对尺规作图不能问题的再探求

对尺规作图不能问题的再探求
对尺规作图不能问题的再探求

对尺规作图不能问题的再探求

摘要:由尺规作图的准则1,准则2 ,定理1,定理2来研究

著名的尺规作图不能问题。

关键词:作图准则;尺规作图;立方倍积;三等分角;化园为

中图分类号:g42 文献标识码:a 文章编

号:1009-0118(2011)-12-0-02

一、预备知识

任何能用尺规来完成的作图,无论它多么复杂,都不外乎归结

为三条公法的有限次的有序结合,因此,要说明准则可以借助解析

几何知识,把每一条作图公法用代数解析式表示出来,就不难得出

结论。

(一)通过两个已知点作直线

在直角坐标系里,设两点p(a,b)q(c,d)则|a|,|b|,|c|,|d|都是

已知线段,过pq的直线方程是

如果用一般式表示,则为ax+by+c=0

式中a=d-b b=a-c c=bc-ad,它们都是仅含|a|,|b|,|c|,|d|

的有理整函数,即系数可从已知线段用有理运算作图求出。

(二)以已知点为圆心,已知长为半径作圆

设已知点坐标为(e,f),已知长为r,则|都是已知线段。以(e,f)

为圆心,r为半径的圆的方程是(x-e)2+(y-f)2=r2

初中数学总复习尺规作图大全

中考总复习---尺规作图专项训练 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。题目二:作已知线段的中点。 已知:如图,线段a . 已知:如图,线段MN. 求作:线段AB,使AB = a . 求作:点O,使MO=NO(即O是MN的中点). 题目三:作已知角的角平分线。题目四:作一个角等于已知角。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 题目五:已知三边作三角形。题目六:已知两边及夹角作三角形。 已知:如图,线段a,b,c. 已知:如图,线段m,n, ∠α. 求作:△ABC,使AB = c,AC = b,BC = a. 求作:△ABC,使∠A=∠α,AB=m,AC=n.题目七:已知两角及夹边作三角形。 已知:如图,∠α,∠β ,线段m .求作:△ABC,使∠A=∠α,∠B=∠ β ,AB=m. 课堂测试

C B A C B A A C B C B 1.如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径. 2.如图,107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论) 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况? 3、过点C 作一条线平行于AB ; 4、过不在同一直线上的三点A 、B 、C 作圆O ; 5、过直线外一点A 作圆O 的切线。 6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案(要求用尺规作图,保留作图痕迹) 7、某公园有一个边长为4米的正三角形花坛,三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1 )按圆形设计,利用图1画出你所设计的圆形花坛示意图; (2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由 . C B A

三大尺规作图问题

引人入胜的千古难题 ——三大尺规作图问题 尺规作图是我们熟知的内容。尺规作图对作图的工具——直尺和圆规的作用有所限制。直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。 公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。于是他们热衷于在尺规限制下探讨几何作图问题。数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。所谓三大几何作图难题就是在这种背景下产生的。 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。 任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。但是,尽管费了很大的气力,却没能把看来容易的事做成。于是,第二个尺规作图难题——三等分任意角问题产生了。 正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。 古希腊三大几何问题既引人入胜,又十分困难。希腊人为解决三大几何问题付出了许多努力,后来许多国家的数学家和数学爱好者也一再向这三大问题发起攻击,可是,这三大问题却在长达2000多年的漫长岁月里悬而未决。问题的妙处在于它们从形式上看非常简单,似乎应该可以用尺规作图来完成,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。

2018中考尺规作图、定义、命题、定理真题

尺规作图、定义、命题、定理 参考答案与试题解析 一.选择题(共18小题) 1.(2018?嘉兴)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是() A. B.C.D. 【分析】根据菱形的判定和作图根据解答即可. 【解答】解:A、作图根据由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确; B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确; C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误; D、由作图可知对角线AC平分对角,可以得出是菱形,正确; 故选:C. 2.(2018?襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为() A.16cm B.19cm C.22cm D.25cm 【分析】利用线段的垂直平分线的性质即可解决问题. 【解答】解:∵DE垂直平分线段AC, ∴DA=DC,AE=EC=6cm,

