人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)
人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值.

AD

⌒ PA PC PB

P A

B

C

D

【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦

CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P (

A.到CD 的距离保持不变

B.位置不变

C.等分

D.随C 点的移动而移动

DB

A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂

线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角.

B

【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB

⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;

(2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB

⌒ 的长度;

(3)求证:CD 2+3CH 2是定值.

B

O

A

C

E H

G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

(1)求点C的坐标;

(2)连接MG,BC,求证:MG∥BC;

OF

(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否

PF

发生变化?若不变,求出比值;若变化,说明变化规律.

(图1)(图2)

【例6】如图,已知等边△ABC内接于半径为1的圆O,P是⊙O上的任意一点.求证:PA2+PB2+PC2为定值.

A

【能力训练】

1.如图,点A ,B 是双曲线上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则x

y 3

=

_______.

=+21S S

A

B

C

D

E

F

(第1题图)

(第3题图)

(第4题图)

2.从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.

3.如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.

4.如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )

A.30°

B.40°

C.50°

D.60°

5.如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作⊥AB ,,且

A A 'A

B B B ⊥'=AP ,=BP .连接,当点P 从点A 移动到点B 时,的中点的位置( )

A A '

B B 'B A ''B A ''A .在平分AB 的某直线上移动

B.在垂直AB 的某直线上移动

C.在弧AMB 上移动

D.保持固定不移动

A

B'

(第5题图) (第6题图)

6.如图,A ,B 是函数图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构x

k

y

成正方形和长方形.若正方形OCAD 的面积为6,则长方形OEBF 的面积是( )A.3

B.6

C.9

D.12

7.(1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况.在六种不同情况下,PA ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来.请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.

①①

(B )

B

(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.

8.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线上时停止旋转.旋转过程x y =中,AB 边交直线于点M ,BC 边交x 轴于点N .x y =(1)求OA 在旋转过程中所扫过的面积;

(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;

(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.

9.如图,AB 是半圆的直径,AC ⊥AB ,AC =AB .在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .

(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.

(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等.指出这两条相等的线段,并予证明.

(第9题图) (第10题图) (第11题图)

10.如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O 的半径为R .求证:(1)是定值;

2222DK CK BK AK +++(2)是定值.

2222DA CD BC AB +++

11.如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:

的值为定值.

DP

CP BP

AP ++1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心.当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2.已知A ,B ,C ,D ,E 是反比例函数(x >0)图象上五个整数点(横、纵坐标均为整数),分x

y 16

=

别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示)

.

3.如图,将六边形ABCDEF沿直线GH折叠,使点A,B落在六边形ABCDEF的内部,记

∠C+∠D+∠E+∠F=α,则下列结论一定正确的是()

A. ∠1+∠2=900°-2α

B. ∠1+∠2=1080°-2α

1

C. ∠1+∠2=720°-α

D. ∠1+∠2=360°-α

2

(第3题图)(第4题图)

4.如图,正△ABO的高等于⊙O的半径,⊙O在AB上滚动,切点为T,⊙O交AO,BO于M,N,则弧MTN()

A.在0°到30°变化

B.在30°到60°变化

C.保持30°不变

D.保持60°不变

5.如图,AB是⊙O的直径,且AB=10,弦MN的长为8.若MN的两端在圆上滑动时,始终与AB相交,记点A,B到MN的距离分别为h1,h2,则∣h1-h2∣等于()

A.5

B.6

C.7

D.8

(第5题图)(第6题图)

6.如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A,C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B,D.

(1)求点A的坐标(用m表示)

(2)求抛物线的解析式;

(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F.试证明:FC(AC+EC)为定值.

7.如图,已知等边△ABC内接于圆,在劣弧AB上取异于A,B的点M.设直线AC与BM相交于K,直线CB与AM相交于点N.证明线段AK和BN的乘积与M点的选择无关.

(第7题图) (第8题图)

8.如图,设H 是等腰三角形ABC 两条高的交点,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.

9.如图,在平面直角坐标系xOy 中,抛物线与x 轴的交点为点A ,与y 轴的交点109

4

1812--=

x x y 为点B .过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动.点P 停止运动时,点Q 也同时停止运动.线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒).(1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;

(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由;2

9

0<

(4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程.

