核酸练习题答案

核酸练习题答案
核酸练习题答案

核酸练习题

一、填充题

1,核糖核酸RNA主要分为 tRNA 、 mRNA 和 rRNA 三种类型。

2,脱氧核糖核酸(DNA)的基本结构单位是脱氧核糖核苷酸。

3,脱氧核糖核酸DNA双链中若 G+C% 含量高,则 Tm 值高。

4,转移核糖核酸tRNA的二级结构为三叶草形状,三级结构为倒L 形状

5,DNA和RNA中的碱基不同的是 T 和 U 。

二、是非题

( ? )1,tRNA分子的3’末端具有聚腺苷酸的“尾”结构。

( ?)2,若DNA一条链的碱基顺序是pCpTpGpGpApC,则另一条链的碱基顺序是pGpApCpCpTpG.

( ? )3,DNA的二级结构由两条平行的多核苷酸链构成。

( ? )4,碱溶液水解RNA产生5’-核苷酸。

( ? )5,稀碱溶液可以水解DNA,但不可以水解RNA。

( √ )6,在变性后,DNA的紫外吸收增加。

三、选择题(单选题)

( b )1,热变性的DNA在适当条件可以复性,条件之一是:

[a] 骤然冷却 [b] 缓慢冷却 [c] 能缩 [d] 加入浓的盐

( a )2.如果反密码子是UGA,它可识别下列哪个密码子? [a] ACU [b] CUA [c] UCA [d] UAC

( c )3,DNA中含有18.4%的A时,其碱基C+G%总含量为多少? [a]36.8 [b]37.2 [c] 63.2 [d] 55.2;

( d )4,热变性的DNA具有下列哪种特征?

[a]核苷酸间的磷酸二酯键断裂 [b]形成三股螺旋

[c]260nm处的光吸收下降 [d] GC对的含量直接影响Tm值

四、问答题

1,请简单叙述DNA的组成和结构的特点。

答:DNA是由2-脱氧核苷酸聚合而成的线性高分子,DNA中存在的碱基是:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。DNA双螺旋结构的要点如下:

(1)DNA分子由两条多聚脱氧核糖核苷酸链(简称DNA单链)组成。两条链沿着同一根轴平行盘绕,形成右手双螺旋结构。螺旋中的两条链方向相反,即其中一条链的方向为5′→3′,而另一条链的方向为3′→5′。(2)嘌呤碱和嘧啶碱基位于螺旋的内侧,磷酸和脱氧核糖基位于螺旋外侧。碱基环平面与螺旋轴垂直,糖基环平面与碱基环平面成90°角。(3)螺旋横截面的直径约为2nm,每条链相邻两个碱基平面之间的距离为0.34nm,每10

个核苷酸形成一个螺旋,其螺矩(即螺旋旋转一圈)高度为3.4nm。(4)两条DNA链相互结合以及形成双螺旋的力是链间的碱基对所形成的氢键。碱基的相互结合具有严格的配对规律,即腺嘌呤(A)与胸腺嘧啶(T)结合,鸟嘌呤(G)与胞嘧啶(C)结合,这种配对关系,称为碱基互补。A和T之间形成两个氢键,G与C之间形成三个氢键。由于A与T、G 与C之间有严格的配对关系,所以在DNA分子中,嘌呤碱基的总数与嘧啶碱基的总数相等。

2,请说明DNA和RNA在组成、结构、功能上的不同之处。

答:DNA是由脱氧核糖核苷酸构成的,RNA是由核糖核苷酸构成的,其中化学组成的不同之处在于一个由脱氧核糖构成,一个由核糖构成;构成DNA的碱基有A, G, C, T,而构成RNA的碱基有A, G, C, U,部分碱基具有修饰成分。DNA是由两条反向平行的脱氧核糖核苷酸链构成右手双螺旋结构,碱基A与T,G与C严格配对;RNA是由一条核糖核苷酸链构成。DNA是遗传信息的携带者,RNA是遗传信息的传递者。

3, 请描述核酸中的碱基配对原则和DNA中碱基配对的特点?

答:两条DNA链相互结合以及形成双螺旋的力是链间的碱基对所形成的氢键。碱基的相互结合具有严格的配对规律,即腺嘌呤(A)与胸腺嘧啶(T)结合,鸟嘌呤(G)与胞嘧啶(C)结合,这种配对关系,称为碱基互补。A和T之间形成两个氢键,G与C之间形成三个氢键。由于A与T、G与C之间有严格的配对关系,所以在DNA分子中,嘌呤碱基的总数与嘧啶碱基的总数相等。

4,一种病毒的脱氧核糖核酸链具有以下组成:A=32%, G=16%, T=40%, C=12%(摩尔含量比),请问该脱氧核糖核酸的结构具有什么特点?

答:从A、T、G和C的含量比可以看出,该病毒DNA组成中嘧啶碱数目与嘌呤碱基数目不等,A和T以及G和C的含量不等,所以不能构成双螺旋结构,可能是一条单链DNA。

5, 有一条脱氧核糖核酸链,结构如下:5'-ACCGTAACTTTAG-3'请写出与该链互补的DNA链和RNA链的结构。(2分)

答:5'-ACCGTAACTTTAG-3'

3'-TGGCATTGAAATC-5'

3'-UGGCAUUGAAAUC-5'

6,请简单论述DNA变性的特性。

答:DNA的变性是指DNA双螺旋区的多聚核苷酸链间的氢键断裂,变成单链结构的过程。当DNA的稀盐溶液加热到80-100℃时,双螺旋结构即发生解体,两条链彼此分开,形成无规线团。DNA变性后,它的一系列性质也随之发生变化,如粘度降低、紫外吸收(260 nm)值升高等。