∵AB+AD+BD=13cm, ∴AB+BD+DC=13cm, ∴△ABC的周长=AB+BD+BC+AC=13+6=19cm, 故选:B. 3.(2018?湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点; ②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点; ③连结OG. 问:OG的长是多少? 大臣给出的正确答案应是() A.r B.(1+)r C.(1+)r D.r 【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题; 【解答】解:如图连接CD,AC,DG,AG. ∵AD是⊙O直径, ∴∠ACD=90°, 在Rt△ACD中,AD=2r,∠DAC=30°,

(完整)初一尺规作图题目练习

初一作图练习 班别:学号:姓名:一、尺规作图例题 题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB,使AB = a . 作法: (1)作射线AP; (2)在射线AP上截取AB=a . 则线段AB就是所求作的图形。 题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O,使MO=NO(即O是MN的中点). 作法:(1)分别以M、N为圆心,大于1 2 MN 的相同线段为半径画弧,两弧相交于P,Q; (2)连接PQ交MN于O. 则点O就是所求作的MN的中点。 (试问:PQ与MN有何关系?) (怎样作线段的垂直平分线?) 题目三:作已知角的角平分线。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。作法: (1)以O为圆心,任意长度为半径画弧, 分别交OA,OB于M,N; (2)分别以M、N为圆心,大于1 2 MN 的相同线段为半径画弧,两弧交∠AOB内于P;作射线OP。 则射线OP就是∠AOB的角平分线。 题目四:作一个角等于已知角。

二、作图练习 1、如图,已知线段a,b,c,用圆规和直尺画一条线段,使它等于a+b(保留作图痕 迹,不要求写作法) 2、如图,已知线段a,b,c,用圆规和直尺画一条线段,使它等于a+c-2b(保留作图 痕迹,不要求写作法)

3、如图,已知∠α, (1)画一个∠AOB=∠α (2)画∠AOB的补角 (3)画∠AOB的角平分线OC (4)若∠AOC=60°35′,求∠AOB的度数 α 4、如图,一只蚂蚁从O点出发,沿北偏东45°的方向爬行2.5cm,碰到障碍物(记做B)后,折向北偏西60°的方向爬行3cm(此时的位置记作C)。 (1)画出蚂蚁爬行路线; (2)用量角器量出∠OBC的度数。(保留整数)

初中数学尺规作图专题训练

初中数学尺规作图专题训练 一、选择题 1.已知的三边长分别为4、4、6,在所在平面内画一条直线,将△ABC △ABC △ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A. 3 B. 4 C. 5 D. 6 2.如图,在中,,,,以点C 为圆心,CB 长为半径作弧, △ABC BC =4交AB 于点D ;再分别以点B 和点D 为圆心,大于的长为半径作弧,两弧相交于 12BD 点E ,作射线CE 交AB 于点F ,则AF 的长为( ) A. 5 B. 6 C. 7 D. 8 3.已知,作图.∠AOB 步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交OA 、OB 于点P 、Q ; 步骤2:过点M 作PQ 的垂线交于点C ;^P Q 步骤3:画射线OC . 则下列判断:;;;平分,其中正确①P C =C Q ②MC ∥OA ③OP =PQ ④OC ∠AOB 的个数为( ) A. 1 B. 2 C. 3 D. 44.如图,中,,为的外角,观察图中尺规作图的痕迹,则下列 △ABC AB >AC ∠CAD △ABC 结论错误的是( ) A. ∠DAE =∠B B. ∠EAC =∠C

C. AE ∥BC D. ∠DAE =∠EAC 5.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( ) A. B. C. D. 6.如图,已知线段AB ,分别以A 、B 为圆心,大于为半径作弧,连接弧的交点得到直 12AB 线l ,在直线l 上取一点C ,使得,延长AC 至M ,求的度数为( )∠BCM A. B. C. D. 7.如图,在中,分别以点A 和点C 为圆心,大于长为半径画弧,两弧相交于点 △ABC 12AC M ,N ,作直线MN 分别交BC ,AC 于点D ,若,的周长为13cm ,则E .AE =3cm △ABD △的周长为( ) ABC A. 16cm B. 19cm C. 22cm D. 25cm

