是一种直接在有色金属表面原位生长陶瓷层的新技术。微弧氧化所获得的膜层与基体结合力强.极大地改善了镁铝合金的耐腐蚀、耐磨损、耐热冲击及绝缘性能,在航空航天、汽车、电子、运动器材及装饰等领域具有广泛的应用潜力。目前,我国对微弧氧化技术的研究仍处于起步阶段,还有很多问题需要解决。本实验采用扫描电镜和x射线衍射等方法初步研究了镁合金微弧阳极氧化膜的成分组成、相组成及其形貌特征。 1试验材料及方法 试验选用zM5镁合金,其化学成分(wt蹦)为:Al7.5~9.O、zn0.2~O.8、MnO.15~O.5、Si0.50、№O.05、NiO.Ol、Cuo.20,余量为M卧 微弧氧化装置包括:自行研制的15kw微弧氧化高压电源、电解槽、搅拌系统、冷却系统,工件为阳极,不锈钢板(1crl8Ni9)为阴极。试样大小为35蛐n×25mm×7nm的小方块,表面除油及酸洗后放人电解槽中进行微弧阳极氧化,使用蒸馏水配制的硅酸盐系电解液,浓度为20wt%。 *江西省自然科学基金(0450099) 杨丽娜:Tel:0791—8208781E-rnail:khaoqillg@sina.c。rn 利用QuANT~200型扫描电镜观察氧化膜的表面形貌及截面形貌,并对氧化膜的成分组成及其规律进行分析。利用D8一x型x射线衍射分析氧化膜的相组成。 2实验结果与分析 2.1氧化膜的表面形貌 图1(a)为zM5镁合金试样微弧氧化初期氧化膜的表面形貌图。在微弧氧化过程中,当试样上施加的电压超过已有膜层击穿电压时,膜上的某些薄弱环节被击穿,即发生微弧放电现象,浸在溶液中的试样表面有无数个游动的弧点和火花。从图l(a)可以看到,氧化膜表面有许多较大的颗粒,大颗粒的直径约有几微米至十几微米,且中间有圆环状的孔洞,这是残留的微弧氧化过程中等离子体的放电通道。由于氧化初期试样表面的火花较小,因此氧化膜表面的放电气孔小、孔隙率高。 图1氧化膜的表面扫描电镜照片 图1(b)是氧化时间为25min的氧化膜的表面形貌图。由  万方数据

镁合金表面处理国内外研究应用现状

表面工程技术 镁合金表面处理国内外研究应用现状Magnesium alloy surface treatment of domestic and foreignresearch and application status 学院名称:材料科学与工程学院 专业班级:复合材料1101 学生姓名:曹成成 学号: 3110706055 指导教师:张松立

2014 年 6 月 摘要:介绍了国内外镁合金表面处理的最新研究进展,其中包括 化学转化、自组装单分子膜、阳极氧化、电镀与化学镀、液相沉积 与溶胶凝胶涂层、气相沉积、喷涂、激光熔覆合金技术等,并对镁 合金表面处理的发展趋势作了展望。 关键词:镁合金表面处理涂层 引言 镁是金属结构材料中最轻的一种# 纯镁的力学性能很差。但镁合金 因体积质量小、比强度高、加工性能好、电磁屏蔽性好、具有良好 的减振及导电、导热性能而备受关注。镁合金从早期被用于航天航 空工业到目前在汽车材料、光学仪器、电子电信、军工工业等方 面的应用有了很大发展。但是镁的化学稳定性低、电极电位很负、 镁合金的耐磨性、硬度及耐高温性能也较差。在某种程度上又制约 了镁合金材料的广泛应用,因此,如何提高镁合金的强度、硬度、耐磨、耐热及耐腐蚀等综合性能,进行适当的表面强化,已成为当 今材料发展的重要课题。 镁合金是最轻的金属结构材料之一,密度仅为1.3g/cm3 ~ 1.9 g/cm3,约为Al 的2/3,Fe 的1/4。镁合金具有比强度高,比刚度高,减震性、导电性、导热性好、电磁屏蔽性和尺寸稳定性好,易回收 等优点。以质轻和综合性能优良而被称为21 世纪最有发展潜力的绿 色材料,广泛应用于航空航天、汽车制造、电子通讯等各个领域。 但是镁合金的化学和电化学活性较高,严重制约了镁合金的应用, 采用适当的表面处理能够提高镁合金的耐蚀性。 一、微弧氧化处理 微弧氧化技术又称微等离子体氧化或阳极火花沉积, 实质上是 一种高压的阳极氧化, 是一种新型的金属表面处理技术。该工艺是 在适当的脉冲电参数和电解液条件下, 使阳极表面产生微区等离子 弧光放电现象, 阳极上原有的氧化物瞬间熔化, 同时又受电解液冷 却作用, 进而在金属表面原位生长出陶瓷质氧化膜的过程。与普通 阳极氧化膜相比, 这种膜的空隙率大大降低, 从而使耐蚀性和耐磨 性有了较大提高。目前, 微弧氧化技术主要应用于Al、Mg、Ti 等有 色金属或其合金的表面处理中。镁合金微弧氧化技术所形成的氧化