生物化学题库及答案大全

《生物化学》题库 习题一参考答案 一、填空题 1蛋白质中的苯丙氨酸、酪氨酸和__色氨酸__3种氨基酸具有紫外吸收特性,因而使蛋白质在 280nm处有最大吸收值。 2蛋白质的二级结构最基本的有两种类型,它们是_α-螺旋结构__和___β-折叠结构__。前者的螺距为 0.54nm,每圈螺旋含_3.6__个氨基酸残基,每个氨基酸残基沿轴上升高度为__0.15nm____。天然 蛋白质中的该结构大都属于右手螺旋。 3氨基酸与茚三酮发生氧化脱羧脱氨反应生成__蓝紫色____色化合物,而脯氨酸与茚三酮反应 生成黄色化合物。 4当氨基酸溶液的pH=pI时,氨基酸以两性离子离子形式存在,当pH>pI时,氨基酸以负 离子形式存在。 5维持DNA双螺旋结构的因素有:碱基堆积力;氢键;离子键 6酶的活性中心包括结合部位和催化部位两个功能部位,其中前者直接与底物结合,决定酶的 专一性,后者是发生化学变化的部位,决定催化反应的性质。 72个H+或e经过细胞内的NADH和FADH2呼吸链时,各产生3个和2个ATP。 81分子葡萄糖转化为2分子乳酸净生成______2________分子ATP。 糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶;果糖磷酸激酶;丙酮酸激酶9。 10大肠杆菌RNA聚合酶全酶由σββα'2组成;核心酶的组成是'2ββα。参

与识别起始信号的是σ因子。 11按溶解性将维生素分为水溶性和脂溶性性维生素,其中前者主要包括V B1、V B2、V B6、 V B12、V C,后者主要包括V A、V D、V E、V K(每种类型至少写出三种维生素。) 12蛋白质的生物合成是以mRNA作为模板,tRNA作为运输氨基酸的工具,蛋白质合 成的场所是 核糖体。 13细胞内参与合成嘧啶碱基的氨基酸有:天冬氨酸和谷氨酰胺。 14、原核生物蛋白质合成的延伸阶段,氨基酸是以氨酰tRNA合成酶?GTP?EF-Tu三元复合体的形式进 位的。 15、脂肪酸的β-氧化包括氧化;水化;再氧化和硫解4步化学反应。 二、选择题 1、(E)反密码子GUA,所识别的密码子是: A.CAU B.UG C C.CGU D.UAC E.都不对 2、(C)下列哪一项不是蛋白质的性质之一? A.处于等电状态时溶解度最小 B.加入少量中性盐溶解度增加 C.变性蛋白质的溶解度增加 D.有紫外吸收特性 3.(B)竞争性抑制剂作用特点是:

核酸练习题

2017年07月27日核酸 一.选择题(共5小题) 1.关于核酸的叙述,错误的是() A.细胞核中发生的转录过程有RNA聚合酶的参与 B.植物细胞的线粒体和叶绿体中均可发生DNA的复制 C.双链DNA分子中一条链上的磷酸和核糖是通过氢键连接的 D.用甲基绿和吡罗红染色剂可观察DNA和RNA在细胞中的分布 2.关于DNA和RNA的叙述,正确的是() A.DNA有氢键,RNA没有氢键 B.一种病毒同时含有DNA和RNA C.原核细胞中既有DNA,也有RNA D.叶绿体、线粒体和核糖体都含有DNA 3.组成核酸的碱基、五碳糖和核苷酸的种类依次是() A.5、2、8 B.4、2、2 C.5、2、2 D.4、4、8 4.一分子磷酸、一分子含N碱基和一分子化合物a构成了复杂化合物b,对a 和b的准确叙述是() A.a是核糖,b则为核苷酸 B.a是脱氧核糖,b 则为核糖核苷酸 C.a是核糖,b则为核糖核苷酸 D.a是五碳糖,b则是核糖 5.颜色变化常作为生物实验结果观察的一项重要指标,下列有关叙述正确的是() A.吡罗红甲基绿染色剂可将口腔上皮细胞的细胞质染成红色 B.向未知样品中滴加双缩脲试剂,发现溶液呈现紫色,则未知样品只含蛋白质C.用洋葱鳞片叶外表皮细胞进行质壁分离实验,可观察到绿色区域变小D.酒精可使溴麝香草酚蓝水溶液由蓝变绿再变黄 二.解答题(共1小题)

6.以下是生物体内四种有机物的组成与功能关系图,回答下列问题: (1)物质D的基本元素组成是;小麦种子细胞中,物质E是指.(2)相同质量的E和F彻底氧化分解,释放能量较多的是;细胞核内的染色体是由图中的和构成.(此题填字母代号) (3)物质C的结构通式是,已知G含有由504个C组成的四条链,则C 相互结合过程中相对分子质量减少了,形成肽键数为.

宏观经济学思考题及参考答案

宏观经济学思考题及参考答案(1) 第四章 基本概念:潜在GDP,总供给,总需求,AS曲线,AD曲线。 思考题 1、宏观经济学的主要目标是什么?写出每个主要目标的简短定义。请详细解释 为什么每一个目标都十分重要。 答:宏观经济学目标主要有四个:充分就业、物价稳定、经济增长和国际收支平衡。 (1)充分就业的本义是指所有资源得到充分利用,目前主要用人力资源作为充分就业的标准;充分就业本不是指百分之百的就业,一般地说充分就业允许的失业范畴为4%。只有经济实现了充分就业,一国经济才能生产出潜在的GDP,从而使一国拥有更多的收入用于提高一国的福利水平。 (2)物价稳定,即把通胀率维持在低而稳定的水平上。物价稳定是指一般物价水平(即总物价水平)的稳定;物价稳定并不是指通货膨胀率为零的状态,而是维持一种能为社会所接受的低而稳定的通货膨胀率的经济状态,一般指通货膨胀率为百分之十以下。物价稳定可以防止经济的剧烈波动,防止各种扭曲对经济造成负面影响。 (3)经济增长是指保持合意的经济增长率。经济增长是指单纯的生产增长,经济增长率并不是越高越好,经济增长的同时必须带来经济发展;经济增长率一般是用实际国民生产总值的年平均增长率来衡量的。只有经济不断的增长,才能满足人类无限的欲望。 (4)国际收支平衡是指国际收支既无赤字又无盈余的状态。国际收支平衡是一国对外经济目标,必须注意和国内目标的配合使用;正确处理国内目标与国际目标的矛盾。在开放经济下,一国与他国来往日益密切,保持国际收支的基本平衡,才能使一国避免受到他国经济波动带来的负面影响。 3,题略 答:a.石油价格大幅度上涨,作为一种不利的供给冲击,将会使增加企业的生产成本,从而使总供给减少,总供给曲线AS将向左上方移动。 b.一项削减国防开支的裁军协议,而与此同时,政府没有采取减税或者增加政府支出的政策,则将减少一国的总需求水平,从而使总需求曲线AD向左下方移动。 c.潜在产出水平的增加,将有效提高一国所能生产出的商品和劳务水平,从而使总供给曲线AS向右下方移动。 d.放松银根使得利率降低,这将有效刺激经济中的投资需求等,从而使总需求增加,总需求曲线AD向右上方移动。 第五章 基本概念:GDP,名义GDP,实际GDP,NDP,DI,CPI,PPI。 思考题: 5.为什么下列各项不被计入美国的GDP之中? a优秀的厨师在自己家里烹制膳食; b购买一块土地; c购买一幅伦勃朗的绘画真品; d某人在2009年播放一张2005年录制的CD所获得的价值; e电力公司排放的污染物对房屋和庄稼的损害;