专题:五种基本作图的详细作图过程

尺规作图的基本步骤和作图语言 一、作线段等于已知线段 已知:线段a 求作:线段AB ,使AB =a 作法:1、作射线AC 2、在射线AC 上截取AB =a ,则线段AB 就是所要求作的线段 二、作角等于已知角 已知:∠AOB 求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB. 作法: (1)作射线O ′A ′. (2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D. (3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于点C ′. (4)以点C ′为圆心,以CD 长为半径画弧,交前面的弧于点D ′. (5)过点D ′作射线O ′B ′.∠A ′O ′B 三、作角的平分线 已知:∠AOB, 求作:∠AOB 内部射线OC,使:∠AOC=∠BOC, 作法:(1)在OA 和OB 上,分别截取OD 、OE ,使OD=OE . (2)分别以D 、E 为圆心,大于的 DE 2 1 长为半径作弧,在∠AOB 内,两弧交于点C . (3)作射线OC .OC 就是所求作的射线. 四、作线段的垂直平分线(中垂线)或中点 已知:线段AB 求作:线段AB 的垂直平分线 作法: (1)分别以A 、B 为圆心,以大于AB 的一半为半 径在AB 两侧画弧,分别相交于E 、F 两点 (2)经过E 、F ,作直线EF (作直线EF 交AB 于 点O )直线EF 就是所求作的垂直平分线 (点O 就是所求作的中点) A O

五、过直线外一点作直线的垂线. (1)已知点在直线外 已知:直线a 、及直线a 外一点A.(画出直线a 、点A) 求作:直线a 的垂线直线b ,使得直线b 经过点A. 作法: (1)以点A 为圆心,以适当长为半径画弧,交直线a 于点 C 、D. (2)以点C 为圆心,以AD 长为半径在直线另一侧画弧.(3)以点D 为圆心,以AD 长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A 、B 作直线AB. 直线AB 就是所画的垂线b.(如图) (2)已知点在直线上 已知:直线a 、及直线a 上一点A. 求作:直线a 的垂线直线b ,使得直线b 经过点作法: (1) 以A 为圆心,任一线段的长为半径画弧, 交a 于C 、B 两点 (2) 点C 为圆心,以大于CB (3) 以点B 为圆心,以同样的长为半径画弧, 两弧的交点分别记为M (4) 经过A 、M ,作直线AM 直线AM 常用的作图语言: (1)过点×、×作线段或射线、直线; (2)连结两点××; (3)在线段××或射线××上截取××=××; (4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×; (5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×; (6)延长××到点×,使××=××。 二:作图题说明 在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。 (1)作线段××=××; (2)作∠×××=∠×××; (3)作××(射线)平分∠×××; (4)过点×作××⊥××,垂足为点×; (5)作线段××的垂直平分线××

尺规作图题专题复习

320国道 . 5 题 . 学习必备 欢迎下载 一、尺规基本作图归纳 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作角的平分线; 4、作线段的中垂线; 5、已知三边,两边和其夹角或两角和其夹边作三角形; 6、已知底边和底边上的高作等腰三角形; 7、过直线上一点作直线的垂线; 8、过直线外一点作直线的垂线. 题 1、如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定 这个圆形零件的半径. 2、 如图:107 国道 OA 和 320 国道 OB 在某市相交于点 O,在∠AOB 的内部有工厂 C 和 D,现要修建一个货站 P ,使 P 到 OA 、OB 的距离相等且 PC=PD ,用尺规作出货站 P 的位置(不写作法,保留作图痕迹,写出结论) A D A 107国道 C C B O B 3、 三条公路两两相交,交点分别为 A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加 油站地址有几种情况? B A A O A C B C 4、 过点 C 作一条线平行于 AB ; 5、过不在同一直线上的三点 A 、B 、C 作圆 O ; 6、过直线外一点 A 作圆 O 的切线。 二、几何画图:1 只利用一把有刻度的直尺,用度量的方法,按下列要求画图: 1)画等腰三角形 ABC 的对称轴: 2)画∠AOB 的对称轴 2 有一个未知圆心的圆形工件.现只允许用一块三角板(注:不允许用三角板上的刻度)画出该工件表面上的一条直径 并定出圆心.要求在图上保留画图痕迹,写出画法. 3 某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计至少三种不同 的方案,分别画在下面正方形图形上(用尺规作图或画图均可,但要尽可能准确些、美观些) 4 某村一块若干亩土地的图形是ΔABC ,现决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供至少两 种分法。要求:画出图形,并简要说明分法。 5.如图所示,在正方形网格上有一个三角形 ABC.①作△ABC 关于直线 MN 的对称图形(不写作法); ②若网格上的最小正方形的边长为 △1.求 ABC 的面积. M P A A 甲 乙 丙 丁 C C B D Q B C A B 6 题 7 题 N 6 如图,方格纸中每个小方格都是边长为 1 的正方形,我们把以格点连线为边的多边形称为“格点多边形” 如图(一) 中四边形 ABCD 就是一个“格点四边形”. ①求图中四边形 ABCD 的面积;②在图中方格纸上画一个格点△EFG ,使△EFG 的面积等于四边形 ABCD 的面积且为