(第9题图) (第10题图)

10.已知抛物线C 1:,点F (1,1).12

12

1+-=

x x y (1)求抛物线C 1的顶点坐标;

(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:

.211=+BF

AF (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点

Q (x Q ,y Q ),试判断

是否成立?请说明理由.21

1=+QF

PF

11.已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG .求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变.

参考答案例1

延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故

例2 B 提示:连结AC ,BC ,可以证明P 为的中点.

P A P C C E P C P E

P B P B P B

++=== A P B 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =

∠SOT 为定角. 例1

2

4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是

平行四边形. (2)DG 不变.DE =OC =OA =3 .DG =DE =×3=1. (3)设CD =x ,延长OG 交CD

131

3于N ,则CN =DN =

x , , .∴,而ON =CH ,∴12229C

E x =-2214D N x =22394O N x =-3

2

.故CD 2+3CH 2=x 2+3(4-x 2)=x 2+12-x 2为定值.例5 ⑴C (0,4) ⑵先求得22143C H x =-

1

3

AM =CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得

,O G =,,又

OG AO MN AN =323

8

OG OM OC OB ==∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM ?OP ,OP =

.动点F 在⊙M 的圆周上运动时,从特殊位置探求16

3

的值.当F 与点A 重合时,

;当点F 与点B 重合时,OF

PF

2316523OF AO PF AP ===-;当点F 不与点A ,B 重合时,连接83

165

83OF OB PF PB ===+OF 、PF 、MF ,∴DM 2=MO ?MP ,∴FM 2=MO ?MP ,即,又FM MP

OM FM

=

∠OMP =∠FMP ,∴△MFO ∽△MPF ,,故

的比值不35OF MO PF MF ==OF

PF

变,比值

为.例6 ∠BPC =120°,在△BPC 中,由余弦定理得3

5BC 2=PB 2+PC 2-2PB ?PC =BC 2,又由上托勒密定理得BC ?PA +PC ?AB ,而AB =BC =AC ,∴PA =PB +PC ,从而

PA 2+ PB 2+ PC 2=

(PB +PC )2+ PB 2+ PC 2=2 (PB 2+PC 2+PB ?PC )=2BC 2=2×

=6

.故PA 2+PB

2+PC 22

1.4

提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4. 2.提

示:1+3+5=9是等边三角形的高.

3.r 2

提示:先考查OB 与OA 垂直的情形.4.D

提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D

提示:A′B′的中点均在⊙O 的上半圆的中点处.

6.B

提示:S 正方形OCAD =OD ?OC =

=6,∴S OEBF =OE ?OF =x B ?y B =6. 7.⑴略

⑵当点P 在⊙O 内时,过P 作直径

A A x y k = k =CD ,则PE ?PF =PD ?PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE ?PF 为定值.结论:过不22OP r -在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴

⑵22.5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△

2

π

OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得

MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90

⑵BE =BF

提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC .

10.⑴作

OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=,又

()()22

1122BK DK CK AK ????

-++????????AK ?CK =BK ?DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值.

⑵作直径DE ,连接

AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设

正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有

CP ?a =AP ?a +BP ,DP ?a =BP ?a +AP ,两式相加并整理得(CP +DP )a =(AP +BP )(a ),

从而

为定值.

1AP BP

CP DP

+=-+

1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的

三条高,AB =AC 知

∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC

DC HD

=,即AD ?HD =DC 2=

BC 2=1.∴S △ABC ?S △HBC =

1

4

1122

BC AD BC HD ?????? ? ???=1.当

∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比

例函数

y =

(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为16

x

1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是

=5π-10+8π-16=13π-26.

2221111112211122222444424242πππ????????

?-??+?-??+?-?? ? ? ???????????3.B

提示:如图,设FA 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点

P ′.由对称性可知

∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延

长交EB 于G .由垂径定理,得OD =3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴

.∴E G =2OD =6,∴=E G =6. 6.⑴A (3-m ,0)

1

2

OD FO GE FG ==12h h AF BE -=-⑵y =x 2-2x +1 ⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为

(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN =3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴

,即,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴,即QM PM EC PC =()2

112x x EC --=QN BN

FC BC

=,得FC =.又AC =4,∴FC (AC +EC )= =8为定值. ()2

4134x x FC ---=4

1

x +()4

4211x x +-???