分子生物学复习思考题附答案二

分子生物学复习思考题二 1.写出分子生物学广义的与狭义的定义,现代分子生物学研究的主要内容,以及5个分子生物学发展的主要大事纪(年代、发明者、简要内容)。 广义上:分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究、以及从分子水平上阐明生命的现象和生物学规律。 狭义概念:既将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及到与这些过程相关的蛋白质和酶的结构与功能的研究。 现代分子生物学研究的主要内容有:基因与基因组的结构与功能,DNA的复制、转录和翻译,基因表达调控的研究,DNA重组技术,结构分子生物学等。 5个分子生物学发展的主要大事纪(年代、发明者、简要内容): 1.1944年,著名微生物学家Avery 等人在对肺炎双球 菌的转化实验中证实了DNA是生物的遗传物质。这 一重大发现打破了长期以来,许多生物学家认为的 只有象蛋白质那样的大分子才能作为细胞遗传物质 的观点,在遗传学上树立了DNA是遗传信息载体的 理论。 2. 2.1953年,是开创生命科学新时代具有里程碑意义 的一年,Watson和Crick发表了“脱氧核糖核酸的 结构”的著名论文,他们在Franklin和Wilkins X- 射线衍射研究结果的基础上,推导出DNA双螺旋结 构模型,为人类充分揭示遗传信息的传递规律奠定 了坚实的理论基础。同年,Sanger历经8年,完成 了第一个蛋白质——胰岛素的氨基酸全序列分析。 3. 1954年Gamnow从理论上研究了遗传密码的编码规

律, Crick在前人研究工作基础上,提出了中心法则 理论,对正在兴起的分子生物学研究起了重要的推 动作用。 4. 1956年Volkin和Astrachan发现了mRNA(当时尚 未用此名)。 5. 1985年,Saiki等发明了聚合酶链式反应(PCR); Sinsheimer首先提出人类基因组图谱制作计划设 想;Smith等报导了DNA测序中应用荧光标记取代同 位素标记的方法;Miller等发现DNA结合蛋白的锌 指结构。 2. 作为主要遗传物质的DNA具有哪些特性,研究DNA一 级结构有什么重要意义,什么是DNA的超螺旋结构? 有哪些类型?解释DNA拓扑异构体,它们之间互变异构依赖于什么?简述真核生物的染色体结构,它们是如何组装的?有几种组蛋白参与核小体的形成? 作为遗传物质的DNA具有以下特性: ①贮存并表达遗传信息; ②②能把遗传信息传递给子代; ③③物理和化学性质稳定; ④④有遗传变异的能力。 研究DNA以及结构的意义是:DNA一级结构决定了二级结构,折叠成空间结构。这些高级结构又决定和影响着一级结构的信息功能。研究DNA的一级结构对阐明遗传物质结构、功能以及它的表达、调控都是极其重要的。 如果使这种正常的DNA分子额外地多转几圈或少转几圈,就会使双螺旋中存在张力。当双螺旋分子末端开放时,这种张力可通过链的转动而释放,DNA恢复正常的双螺旋状态。如果固定DNA分子的两端,或者本身是共价闭合环状DNA或与蛋白质结合的DNA分子,DNA分子两条链不能自由转动,额外的张力不能释放,DNA分子就会发生扭曲,用以抵消张力。 这种扭曲称为超螺旋。超螺旋有正超螺旋和负超螺旋

生物化学试题带答案

一、选择题 1、蛋白质一级结构的主要化学键就是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物就是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的就是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式就是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH与FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶就是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶就是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

10、DNA二级结构模型就是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋 11、下列维生素中参与转氨基作用的就是( D ) A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物就是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号就是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质就是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式就是( B ) A、在一磷酸核苷水平上还原 B、在二磷酸核苷水平上还原 C、在三磷酸核苷水平上还原 D、在核苷水平上还原 16、妨碍胆道钙吸收的物质就是( E ) A、乳酸 B、氨基酸 C、抗坏血酸 D、柠檬酸 E、草酸盐 17、下列哪种途径在线粒体中进行( E ) A、糖的无氧酵介 B、糖元的分解 C、糖元的合成 D、糖的磷酸戊糖途径 E、三羧酸循环 18、关于DNA复制,下列哪项就是错误的( D ) A、真核细胞DNA有多个复制起始点 B、为半保留复制 C、亲代DNA双链都可作为模板 D、子代DNA的合成都就是连续进行的