初中最基本的尺规作图总结

尺规作图 一、理解“尺规作图”的含义 1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的. 2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差. 二、熟练掌握尺规作图题的规范语言 1.用直尺作图的几何语言: ①过点×、点×作直线××;或作直线××;或作射线××; ②连结两点××;或连结××; ③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; 2.用圆规作图的几何语言: ①在××上截取××=××; ②以点×为圆心,××的长为半径作圆(或弧); ③以点×为圆心,××的长为半径作弧,交××于点×; ④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤 尺规作图题的步骤: 1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; 2.求作:能根据题目写出要求作出的图形及此图形应满足的条件; 3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要. 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线;

尺规作图学习知识归纳

考点名称:尺规作图 尺规作图:是指限定用没有刻度的直尺和圆规来完成的画图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。 其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。 尺规作图的中基本作图: 作一条线段等于已知线段; 作一个角等于已知角; 作线段的垂直平分线; 作已知角的角平分线; 过一点作已知直线的垂线。 还有: 已知一角、一边做等腰三角形 已知两角、一边做三角形 已知一角、两边做三角形 依据公理: 还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。注意: 保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。

尺规作图方法: 任何尺规作图的步骤均可分解为以下五种方法: ·通过两个已知点可作一直线。 ·已知圆心和半径可作一个圆。 ·若两已知直线相交,可求其交点。 ·若已知直线和一已知圆相交,可求其交点。 ·若两已知圆相交,可求其交点。 【学习目标】 1.了解什么是尺规作图. 2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由. 4.学会使用精练、准确的作图语言叙述画图过程. 5.学会利用基本作图画三角形等较简单的图形. 6.通过画图认识图形的本质,体会图形的内在美. 【基础知识精讲】 1.尺规作图: 限定只用直尺和圆规来完成的画图,称为尺规作图. 注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.

尺规作图典型例题

尺规作图典型例题

————————————————————————————————作者:————————————————————————————————日期:

典型例题 例1 、求作等腰直角三角形,使它的斜边等于已知线段 已知:线段 求作:,使∠A=90°,AB=AC,BC=分析:由于等腰直角三角形比较特殊,内角依次为45°,45°,90°,故有如下几种作法: 作法一:1、作线段BC= 2、分别过点B、C作BD、CE垂直于BC 3、分别作∠DBC、∠ECB的平分线,交于A点 即为所求 作法二:作线段BC= 2、作∠MBC=45° 3、作∠NCB=∠MBC,CN与BM交于A点 即为所求 作法三:1、作线段BC=

2、作∠MBC=45° 3、过C作CE⊥BM于A 即为所求 作法四:1、作线段BC= 2、作BC的中垂线,交BC于O点 3、在OM上截取OA=OB,连结AB,AC 即为所求 说明:几种作法中都是以五种基本作图为基础, 不要求写出基本作图的作法和证明。 例2、已知三角形的两边和其中一边上的中线长,求作这个三角形. 已知:线段a、b为两边,m为边长b的中线 求作:,使BC=a,AC=b,且AM=MC,BM=m. 分析:先画草图,假定为所求的三角形,则有BC=a,AC=b,设M为AC边的中点,则MB=m,而,故的三边为已知作出,然后再作出 . 作法:(1)作,使BC=a,,MB=m; (2)延长线段CM至A,使MA=CM;