?+7.提示:易证△ABK ∽△BNA ,故AK ?BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC ?S △HBC =

BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC ?S △1

16

HBC 保持不变.

9.⑴A (18,0),B (0,-10),顶点坐标为(4,-

) ⑵若四边形PQCA 为平行四边98

9

形,由于QC ∥PA ,故只要QC =PA 即可,而PA =18-4t ,CQ =t ,故18-4t =t ,得t =. ⑶设

185

点P 运动t s ,则OP =4t ,CQ =t ,0<t <4.5.说明P 在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故

.同理QC ∥AF ,故,即,144QD QC t DP OP t ===14QC CE AF EA ==1

4

t AF =∴AF =4t =OP .∴PF =PA +AF =PA +OP =18.又点Q 到直线PF 的距离d =10,∴S △

PQF =

?PF ?d =×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),

121

2

F (18+4t ,0),Q (8-t ,-10),0≤t ≤4.5.构造直角三角形后易得PQ 2=(4t -8+t )

2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若

FP =FQ ,即182=(5t +10)2+100,故

25(t +2)2=224,(t +2)2=

.∵2≤t +2≤6.5,∴t +2.∴t = 2. ②若244

25

=

QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4.5的t 满足. ③若

PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=224,又

0≤5t ≤22.5,∴-8≤5t -8≤14.5,14.52=<224.故没有t (0≤t ≤4.5)满足此方程.综上所述,

2

29841

24??= ???

当t =

2时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,). ⑵略 ⑶作PM ⊥AB 1

2

于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )

2+(1-x

P )2=1-2y

P +y P

2+1-2x

P +x P

2,又∵点

P 在抛物线上,

∴y P =

x P 2

-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易12

证△PMF ∽△QNF ,则

,∴,即,∴=2. 11.先PM QN PF QF =11Q P y y PF QF --=11PF QF PF QF --=11

PF QF

+从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB 的距离为

AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过1

2

C ,E ,G 分别作直线AB 的垂线CH ,EM ,G N ,垂足分别是H ,M ,N .容易证明△AEM ≌△ACH ,△B G N ≌△BCH .从而有AM =CH =BN ,EM =AH ,G N =BH .这样,线段AB 的中点O 也是线段MN 的中点,连接OP ,则OP 是梯形EMN G 的中位线,从而OP ⊥AB ,OP =(EM +G N )= (AH +BH )=1212

AB .∴无论点C 在AB 同一侧的位置如何,E G 中点P 的位置不变.1

2

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

人教版九年级数学下册竞赛专题09 特殊与一般.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】 专题09 特殊与一般 ——二次函数与二次方程 阅读与思考 二次函数的一般形式是()02 ≠++=a c bx ax y ,从这个式子中可以看出,二次函数的解析式实际 上是关于x 的二次三项式,若令y =0,则得02 =++c bx ax 这是一个关于x 的一元二次方程,因此,二次函数与一元二次方程有着密切的联系,表现为: 1.当0>?时,方程有两个不相等实数根,抛物线与x 轴有两个不同的交点,设为 A (1x ,0), B (2x ,0),其中1x ,2x 是方程两相异实根,a ac b AB 42-=; 2.当0=?时,方程有两个相等实数根,抛物线与x 轴只有一个交点; 3.当0

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

初中九年级数学竞赛培优讲义全套专题10 最优化_答案[精品]