核酸习题

第二章核酸化学 一、填充题 1、核酸的基本结构单位是_。 2、20世纪50年代,Chargaff等人发现各种生物体DNA碱基组成有_的特异性,而没有_的特异性。 3、DNA双螺旋中只存在_种不同碱基对。T总是与_配对,C总是与_配对。 4、核酸的主要组成是_、_和_。 5、两类核酸在细胞中的分布不同,DNA主要位于_中,RNA主要位于_中。 6、核酸分子的糖苷键均为_型糖苷键。糖环与碱基之间的连键为_键。核苷与核苷之间通过_键连接形成多聚体。 7、嘌呤核苷有顺式和反式两种可能,但天然核苷多为_。 8、X射线衍射证明,核苷中_与_平面相互垂直。 9、核苷在260nm附近有强吸收,这是由于_。 10、给动物食用3 H标记的_,可使DNA带有放射性,而RNA不带放射性。 11、双链DNA中若_含量多,则Tm值高。 12、双链DNA热变性后,或在PH 2以下,或在PH 12以上时,其OD260_,同样条件下,单链DNA的OD260 _。 13、DNA样品的均一性愈高,其溶解过程的温度范围愈_。 14、DNA所处介质的离子强度越低,其溶解过程的温度范围愈_,溶解温度越_,所以DNA应保存在较_浓度的盐溶液中,通常为_mol/L的氯化钠溶液。 15、DNA分子存在三类核苷酸序列:高度重复序列、中度重复序列和单一序列。tRNA、rRNA以及组蛋白等由_编码,而大多数蛋白质由_编码。 16、硝酸纤维素膜可结合_链核酸。将RNA变性后转移到硝酸纤维素膜上再进行杂交,称_印迹法。 17、变性DNA复性与很多因素有关,包括_、_、_、_、_等。 18、DNA复性过程属于二级反应动力学,其Cot1/2 值与DNA复杂程度成_比。 19、双链DNA螺距为3.4nm,每匝螺旋的碱基数为10,这是_型DNA的结构。 20、RNA分子的双螺旋区以及RNA-DNA杂交双链具有与_型DNA相似的结构,外形较为_。

(完整版)思考题及习题2参考答案

第2章思考题及习题2参考答案 一、填空 1. 在AT89S51单片机中,如果采用6MHz晶振,一个机器周期为。答:2μs 2. AT89S51单片机的机器周期等于个时钟振荡周期。答:12 3. 内部RAM中,位地址为40H、88H的位,该位所在字节的字节地址分别为 和。答:28H,88H 4. 片内字节地址为2AH单元最低位的位地址是;片内字节地址为A8H单元的最低位的位地址为。答:50H,A8H 5. 若A中的内容为63H,那么,P标志位的值为。答:0 6. AT89S51单片机复位后,R4所对应的存储单元的地址为,因上电时PSW= 。这时当前的工作寄存器区是组工作寄存器区。答:04H,00H,0。 7. 内部RAM中,可作为工作寄存器区的单元地址为 H~ H。答:00H,1FH 8. 通过堆栈操作实现子程序调用时,首先要把的内容入栈,以进行断点保护。调用子程序返回指令时,再进行出栈保护,把保护的断点送回到,先弹出的是原来中的内容。答:PC, PC,PCH 9. AT89S51单片机程序存储器的寻址范围是由程序计数器PC的位数所决定的,因为AT89S51单片机的PC是16位的,因此其寻址的范围为 KB。答:64 10. AT89S51单片机复位时,P0~P3口的各引脚为电平。答:高 11. AT89S51单片机使用片外振荡器作为时钟信号时,引脚XTAL1接,引脚XTAL2的接法是。答:片外振荡器的输出信号,悬空 12. AT89S51单片机复位时,堆栈指针SP中的内容为,程序指针PC中的内容为 。答:07H,0000H 二、单选 1. 程序在运行中,当前PC的值是。 A.当前正在执行指令的前一条指令的地址 B.当前正在执行指令的地址。 C.当前正在执行指令的下一条指令的首地址 D.控制器中指令寄存器的地址。 答:C 2. 判断下列哪一种说法是正确的?

核酸练习题答案

核酸练习题 一、填充题 1,核糖核酸RNA主要分为 tRNA 、 mRNA 和 rRNA 三种类型。 2,脱氧核糖核酸(DNA)的基本结构单位是脱氧核糖核苷酸。 3,脱氧核糖核酸DNA双链中若 G+C% 含量高,则 Tm 值高。 4,转移核糖核酸tRNA的二级结构为三叶草形状,三级结构为倒L 形状 5,DNA和RNA中的碱基不同的是 T 和 U 。 二、是非题 ( ? )1,tRNA分子的3’末端具有聚腺苷酸的“尾”结构。 ( ?)2,若DNA一条链的碱基顺序是pCpTpGpGpApC,则另一条链的碱基顺序是pGpApCpCpTpG. ( ? )3,DNA的二级结构由两条平行的多核苷酸链构成。 ( ? )4,碱溶液水解RNA产生5’-核苷酸。 ( ? )5,稀碱溶液可以水解DNA,但不可以水解RNA。 ( √ )6,在变性后,DNA的紫外吸收增加。 三、选择题(单选题) ( b )1,热变性的DNA在适当条件可以复性,条件之一是: [a] 骤然冷却 [b] 缓慢冷却 [c] 能缩 [d] 加入浓的盐 ( a )2.如果反密码子是UGA,它可识别下列哪个密码子? [a] ACU [b] CUA [c] UCA [d] UAC ( c )3,DNA中含有18.4%的A时,其碱基C+G%总含量为多少? [a]36.8 [b]37.2 [c] 63.2 [d] 55.2; ( d )4,热变性的DNA具有下列哪种特征? [a]核苷酸间的磷酸二酯键断裂 [b]形成三股螺旋 [c]260nm处的光吸收下降 [d] GC对的含量直接影响Tm值 四、问答题 1,请简单叙述DNA的组成和结构的特点。 答:DNA是由2-脱氧核苷酸聚合而成的线性高分子,DNA中存在的碱基是:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。DNA双螺旋结构的要点如下: (1)DNA分子由两条多聚脱氧核糖核苷酸链(简称DNA单链)组成。两条链沿着同一根轴平行盘绕,形成右手双螺旋结构。螺旋中的两条链方向相反,即其中一条链的方向为5′→3′,而另一条链的方向为3′→5′。(2)嘌呤碱和嘧啶碱基位于螺旋的内侧,磷酸和脱氧核糖基位于螺旋外侧。碱基环平面与螺旋轴垂直,糖基环平面与碱基环平面成90°角。(3)螺旋横截面的直径约为2nm,每条链相邻两个碱基平面之间的距离为0.34nm,每10