(3)连接BA,则为所求作的三角形. 小结:本题的突破口是找与所求的的关系.由于的三边已知,故 即可顺利作出. 例3、如图,A、B、C三点表示三个村庄,为解决村民就近入学问题,计划新建一所小学,要使学校到这三个村庄的距离相等,请你在图中用尺规确定学校的位置P. 分析:分两步:先作到A、B两点距离相等的点的图形,再作到B、C两点等距离的点的图形,两图形的交点,这就是所求作的点. 作法:(1)连结AB,做线段AB的垂直平分线DE; (2)连结BC,作线段BC的垂直平分线FG,交DE与点P. 则点P为所求作的学校位置. 小结:由于不能直接确定到三点距离相等的点的位置,可以分解为先求到A,B相等的所有点,再求作到B,C相等的所有点,交点即所求. 扩展资料 三大几何作图问题 三大几何作图问题是:倍立方、化圆为方和三等分任意角。由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究。早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问

2018中考考点专题训练考点32:尺规作图

2018中考数学试题分类汇编:考点32 尺规作图一.选择题(共13小题) 1.(2018?襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为() A.16cm B.19cm C.22cm D.25cm 【分析】利用线段的垂直平分线的性质即可解决问题. 【解答】解:∵DE垂直平分线段AC, ∴DA=DC,AE=EC=6cm, ∵AB+AD+BD=13cm, ∴AB+BD+DC=13cm, ∴△ABC的周长=AB+BD+BC+AC=13+6=19cm, 故选:B. 2.(2018?河北)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:

则正确的配对是() A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案. 【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图: 则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ. 故选:D. 3.(2018?河南)如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交 边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为() A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2) 【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即 可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2). 【解答】解:∵?AOBC的顶点O(0,0),A(﹣1,2),

尺规作图三大几何难题教学提纲

尺规作图三大几何难 题

安溪六中校本课程之数学探秘 尺规作图三大几何问题 一、教学目标 1.让学生了解尺规作图三大几何问题如何产生的? 2.经历探索尺规作图三大几何问题如何解决的过程,进一步体会数学方法思想。 3.学生通过自主探究、合作交流体会尺规作图三大几何问题有什么教育价值? 二、问题背景 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。另外两个著名问题是三等分任意角和化圆为方问题。古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是

“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。然而,一旦改变了作图的条件,问题则就会变成另外的样子。比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。数学家们在这些问题上又演绎出很多故事。直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍。 2.化圆为方,即作一正方形,使其与一给定的圆面积相等。 3.三等分角,即分一个给定的任意角为三个相等的部分。 三、问题探秘 1.立方倍积 关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟

尺规作图(习题及答案)

尺规作图(习题) 巩固练习 1.下列作图语言描述准确的是() A.延长线段AB至点C,使AB=AC B.过∠AOB内部一点P,作∠AOB的平分线 C.以点O为圆心,AC长为半径作弧 D.在射线OA上截取OB=a,BC=b,则有OC=a+b 2.已知边长作等边三角形. 已知:线段a. 求作:等边△ABC,使△ABC的三边长均为a. a 作法:(1)作线段_____________; (2)分别以______,______为圆心,_______为半径作弧,两弧交于________; (3)连接________,_________. ____________________. 3.按下列要求作图,保留作图痕迹,不写作法. 已知:如图,∠ABC. 求作:∠DEF,使∠DEF=3 2 ∠ABC. A 4.已知∠AOB=45°,点P在边OA上.请以点P为顶点,射线P A为一边作∠ APC=∠O(作出所有可能的图形).

5.如图,分别过A,B两个加油站的公路l1,l2相交于点O,现准备在∠AOB 内建一个油库,要求油库的位置点P满足在两个加油站的连线上,且到两条公路l1,l2的距离相等.请用尺规作图作出点P(保留作图痕迹). 6.请画出草图,并根据图形完成下列各题: (1)在△ABC中,AD平分∠BAC交BC于点D,过点B作BF∥AD交CA 的延长线于点F,则AF和AB的数量关系是_________________.

(2)在△ABC中,点D是BC上的一点,过D作DE∥AC交AB于点E,DF∥AB交AC于点F,则∠EDF与∠A的数量关系是__________________. (3)已知,在锐角△ABC中,AD⊥BC于点D,CE⊥AB于点E,若AD与CE所夹的锐角是58°,则∠ABC=______. (4)已知,在锐角△ABC中,∠BAC=50°,AD平分∠BAC交BC于点D,BE⊥AC于点E,若∠EBC=20°,则∠ADC= _______. 思考小结 阅读材料: 尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.古希腊的安那萨哥拉斯首先提出作图要有次数限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他相关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,所以他很自然地想到要有限次地使用尺规解决问题.