专题10 最优化 例1. 4 提示:原式=1 12 - 62 -+)(x . 例2. B 提示:由-1≤y ≤1有0≤≤1,则=22 +16+3y 2 =142 +4+3是开口向上,对称轴为7 1 -=x 的抛物线. 例3. 分三种情况讨论:①0≤a +?)(,∴f (a )=2a ,即2a =2132-2+a ,则?? ? ??=--=413 172b a 综上,(a ,b )=(1,3)或(17-2-, 4 13 ) 例4. (1) 121≤≤x ,y 2 = 21+216143-2+-)( x .当=4 3时,y 2 取得最大值1,a =1; 当21= x 或=1时,y 2取得最小值21,b =22.故a 2+b 2=2 3. (2) 如图,AB =8,设AC =,则BC =8- ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2. 10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x 当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有 22 4 ===DA EB CA BC , 从而=AC = 3831=AB .故原式取最小值时,=3 8. (3)如图, 原式= [] 22222 2 2)24()13()32()01(032--0y x y x -+-+-+-+-+)()(

人教版九年级数学上册 2016年全国初中数学联合竞赛试题及详解

2016年全国初中数学联合竞赛试题 第一试 (3月20日上午8:30 - 9:30) 一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知 t =a 是t 的小数部分,b 是t -的小 数部分,则 11 2b a -= ( ) .A 1 2 .B 2 .C 1 .D 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方 案有 ( ) .A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如: 33 3 321(1),26 31,=--=- 2和 26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ) .A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数2 1(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ) .A 0 . B 14 . C 3 4 - .D 2- 4.已知 O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O 于点E ,若8,AB =2CD =,则BCE ?的面积为 ( ) .A 12 .B 15 .C 16 .D 18 5.如图,在四边形ABCD 中,0 90BAC BDC ∠=∠=,AB AC == 1CD =,对角线的交点为M ,则DM = ( ) . A 2 . B 3 . C 2 . D 12 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( )

九年级数学(上)竞赛试题及答案

九年级数学(上)竞赛试题 一. 选择题(每小题3分,共36分) 1.一元二次方程的解是 A . B .1203x x ==, C .12 10,3 x x == D . 2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形 B .菱形 C .矩形 D .正方形 3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何 体可能是 A .球 B .圆柱 C .圆锥 D .棱锥 4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m , 则旗杆高为 A 、22m B 、20m C 、18m D 、16m 5. 下列说法不正确的是 A .对角线互相垂直的矩形是正方形 B .对角线相等的菱形是正方形 C .有一个角是直角的平行四边形是正方形 D .一组邻边相等的矩形是正方形 6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .10 7. 若点(3,4)是反比例函数221m m y x +-=图像上一点 ,则此函数图像必经过点 A .(3,-4) B .(2,-6) C .(4,-3) D .(2,6) 8. 二次三项式2 43x x -+配方的结果是( ) A .2(2)7x -+ B .2 (2)1x -- C .2(2)7x ++ D . 2(2)1x +- 9.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( ) 第9题图 A . 3√10 2 B . 3√105 C .√10 5 D .3√55 10. 函数x k y =的图象经过(1,-1),则函数2-=kx y 的图象是 11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动 A .变短 B .变长 C .不变 D .无法确定 12.如图,点A 在双曲线6 y x = 上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为 A .47 B .5 C .27 D .22 二:填空题.(每小题3分,共12分) 13.如图,△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。 14.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则此反比例函数的解析式是 。 2 30x x -=0x =1 3x = 2 2 2 2 -2 -2 -2 -2 O O O O y y y y x x x x A . B . C . D . A B C R D M E F 第11题图