生物化学题库及答案

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有 20 种,一般可根据氨基酸侧链(R)的 大小分为非极性侧链氨基酸和极性侧 链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有 疏水性;而后一类氨基酸侧链(或基团)共有的特征是具有亲水 性。碱性氨基酸(pH6~7时荷正电)有两3种,它们分别是赖氨 基酸和精。组氨基酸;酸性氨基酸也有两种,分别是天冬 氨基酸和谷氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋 白质分子中含有苯丙氨基酸、酪氨基酸或 色氨基酸。 3.丝氨酸侧链特征基团是-OH ;半胱氨酸的侧链基团是-SH ;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是氨基,除脯氨酸以外反应产物 的颜色是蓝紫色;因为脯氨酸是 —亚氨基酸,它与水合印三酮的反 应则显示黄色。 5.蛋白质结构中主键称为肽键,次级键有、 、

氢键疏水键、范德华力、二硫键;次级键中属于共价键的是二硫键键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 谷氨酸被缬氨酸所替代,前一种氨基酸为极性侧链氨基酸,后者为非极性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是异硫氰酸苯酯;在寡肽或多肽序列测定中,Edman反应的主要特点是从N-端依次对氨基酸进行分析鉴定。 8.蛋白质二级结构的基本类型有α-螺旋、、β-折叠β转角无规卷曲 和。其中维持前三种二级结构稳定键的次级键为氢 键。此外多肽链中决定这些结构的形成与存在的根本性因与氨基酸种类数目排列次序、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的αa-螺旋往往会中断。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是分子表面有水化膜同性电荷斥力 和。

思考题与习题答案

思考题与习题 1 1- 1 回答以下问题: ( 1)半导体材料具有哪些主要特性? (2) 分析杂质半导体中多数载流子和少数载流子的来源; (3) P 型半导体中空穴的数量远多于自由电子, N 型半 导体中自由电子的数量远多于空穴, 为什么它们对外却都呈电中性? (4) 已知温度为15C 时,PN 结的反向饱和电流 I s 10 A 。当温度为35 C 时,该PN 结 的反向饱和 电流I s 大约为多大? ( 5)试比较二极管在 Q 点处直流电阻和交流电阻的大小。 解: ( 1)半导体的导电能力会随着温度、光照的变化或掺入杂质浓度的多少而发生显着改变, 即半导体具 有热敏特性、光敏特性和掺杂特性。 ( 2)杂质半导体中的多数载流子是由杂质原子提供的,例如 供一个自由电子,P 型半导体中一个杂质原子提供一个空穴, 浓度;少数载流子则是由热激发产生的。 (3) 尽管P 型半导体中空穴浓度远大于自由电子浓度,但 P 型半导体中,掺杂的杂质原子因获得一个价电子而变成带负电的杂 质离子(但不能移动),价 电子离开后的空位变成了空穴,两者的电量相互抵消,杂质半导体从总体上来说仍是电中性的。 同理, N 型半导体中虽然自由电子浓度远大于空穴浓度,但 N 型半导体也是电中性的。 (4) 由于温度每升高10 C ,PN 结的反向饱和电流约增大 1倍,因此温度为 35C 时,反向 饱和电流为 (5) 二极管在 Q 点处的直流电阻为 交流电阻为 式中U D 为二极管两端的直流电压, U D U on ,I D 为二极管上流过的直流电流, U T 为温度的 电压当量,常温下 U T 26mV ,可见 r d R D 。 1- 2 理想二极管组成的电路如题 1- 2图所示。试判断图中二极管是导通还是截止,并确定 各电路的输 出电压。 解 理想二极管导通时的正向压降为零, 截止时的反向电流为零。 本题应首先判断二极管的工 作状 态,再进一步求解输出电压。二极管工作状态的一般判断方法是:断开二极管, 求解其端口 电压;若该电压使二极管正偏, 则导通; 若反偏, 则截止。 当电路中有两只或两只以上二极管时, 可分别应用该方法判断每只二极管的工作状态。 需要注意的是, 当多只二极管的阳极相连 (共阳 极接法)时,阴极电位最低的管子将优先导通;同理,当多只二极管的阴极相连(共阴极接法) 时,阳极电位最高的管子将优先导通。 (a) 断开二极管 D ,阳极电位为12V ,阴极电位为6V ,故导通。输岀电压 U O 12V 。 (b) 断开二极管 D 1、D 2, D 1、D 2为共阴极接法,其阴极电位均为 6V ,而D 1的阳极电位 为9V , D 2的阳极电位为5V ,故D 1优先导通,将 D 2的阴极电位钳制在 7.5V ,D 2因反向偏置而 截止。输岀电压 U O 7.5V 。 N 型半导体中一个杂质原子提 因此 多子浓度约等于所掺入的杂质 P 型半导体本身不带电。因为在