(923)尺规作图做角的和差倍分专项练习30题(有答案)ok

尺规作图作角的和差倍分专项练习30题(有答案)1.已知∠1和∠2如下图所示,用尺规作图画出∠AOB=∠1+∠2,保留作图痕 迹. 2.用尺规作图.如图,以点B为顶点,射线BA为一边,在∠ABC外再作一个角,使其等于∠ABC. 3.作一个角,使它等于已知角,并在已知角中作出角分线. 4.画图: (1)已知线段a、b(a>b),用直尺和圆规画线段等于a+b; (2)已知∠1和∠2,用量角器画一个角,使它等于∠1﹣∠2. 5.已知∠α和∠β,(如图),求作∠BAC,使∠BAC=∠α+∠β. 注:保留作图痕迹,不要求写画法,但要写出结论.

6.已知∠α,求作一个角∠β,使得∠β=∠α,并作∠β的角平分线. 7.如图,已知∠1,∠2,画出一个角,使它等于3∠1﹣∠2. 8.已知:∠AOB,点P在OA上,请以P为顶点,PA为一边作∠APC=∠O.(不写作法,但必须保留作图痕迹) 9.已知∠α、∠β,求作:∠AOB,使∠AOB=∠α+∠β(保留作图痕迹). 10.尺规作图:(不写作法,保留作图痕迹) 已知:∠α、∠β,求作:∠ABC,使∠ABC=∠α+∠β. 11.如图所示,已知∠α和∠β(∠α>∠β),求作:(1)∠α+∠β;(2)∠α﹣∠β.

12.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB. 13.已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α. (要求:不写作法,但要保留作图痕迹,且写出结论) 14.如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使∠EBC=∠A(不写作法,保留作图痕迹),并判断EB与AD是否平行,试说明理由. 15.如图,已知∠AOB. (1)画∠AOB的平分线OC; (2)在OC上画一点D,使OD=2cm; (3)过点D画DE⊥OA,垂足为E. 16.作一个角使它等于已知∠ABC(不写作法,保留作图痕迹)

尺规作图的定义

尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB,使AB = a . 作法: ①作射线AP; ②在射线AP上截取AB=a . 则线段AB就是所求作的图形。 题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O,使MO=NO(即O是MN的中点). 作法: ①分别以M、N为圆心,大于1/2MN的相同 线段为半径画弧,两弧相交于P,Q; ②连接PQ交MN于O. 则点O就是所求作的MN的中点。 (试问:PQ与MN有何关系?) 题目三:作已知角的角平分线。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 作法: ①以O为圆心,任意长度为半径画弧, 分别交OA,OB于M,N; ②分别以M、N为圆心,大于1/2MN 的相同线段为半径画弧,两弧交∠AOB内于P; ③作射线OP。则射线OP就是∠AOB的角平分线。 题目四:已知三边作三角形。 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法: ①作线段AB = c; ②以A为圆心b为半径作弧,以B为圆心 a为半径作弧与前弧相交于C; ③连接AC,BC。 则△ABC就是所求作的三角形。

题目五:已知两边及夹角作三角形。 已知:如图,线段m,n, ∠α. 求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法: ①作∠A=∠α; ②在AB上截取AB=m ,AC=n; ③连接BC。 则△ABC就是所求作的三角形。 题目六:已知两角及夹边作三角形。 已知:如图,∠α,∠β,线段m . 求作:△ABC,使∠A=∠α,∠B=∠β,AB=m. 作法: ①作线段AB=m; ②在AB的同旁作∠A=∠α,作∠B=∠β, ∠A与∠B的另一边相交于C。 则△ABC就是所求作的图形(三角形)。