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

九年级数学竞赛试题

九年级数学竞赛试题 1.当x________时,二次根式x –2有意义. 2.若最简二次根式4a+3b 与 b+1 2a+5是同类二次根式,则a = . 3.已知2是一元二次方程x 2–3kx +2=0的根,则k 的值是___________. 4.设x 1、x 2是方程2x 2-4x -1=0的两实数根,则x 1+x 2=________. 5.若关于x 的一元二次方程x 2-2x +m =0没有实数根,则m 的取值范围是__________. 6.已知:在△ABC 中,∠C =90°,AB =10cm ,sin A =45 ,则BC 的长为 cm . 7.如图,电灯P 在横杆AB 的上方,AB 在灯光下的影子为CD , AB ∥CD ,AB =2m ,CD =6m ,点P 到CD 的距离是3m ,则P 到 AB 的距离是 m . 8.已知D 、E 分别是△ABC 的边AB 、AC 上的点,若要使△ABC 与△ADE 相似,则只需添加一个条件:___________即可(只需填写一个). 9、当x ___________ . 10 、0x ≤=当__________. 二、精心选一选 11、方程x(x+1) = 3(x+1)的解为 ( ) A 、x= -1 B 、x=3 C 、x 1=-1,x 2=3 D 、以上均不对 12、在同一时刻物高与影长成比例,若高为1.5米的测杆的影长为2.5。那么,影长为30米的旗杆高为 ( )米。 A 、20 B 、18 C 、16 D 、15 13、在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次。若设参加此会的学生为x 名,据题意可列方程为 ( ) A 、x(x+1)=253 B 、x(x -1)=253 C 、2x(x -1)=253 D 、x(x -1)=253×2 14、“从一个布袋中闭上眼随机摸出一球恰是黄球的概率为15”的意思是 ( ) A 、摸球5次就一定有1次摸出黄球。 B 、摸球5次就一定有4次不能摸中黄球 C 、布袋中一定有一个黄球和4个别的颜色的球 D 、如果摸球次数很多,那么平均每摸球5次便有1次摸中黄球 15.下列计算准确的是 ( ) A .2+3= 5 B .32-22=1 C .2×3= 6 D .24÷6=4 16.18 2 1 - 92的值是( ) A .112 B .272 C .92 D .0 第7题 A B C D P

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

初中数学竞赛专题复习第二篇平面几何第18章整数几何试题新人教版

第18章 整数几何 ABC △,第三条高的长数,求这条高之长的所有可能值. 解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则 解得1515 45 h <<,h 可取4、5、6、7这四个值. ABC △3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠,而z 可正可负. 由2y z n x +=+,及()()()2 2 223242y z n x n x n x x -=+-+=+?,得4y z x -=,32 n y x = +,由勾股定理,知()2 22332n x n n x ?? ++=+ ??? ,展开得12n x =,由01x <≤及n 为正整数,知 1n =,2,…,12,这样的三角形有12个. ,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值. 解析 设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2 c R = ,内切圆半径2 a b c r +-= ,不妨设20a ≤. 由条件知 5 2 c a b c =+-,557a b c +=,平方,得()() 222225249a b ab a b ++=+,即 ()2212250a b ab +-=, ()()34430a b a b --=, 于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72. ABC △,60A ∠=?,7BC =,其他两边长均为整数,求ABC △的面积. 解析 设AB x =,AC y =,则由余弦定理,有 2249x y xy +-=. 由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解. 于是1 sin 602 ABC S xy = ?=△. P ,求经过P 且长为整数的弦的条数. 解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ?=?=,因此 24ST SP TP =+≥.

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD ⌒上任意一点.求证:PA PC PB 为定值. 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分DB ⌒ D.随C 点的移动而移动 【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线 的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB ⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE . (1)求证:四边形OGCH 是平行四边形; (2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度; (3)求证:CD 2+3CH 2是定值. P A B C D A P B

【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标; (2)连接MG ,BC ,求证:MG ∥BC ; (3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时, PF OF 的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律. (图1) (图2) 【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值. 【能力训练】 1.如图,点A ,B 是双曲线x y 3 上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则B O A C E H G D A

九年级数学竞赛试题(附答案)