核酸练习题及答案

核酸专题练习 1.下列有关核酸的叙述正确的是( ) A. 核酸的分类是依据所含的含氮碱基是T还是U B. 核酸的基本单位是脱氧核苷酸 C. 鱼体内的遗传物质彻底水解后可得到脱氧核糖、磷酸和含氮碱基 D. 除病毒外,一切生物都具有核酸 2.(济宁市2011)2009年春夏之交,甲型H1N1流感病毒大流行引起世界各国的关注。甲学者将甲型HlNl流感病毒的遗传物质彻底水解后得到了A、B、C三种化合物,乙学者将T2噬菌体的遗传物质彻底水解后得到了A、B、D三种化合物。你认为C、D两种化合物分别指的是() A.尿嘧啶、胸腺嘧啶B.胸腺嘧啶、尿嘧啶 C.核糖、脱氧核糖D.尿嘧啶、腺嘌呤 3. 已知某核酸的碱基构成是A+G/T+C=1.5,则该核酸分子是( ) A、双链DNA B、单链DNA C、双链RNA D单链RNA 4.下列关于核酸的叙述中,正确的是( ) A.DNA和RNA中的五碳糖相同 B.组成DNA与ATP的元素种类不同 C. T2噬苗体的遗传信息贮存在RNA中 D.双链DNA分子中嘌呤数等于嘧啶数 5.在实验室培养蛙受精卵时,在培养液中加入一种小分子“3H化合物”。一段时间后,用放射自显影技术检测发现放射发现放射性物质集中于蛙胚细胞的细胞核和线粒体中。由此判断“3H化合物”可能是( ) A.DNA B.RNA C.胞嘧啶脱氧核苷酸D.尿嘧啶核苷酸 6. 1981年底,我国科学家人工合成了酵母丙氨酸转移核糖核酸,标志着我国具有人工合成核酸的能力。下列各试管通过人工合成产物,叙述不正确的是( ) A.①④,②③产物分别相同 B.①④,②③生理过程不同 C.①②③④的进行都需要模版、原料、能量和酶 D.每个生物都必须要进行①②③④所有生理过程 7. 对下列图式,正确的说法有 ( ) ①图式中的过程可能需要逆转录酶②图式中的过程可能需要RNA聚合酶③图式中共

第三章核酸的化学及结构习题

第三章核酸的化学及结构 一、名词解释 1.DNA的变性:DNA变性是指核酸双螺旋碱基对的氢键断裂,双链变成单链, 从而使核酸的天然构象和性质发生改变。变性时维持双螺旋稳定性的氢键断裂,碱基间的堆积力遭到破坏,但不涉及到其一级结构的改变; 2.DNA复性:变性DNA在适当条件下,使彼此分离的两条链重新由氢键链接而 形成双螺旋结构的过程; 3.分子杂交:将不同来源的DNA经热变性、冷群,使其复性,在复性时,如这 些异源DNA之间在某些区域有相同的序列,则形成杂交DNA分子; 4.增色效应:天然DNA在发生变性时,氢键断裂,双键发生解离,碱基外露, 共轭双键更充分暴露,变性DNA在260nm的紫外吸收值显著增加的现象;& 5.减色效应:在一定条件下,变性核酸可以复性,此时紫外吸收值又回复至原 来水平的现象; 6.回文结构:在真核细胞DNA分子中,脱氧核苷酸的排列在DNA的两条链中 顺读与倒读序列是一样的(即脱氧核苷酸排列顺序相同),脱氧核苷酸以一个假想的轴成为180°旋转对称(即使轴旋转180°两部分结构完全重叠起来)的结构; 7.T m:DNA热变性的过程不是一种“渐变”,而是一种“跃变”过程,即变性 作用不是随温度的升高缓慢发生,而是在一个很狭窄的临界温度范围内突然引起并很快完成,就像固体的结晶物质在其熔点时突然熔化一样。通常把DNA

在热变性过程中紫外吸收度达到最大值的1/2时的温度称为“熔点”或熔解温度(melting temperature),用符号T m表示; 8.Chargaff定律:不同生物种属的DNA碱基组成不同,同一个体不同器官、不 同组织的DNA具有相同的碱基组成,含氨基的碱基(腺嘌呤和胞嘧啶)总数等于含酮基的碱基(鸟嘌呤和胸腺嘧啶)总数,即A+C=T+G;嘌呤的总数等于嘧啶的总数,即A+G=C+T; 9. 碱基配对:腺嘌呤与胸腺嘧啶成对,鸟嘌呤与胞嘧啶成对,A和T之间形成两个氢键,C和G之间形成三个氢键; ~ 10. 内含子:基因的插入序列或基因内的非蛋白质编码; 11. 正超螺旋:盘绕方向与双螺旋方向相同,此种结构使分子内部张力加大,旋得更紧; 12. 负超螺旋:盘绕方向与双螺旋方向相反,使二级结构处于疏松状态,分子内部张力减小,利于DNA复制、转录和基因重组; 13. siRNA:(small interfering RNA干扰小RNA)是含有21~22个单核苷酸长度的双链RNA,通常人工合成的siRNA是碱基对数量为22个左右的双链RNA; 14. miRNA:(microRNA,) 是一类含19~25单核苷酸的单链RNA,在3’端有1~2个碱基长度变化,广泛存于真核生物中,不编码任何蛋白,本身不具有开放阅读框架,具有保守型、时序性和组织特异性; <

管理学思考题及参考答案

管理学思考题及参考答案 第一章 1、什么是管理? 管理:协调工作活动过程(即职能),以便能够有效率和有效果地同别人一起或通过别人实现组织的目标。 2、效率与效果 效率:正确地做事(如何做) 效果:做正确的事(该不该做) 3、管理者三层次 高层管理者、中层管理者、基层管理者 4、管理职能和(或)过程——职能论 计划、组织、控制、领导 5、管理角色——角色论 人际角色:挂名首脑、领导人、联络人 信息角色:监督者、传播者、发言人 决策角色:企业家、混乱驾驭者、资源分配者、谈判者 6、管理技能——技能论 用图表达。 高层管理概念技能最重要,中层管理3种技能都需要且较平衡,基层管理技术技能最重要。 7、组织三特征? 明确的目的 精细的结构 合适的人员 第二章 泰罗的三大实验: 泰罗是科学管理之父。记住3个实验的名称:1、搬运生铁实验,2、铁锹实验,3、高速钢实验 4、吉尔布雷斯夫妇 动作研究之父 管理界中的居里夫妇 5、法约尔的十四原则 法约尔是管理过程理论之父 记住“十四原则”这个名称就可以了。 6、法约尔的“跳板” 图。 7、韦伯理想的官僚行政组织组织理论之父。6维度:劳动分工、权威等级、正式甄选、非个人的、正式规则、职业生涯导向。 8、韦伯的3种权力 超凡的权力 传统的权力 法定的权力。 9、巴纳德的协作系统论 协作意愿 共同目标 信息沟通 10、罗伯特·欧文的人事管理 人事管理之父。职业经理人的先驱 11、福莱特冲突论 管理理论之母 1)利益结合、 2)一方自愿退让、 3)斗争、战胜另一方 4)妥协。 12、霍桑试验 1924-1932年、梅奥 照明试验、继电器试验、大规模访谈、接线试验 13、朱兰的质量观 质量是一种合用性 14、80/20的法则 多数,它们只能造成少许的影响;少数,它们造成主要的、重大的影响。 15、五项修炼 自我超越 改善心智 共同愿景 团队学习 系统思考 第三章 1、管理万能论 管理者对组织的成败负有直接责任。 2、管理象征论 是外部力量,而不是管理,决定成果。 3、何为组织文化 组织成员共有的价值观和信念体系。这一体系在很大程度上决定成员的行为方式。 4、组织文化七维度