钛合金阳极氧化液及其表面处理方法与设计方案

本技术公开了一种钛合金阳极氧化液,按重量份数计算:硫酸1030份、磷酸2040份、乙酸515份、硫酸铵1525份、硫酸钾1013份、甲酸816份、去离子水8001000份。经过该阳极氧化液处理后的钛合金表面性质更加稳定,防护性能更好。一种应用上述阳极氧化液处理钛合金表面的方法,包括以下步骤:步骤1,对钛合金表面处理用碱液进行清洗;步骤2,将经步骤1清洗后的钛合金表面进行打磨,然后用清水清洗干净,烘干;步骤3,将经步骤2清洗后的钛合金放入钛合金阳极氧化液进行阳极氧化处理;步骤4,将经步骤3处理后的钛合金再次清洗干净、烘干即得。 权利要求书 1.一种钛合金阳极氧化液,其特征在于,按重量份数计算:硫酸10-30份、磷酸20-40份、乙酸5-15份、硫酸铵15-25份、硫酸钾10-13份、甲酸8-16份、去离子水800-1000份。 2.根据权利要求2所述的一种钛合金阳极氧化液,其特征在于,所述硫酸为质量分数为98%的浓硫酸。 3.一种应用权利要求1-2中任一项钛合金阳极氧化液处理钛合金表面的方法,其特征在于,包括以下步骤: 步骤1,对钛合金表面处理用碱液进行清洗; 步骤2,将经步骤1清洗后的钛合金表面进行打磨,然后用清水清洗干净,烘干; 步骤3,将经步骤2清洗后的钛合金放入钛合金阳极氧化液进行阳极氧化处理; 步骤4,将经步骤3处理后的钛合金再次清洗干净、烘干即得。 4.根据权利要求3所述的一种应用钛合金阳极氧化液处理钛合金表面的方法,其特征在于,

步骤1中,碱液为pH值为10-11的氢氧化钠溶液。 5.根据权利要求3所述的种应用钛合金阳极氧化液处理钛合金表面的方法,其特征在于,步骤3中,阳极氧化处理的处理条件为:在温度为15~25℃、电压为20-40V的条件下处理30-90s。 技术说明书 一种钛合金阳极氧化液及其表面处理方法 技术领域 本技术属于钛合金表面处理技术领域,具体涉及一种钛合金阳极氧化液,本技术还涉及应用上述一种钛合金阳极氧化液的处理钛合金表面的方法。 背景技术 钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。 第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,钛合金得到了广泛的应用。 在适当的阳极氧化条件下,钛合金表面会产生一种富有艺术价值的、呈现丰富色彩变化的阳极氧化膜层,其既有一定的装饰性,又有一定的耐腐蚀能力。具有广泛的应用前景。

氟化物对纯钛及钛合金的腐蚀作用模板

氟化物对纯钛及钛合金的腐蚀作用 近年来,钛和钛合金广泛应用于口腔领域,是最常用的口腔材料之一。钛由于与氧具有很高的亲和力,拼在其表面形成了一层紧密而稳定的氧化膜而具有出色的耐腐蚀性。有研究表明氟离子在酸性环境下能破坏这层氧化膜,从而削弱钛的抗腐蚀能力。目前,含氟牙膏、正畸凝胶等含氟牙膏产品大量应用于口腔。钛及钛合金暴露于含氟的复杂口腔坏境中。在此情况下,钛及其合金的腐蚀行为受到氟化物本身浓度、环境酸碱度、口腔中蛋白质和钛合金的成分以及种植体材料表面微形貌等方面的影响。 1.氟化物腐蚀原理 钛材料良好的抗腐蚀性只要是由表面薄二致密稳定的氧化 膜产生,这层氧化膜在破坏后能在含氧环境中迅速形成。这使得氧化膜的破坏和修复(再钝化)维持在一个稳定的状态,保护内部的钛元素不被继续氧化。但有报道发现,钛表面氧化膜在氢氟酸溶液中会出现溶解。目前普遍认为氟化物对钛及钛合金的腐蚀原理是口腔中溶解的氟化物和氢离子结合形成氟化氢。氟化氢能优先吸附于钛表面氧化膜的某些点上,排挤掉氧原子,然后和氧化膜中的太离子结合形成可溶性氟化物,使钛发生点蚀。反应方

程如下: Ti2O3+6HF=2TiF3+3H2O, TiO2+4HF=TiF4+2H2O, TiO2+2HF=H2O+TiOF2. 表面氧化膜破坏发生多孔性改变后,导致深部钛的暴露。钛是一种活性很高的金属,在含氢或析氢腐蚀环境中会持续吸收氢,在钛晶面生成TiH2,促进腐蚀的进程,甚至形成微裂纹,最终导致钛材料修复失败。 2.氟化物腐蚀影响因素 2.1氟化物的浓度 口腔中氟化物主要来源于含氟牙膏和漱口水等口腔保健品,其浓度范围1000~10000Ppm不等,使用这些保健产品会导致口腔局部氟离子浓度增高。有研究发现在酸性溶液中,氟离子浓度达到30ppm时,钛表面的氧化膜即可出现破坏,说明低浓度的氟离子就减弱了钛材料的抗腐蚀性能。 (1)高浓度氟溶液对钛表面的腐蚀作用在弱酸环境中就能进行。Her-Hsiung Huang 溶液中能检测到更高的钛离子溶出量,这也间接说明了钛在酸蚀化电阻下降明显,抗腐蚀性能下降。马长柏等 (3)发现腐蚀产生的点状凹陷的分布范围和深度均随氟离

相关文档
最新文档