九年级数学测验二 满分:120分 时间:150分钟 一、填空题(共9小题,每小题3分,满分27分) 1.实数x 、y 满足等式22 92|3|0x y xy x y xy -++-=,则x y -的取值范围为 。 2.关于x 的方程1 1 3267 a a x x a +=-++无解,则实数a 的可能取值有 。 3. 已知111Rt A B C ?的直角边长分别为1a 、1b ,斜边长为1x ,222Rt A B C ?的直角边长分别为2a 、2b ,斜边长为2x ;请以111Rt A B C ?与222Rt A B C ?的直角边长构造出Rt ABC ?的直角边: ,使得其斜边长为 12x x 4.在ABC ?中,P 为其内部一点,请你构造出一对全等三角形,使得以下结论分别成立: 当 时,ABC ?为以BC 为底边的等腰三角形; 当 时,ABC ?为以AC 为底边的等腰三角形,且P 为它外接圆的圆心; 当 时,ABC ?为等边三角形。 5.在四边形ABCD 中,P 、Q 、R 、S 分别为AB 、BC 、CD 、DA 四边中点,记四边形ABCD 的对角线长度之和为 1l ,四边形PQRS 的对角线长度之和为2l ,令1 2 l k l = ,则k 的取值范围为 。 6.已知函数2 1y ax ax a =++-与直线0x ay a ++=只有一个交点,那么这个交点的坐标为 。 7.给出三个关于x 的方程:2 2 2 20,20,20ax bx c bx cx a cx ax b ++=++=++=, 若2 2 0a b ac bc -+-≠,且这三个方程有相同的根,则这个根为 ; 若0abc ≠,则前两个方程均有实根的概率为 ; 若0ab >,在这三个方程中恰有某个方程存在唯一实根,则它们共有 个不相等的实根。 8. 已知某梯形的边长与对角线可构成三组长度相等的线段,那么最短边 与最长边之比为 。 9.如图,给出反比例函数3 k y x =,这里1k >;在x 轴正半轴上依次排列 2010个点122010,,,A A A L ,点n A 的坐标为(,0)(1,2,,2010)n x n =L , 1(1,2,,2009)n n x x d n +=+=L ,1(1)x d k =-;过点n A 作x 轴的垂线交反比例函数于点n P ,记12n n n P P P ++?的 面积为(1,2,,2008)n S n =L ,那么122008S S S +++=L 。 二、选择题(共9小题,每小题3分,满分27分) 10.若22221a ab b ++= ,那么a 、b ( ) A.一个为无理数、一个为有理数 B.均为分数 C 均为无限不循环小数 D.不是实数 11.下列整式中哪个不能在实数范围内因式分解?( ) A. 3 2 333k k k -+- B. 3 2 331k k k ++- C. 3 2 332k k k +-+ D. 3 2 332k k k -++ 12.如图,在无限单位正方形网格中,任意找三个正方形顶点构成一个角,以下特殊角中不可能得到的有( )个:①22.5? ②30? ③36? ④45? A.4 B.3 C.2 D.1 13.将一个多边形中所有的点连结成线段后,边长及对角线长共有n 种取值,那么在这些线段构成的角中,最小的角是( )度。 A. 180(2)n n -或180(1)1n n -+ B. 90n 或18021n + C. 180n 或360 21 n + D. 180(1)n n -或180(21)21n n -+ 14.如图,一开口向下的抛物线与x 轴负半轴交于A 、B 两点,与y 轴交于点Q (0,-3),其顶点为P ,若 ~PAB BAQ ??,则抛物线的方程为( ) A. 2143 333y x x =- -- B. 2123363y x x =-- - C. 2323y x x =-- D. 2 343y x x =-- 15.如图,在半径为r 的O e 中,有内接矩形ABCD ,AB 中点E 与圆上逆时针排列的三点 F 、G 、H 构成边长为a 的菱形,若2GDH EFG ∠=∠,则DG 的长为( ) A. 2242r a -2242r a + B. 242r ra -242r ra +C. 2 42ra a -2 42ra a + D. 22a r r -或2 2a r r + 16. 如图,在直角坐标系中,直线340x y a ++=与y 轴、反比例函数k y x =和x 轴 依次交于A 、B 、C 、D 四点,若2BC AB CD =+,且2AC BD ?=,则 a k =( )

人教版九年级数学下册练习题及答案

人教版九年级数学下册练习题及答案 (2021最新版) 作者:______ 编写日期:2021年__月__日 【基础能力训练】一、全面调查、抽样调查的应用 1.要了解我校教师的工资收入情况,可以采取________方式进行调查.2.下列调查:(1)为了了解“TCL”和“长虹”两个牌子的彩电哪个在市场上更畅销,?李叔叔来到一家大型家电商场,观察30分钟里顾客购买彩电的情况.(2)为了了解学生们对新教材的意见,学校领导向每位使用新教材的学生发出一张意见证询表.______是使用全面调查方式,_______是采用抽样调查方式进行调查(?填序号即可).3.下列调查,适合用全面调查方法的是( ).A.了解一批炮弹的杀伤半径 B.了解湘潭市每天的流动人口数C.保证“神舟”6号载人飞船的成功发射; D.