习题2核酸分子杂交技术

第二章核酸杂交技术 (一)名词解释 1.原位杂交 2.核酸分子杂交技术 3.探针 4.反向点杂交 5.缺口平移标记法 6.随机引物标记法 7.末端标记法 8.Southern blot杂交 9.荧光原位杂交 10.菌落杂交 (二)选择题 【A型题】 1.DNA链的Tm值主要取决于核酸分子的() A G-C含量 B A-T含量 C A-G含量 D A-C含量 E T-G含量 2.液相杂交是下列哪一种() A Southem印迹杂交 B Northem印迹杂交 C Dot印迹杂交 D Slot印迹杂交 E RPA实验 3.研究得最早的核酸分子杂交种类是() A 菌落杂交 B Southern杂交 C Northern杂交 D 液相杂交 E 原位杂交 4.Southern杂交通常是指() A DNA和RNA杂交 B DNA和DNA杂交 C RNA和RNA杂交 D 蛋白质和蛋白质杂交 E DNA和蛋白质杂交 5.最容易降解的核酸探针是( ) A cDNA探针 B dsDNA探针 C ssDNA探针 D gDNA探针 E: RNA 6.探针基因芯片技术的本质就是() A 核酸分子杂交技术 B 蛋白质分子杂交技术 C 聚合酶链反应技术 D 基因重组技术 E 酶切技术 7.DNA探针的长度通常为( ) A 1000 ~ 2000个碱基 B 500 ~ 1000个碱基 C 400 ~ 500个碱基 D 100 ~ 400个碱基 E. <100个碱基 8.寡核苷酸探针的最大的优势是() A 杂化分子稳定 B 可以区分仅仅一个碱基差别的靶序列 C 易标记 D 易合成 E 易分解 9.在Southern印迹中常用的核酸变性剂是( ) A 甲醛

生物化学题库(含答案).

蛋白质 一、填空R (1)氨基酸的结构通式为H2N-C-COOH 。 (2)组成蛋白质分子的碱性氨基酸有赖氨酸、组氨酸、精氨酸,酸性氨基酸有天冬氨酸、谷氨酸。 (3)氨基酸的等电点pI是指氨基酸所带净电荷为零时溶液的pH值。 (4)蛋白质的常见结构有α-螺旋β-折叠β-转角和无规卷曲。 (5)SDS-PAGE纯化分离蛋白质是根据各种蛋白质分子量大小不同。 (6)氨基酸在等电点时主要以两性离子形式存在,在pH>pI时的溶液中,大部分以__阴_离子形式存在,在pH

核酸的生物合成习题

1、是非题 1.滚筒式复制是环状DNA,一种特殊的单向复制方式。 2.所有核酸的复制过程中,新链的形成都必须遵循碱基配对的原则。 3.双链DNA经过一次复制形成的子DNA分子中,有些不含亲代核苷酸链。 4.原核细胞的每一个染色体只有一个复制起点,而真核细胞的每一个染色体就有许多个复制起点。 5.在细胞中,DNA链延长的速度随细胞的培养条件而改变。6.在细胞生长周期的G1期是双倍体,而在G2期是三倍体。7.所有核酸合成时,新链的延长方向都是从5′→3′。 8.抑制RNA合成酶的抑制剂不影响DNA的合成。 9.在E.coli细胞和真核细胞中都是由DNA聚合酶Ⅰ切除RNA引物。 10.缺失DNA聚合酶Ⅱ的E.coli突变株,可以正常地进行染色体复制和DNA修复合成; 11.在真核细胞中,三种主要RNA的合成都是由一种RNA聚合酶催化。 12.真核细胞中mRNA 5′端都有一个长约200核苷酸组成的PolyA结构。 13.真核细胞中mRNA的前体为hnmRNA。 14.无论是在原核或真核细胞中,大多数mRNA都是多顺反子的转录产物。 15.一段人工合成的多聚尿苷酸可自发形成双螺旋。 2、填空题 1.mRNA前体的加工一般要经过5′端和在3′端三个步骤。 2.识别同一断裂序列的限制性内切酶称为、识别相似断裂序列并产生能通过碱基互补相互缔合粘性末端的限制性内切酶称为。 3.逆转录酶是催化以为模板,合成的一类酶,产物是。 4.欲标记DNA双链5′端,需要酶催化,利用作底物。 5.通过与DNA分子中G-C顺序结合,阻止RNA聚合酶催化的RNA链延伸的抗生素是。 6.核糖体的亚基上含有与mRNA结合的位点。