尺规作图类型题目以及全等三角形的几个证明

尺规作图类型讲解 题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB,使AB = a . 作法: (1)作射线AP; (2)在射线AP上截取AB=a . 则线段AB就是所求作的图形。 题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O,使MO=NO(即O是MN的中点). 作法: (1)分别以M、N为圆心,大于 的相同线段为半径画弧, 两弧相交于P,Q; (2)连接PQ交MN于O. 则点O就是所求作的MN的中点。 (试问:PQ与MN有何关系?) (怎样作线段的垂直平分线?) 题目三:作已知角的角平分线。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。作法: (1)以O为圆心,任意长度为半径画弧, 分别交OA,OB于M,N; (2)分别以M、N为圆心,大于 的相同线段为半径画弧,两弧交∠AOB内于P; (3)作射线OP。 则射线OP就是∠AOB的角平分线。 题目四:作一个角等于已知角。 (请自己写出“已知”“求作”并作出图形,不写作法) 题目五:已知三边作三角形。 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法: (1)作线段AB = c; (2)以A为圆心b为半径作弧, 以B为圆心a为半径作弧与 前弧相交于C; (3)连接AC,BC。

则△ABC就是所求作的三角形。 题目六:已知两边及夹角作三角形。 已知:如图,线段m,n, ∠α. 求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法: (1)作∠A=∠α; (2)在AB上截取AB=m ,AC=n; (3)连接BC。 则△ABC就是所求作的三角形。 题目七:已知两角及夹边作三角形。 已知:如图,∠α,∠β,线段m . 求作:△ABC,使∠A=∠α,∠B=∠β,AB=m. 作法: (1)作线段AB=m; (2)在AB的同旁 作∠A=∠α,作∠B=∠β, ∠A与∠B的另一边相交于C。 则△ABC就是所求作的图形(三角形)。

初中数学-尺规作图专项训练

……○…………装…………○…○…________姓名:___________班______ ……○…………装…………○…○…注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上 第I 卷(选择题) 一、选择题 1.如图,已知线段a 、b(a >b),画一条线段AD ,使它等于2a-b ,正确的画法是( ) A . B . C . D . 2.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于1 2MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2x ,y+1),则y 关于x 的函数关系为( ) A .y=x B .y=-2x-1 C .y=2x-1 D .y=1-2x 3.给出下列关于三角形的条件:①已知三边;②已知两边及其夹角;③已知两角及其夹边;④已知两边及其中一边的对角.利用尺规作图,能作出唯一的三角形的条件是( ) A .①②③ B .①②④ C .②③④ D .①③④ 4.尺规的作图是指( ) A .用直尺规范作图 B .用刻度尺和圆规作图 C .用没有刻度的直尺和圆规作图 D .直尺和圆规是作图工具 5.如图,用尺规作出∠OBF=∠AOB ,作图痕迹MN ?是( ) A .以点 B 为圆心,OD 为半径的圆

……○……………装…………………订………线……学校:___________姓名:_班级:__________……○……………装…………………订………线…… 6.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB 的依据是( ) A .(SAS) B .(SSS) C .(ASA) D .(AAS) 7.如图,矩形ABCD 中,AD=3AB ,O 为AD 中点,AD ?是半圆.甲、乙两人想在AD ?上取一点P ,使得△PBC 的面积等于矩形ABCD 的面积其作法如下: (甲) 延长BO 交AD ?于P 点,则P 即为所求; (乙) 以A 为圆心,AB 长为半径画弧,交AD ?于P 点,则P 即为所求. 对于甲、乙两人的作法,下列判断何者正确?( ) A .两人皆正确 B .两人皆错误 C .甲正确,乙错误 D .甲错误,乙正确 8.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下: 作法: (1)如图所示,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; (2)画一条射线O'A',以点O'为圆心,OC 长为半径画弧,交O'A'于点C'; (3)以点C'为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D'; (4)过点D'画射线O'B',则∠A'O'B'=∠AOB 对于“想一想”中的问题,下列回答正确的是( ) A .根据“边边边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AO B B .根据“边角边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB C .根据“角边角”可知,△C'O'D'≌△CO D ,所以∠A'O'B'=∠AOB D .根据“角角边”可知,△C'O'D'≌△COD ,所以∠A'O'B'=∠AOB 9.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( ) A .边边边 B .边角边 C .角边角 D .角角边

初中尺规作图详细讲解含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习 惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图 有如下三条: ⑴经过两已知点可以画一条直线; ⑵已知圆心和半径可以作一圆; ⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴三等分角问题:三等分一个任意角; ⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、

相关文档
最新文档