要了解石家庄市居民的日平均用水量 4.下列问题采用哪种调查方式比较恰当?(1)想知道一锅汤的味道;(2)了解某海域海水的含盐量;(3)为了买校服,了解每个学生的衣服尺寸;(4)商检人员在某超市检查一种饮料的合格率.5.为了了解一批种子的发芽率,可采用的调查方式是______.6.下列问题用普查(即全面调查)较为合适的是( )A.调查北京某区中学生一周内上网的时间B.检验一批药品的治疗效果C.了解50位同学的视力情况D.检测一批地板砖的强度7.以下关于抽样调查的说法错误的是( )A.抽样调查的优点是调查的范围小,节省时间、人力、物力B.抽样调查的结果一般不如普查得到的结果准确C.抽样调查时被调查的对象不能太少 D.大样本一定能保证调查结果的准确性8.为了获得较为准确的调查结果,抽样时要注意样本的______和______.9.下列调查中,分别采用了哪种调查方式?(1)为了解你们班同学的身高,对全班同学进行调查.(2)为了解同学们对音乐、体育、美术的爱好情况,对所有学号是5和倍数的同学进行调查.二、总体、个体、样本、样本容量的应用10.北京火车站为了了解5月份每天上午乘车的人数,?抽查了其中一周每天上午乘车的人数,所抽查的这一周每天上午乘车的人数是这个问题的( )A.总体 B.个体 C.样本 D.样本容量11.下面几种说法正确的是( )A.样本中个体的数目叫总体B.考察对象的所有数目叫总体C.总体的一部分叫个体D.从总体中抽取的一部分个体叫总体的一个样本12.2006年某市有9 880名九年级毕业生参加中考,为了考察他们的数学成绩,评卷人员抽取50本试卷,对每本30名考生的数学成绩进行统计分析,在这个问题中正确

初中数学竞赛第二十三讲平面几何的定值与最值问题(含解答)

第二十三讲平面几何的定值与最值问题 【趣题引路】 传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1. 这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢? (1) (2) 解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短. 证明如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR. ∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP. 不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”. 【知识延伸】 平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.?所谓几何定值问题就是要求出这个定值. 在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变. 例1如果△ABC的外接圆半径R一定,求证: abc S 是定值.(S表示△ABC的面积)

解析 由三角形面积S=12 absinC 和正弦定理sin c C =2R, ∴c=2RsinC. ∴ abc S =2sin c C =4sin sin R C C =4R 是定值. 点评 通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值. 平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,?某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,?这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式). 例2 如图,已知⊙O 的半径 为⊙O 上一点,过A 作一半径为r=3的⊙O ′, 问OO ′何时最长?最长值是多少?OO ′何时最短?最短值是多少? 解析 当O ′落在OA 的连线段上(即⊙A 与线段OA 的交点B 时)OO ′最短,且最短长度为 当O ′落在OA 的延长线上(即⊙O 与OA 的延长线交点C 时)OO ′最长,且最长的长度为 点评 ⊙O ′是一个动圆,满足条件的⊙O ′有无数个,但由 于⊙O ′过A 点,所以⊙O ′的圆心O ′在以A 为圆心半径为3的⊙A 上. 【好题妙解】 佳题新题品味 例1 如图,已知P 为定角O 的角平分线上的定点,过O 、P?两点任作一圆与角的两边分别交于A 、B 两点. 求证:OA+OB 是定值. 证明 连结AP 、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.?另记x 1=OA,x 2=OB. 对△POA 应用余弦定理, 得x 12+OP 2-2OP ·cos ∠AOP ·x 1=r 2. 故x 1为方程x 2-2OP ·cos 1 2 ∠AOB ·x+(O P 2-r 2)=0的根,同理x 2亦为其根. 因此x 1,x 2为此方程的两根,由韦达定理,得x 1+x 2=2OP(1 2 ∠AOB)是定值.

相关文档
最新文档