第1章思考题及参考答案

第一章思考题及参考答案 1. 无多余约束几何不变体系简单组成规则间有何关系? 答:最基本的三角形规则,其间关系可用下图说明: 图a 为三刚片三铰不共线情况。图b 为III 刚片改成链杆,两刚片一铰一杆不共线情况。图c 为I 、II 刚片间的铰改成两链杆(虚铰),两刚片三杆不全部平行、不交于一点的情况。图d 为三个实铰均改成两链杆(虚铰),变成三刚片每两刚片间用一虚铰相连、三虚铰不共线的情况。图e 为将I 、III 看成二元体,减二元体所成的情况。 2.实铰与虚铰有何差别? 答:从瞬间转动效应来说,实铰和虚铰是一样的。但是实铰的转动中心是不变的,而虚铰转动中心为瞬间的链杆交点,产生转动后瞬时转动中心是要变化的,也即“铰”的位置实铰不变,虚铰要发生变化。 3.试举例说明瞬变体系不能作为结构的原因。接近瞬变的体系是否可作为结构? 答:如图所示AC 、CB 与大地三刚片由A 、B 、C 三铰彼此相连,因为三铰共线,体系瞬变。设该 体系受图示荷载P F 作用,体系C 点发生微小位移 δ,AC 、CB 分别转过微小角度α和β。微小位移 后三铰不再共线变成几何不变体系,在变形后的位置体系能平衡外荷P F ,取隔离体如图所 示,则列投影平衡方程可得 210 cos cos 0x F T T βα=?=∑,21P 0 sin sin y F T T F βα=+=∑ 由于位移δ非常小,因此cos cos 1βα≈≈,sin , sin ββαα≈≈,将此代入上式可得 21T T T ≈=,()P P F T F T βαβα +==?∞+, 由此可见,瞬变体系受荷作用后将产生巨大的内力,没有材料可以经受巨大内力而不破坏,因而瞬变体系不能作为结构。由上分析可见,虽三铰不共线,但当体系接近瞬变时,一样将产生巨大内力,因此也不能作为结构使用。 4.平面体系几何组成特征与其静力特征间关系如何? 答:无多余约束几何不变体系?静定结构(仅用平衡条件就能分析受力) 有多余约束几何不变体系?超静定结构(仅用平衡条件不能全部解决受力分析) 瞬变体系?受小的外力作用,瞬时可导致某些杆无穷大的内力 常变体系?除特定外力作用外,不能平衡 5. 系计算自由度有何作用? 答:当W >0时,可确定体系一定可变;当W <0且不可变时,可确定第4章超静定次数;W =0又不能用简单规则分析时,可用第2章零载法分析体系可变性。 6.作平面体系组成分析的基本思路、步骤如何? 答:分析的基本思路是先设法化简,找刚片看能用什么规则分析。

第2章--核酸化学习题

第二章核酸化学 一、名词解释: 1.磷酸二酯键:核酸分子中前一个核苷酸的3`-羟基和下一个核苷酸的5`-磷酸脱水缩合形成的化学键称为磷酸二酯键。 2.碱基互补规律:DNA分子组成中腺嘌呤和胸腺嘧啶配对,鸟嘌呤与胞嘧啶配对,这种配对规律称为碱基互补规律。 3. 退火:加热变性DNA溶液缓慢冷却到适当的低温,则两条互补链可重新配对而恢复到原来的双螺旋结构的现象。 4.DNA的熔解温度:DNA加热变性过程中,紫外吸收值达最大吸收值一半时所对应的温度。5.核酸的变性:在某些理化因素作用下,DNA双螺旋区氢键断裂,空间结构破坏,形成单链无规则线团状态的过程; 核酸的复性:在适宜条件下,变性DNA分开的两条单链可重新形成链间氢键,恢复双螺旋结构,这个过程称为复性。 6.减色效应:复性DNA由于双螺旋的重新形成,在260nm处的紫外吸收值降低的现象。7.增色效应:变性DNA由于碱基对失去重叠,在260nm处的紫外吸收值增加的现象。 二、填空题 1.DNA双螺旋结构模型是 Watson-Crick 于 1953 年提出的。 2.核酸的基本结构单位是核苷酸。 3.脱氧核糖核酸在糖环 C2’位置不带羟基。 4.两类核酸在细胞中的分布不同,DNA主要位于细胞核中,RNA主要位于细胞质中。5.核酸分子中的糖苷键均为β型糖苷键。糖环与碱基之间的连键为糖苷键。核苷酸与核苷酸之间通过磷酸二酯键键连接成多聚体。 6.核酸的特征元素是磷(P)。 7. DNA在水溶解中热变性之后,如果将溶液迅速冷却,则DNA保持单链状态;若使溶液缓慢冷却,则DNA重新形成双链。 8.真核细胞的mRNA帽子由 m7G 组成,其尾部由 polyA 组成。 9.常见的环化核苷酸有 cAPM 和 cGMP 。其作用是起第二信使作用。 10.DNA双螺旋的两股链的顺序是反平行/互补关系。 11.给动物食用3H标记的胸腺嘧啶(T),可使DNA带有放射性,而RNA不带放射性。12.B型DNA双螺旋的螺距为 3.4nm ,每匝螺旋有 10 对碱基,每对碱基的转角是 36o。13.在DNA分子中,G-C含量高时,比重大,Tm(熔解温度)则高,分子比较稳定。14.在退火条件下,互补的单股核苷酸序列将缔结成双链分子。 15.信使(m) RNA分子指导蛋白质合成,转运(t) RNA分子用作蛋白质合成中活化氨

生物化学试题及答案(4)

生物化学试题及答案(4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解(glycolysis)11.糖原累积症 2.糖的有氧氧化12.糖酵解途径 3.磷酸戊糖途径13.血糖(blood sugar) 4.糖异生(glyconoegenesis)14.高血糖(hyperglycemin) 5.糖原的合成与分解15.低血糖(hypoglycemin) 6.三羧酸循环(krebs循环)16.肾糖阈 7.巴斯德效应(Pastuer效应) 17.糖尿病 8.丙酮酸羧化支路18.低血糖休克 9.乳酸循环(coris循环)19.活性葡萄糖 10.三碳途径20.底物循环 二、填空题 21.葡萄糖在体内主要分解代谢途径有、和。 22.糖酵解反应的进行亚细胞定位是在,最终产物为。 23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。两个 底物水平磷酸化反应分别由酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。 26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子A TP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。 29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子A TP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。 32.6—磷酸果糖激酶—1有两个A TP结合位点,一是ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度A TP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。 40.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是。 三、选择题

相关文档
最新文档