爆破参数的确定

爆破参数的确定
爆破参数的确定

爆破参数的确定

一、炮眼直径:

炮眼直径的大小对钻眼效率、全断面炮眼数目、炸药消耗量和爆破岩石块度与岩壁平整度均有影响,因此,应根据巷道断面大小、块度要求、炸药性能和凿岩机性能综合考虑,进行选择。炮眼直径大,可减少炮眼数目,炸药能量相对集中,也可提高爆破效率,但钻速下降,影响爆破质量和降低围岩稳定性。

在采用气腿式凿岩机的情况下,现场多根据药卷直径确定炮眼直径。目前国内岩巷掘进均采用直径32mm、35mm两种药卷,因炮眼直径比药卷直径大10mm,所以目前的炮眼直径多采用42~45mm。我矿采用的是三级煤矿乳化炸药,炸药直径为32mm,故炮眼直径为42mm。

二、炮眼深度:

炮眼深度决定了每一掘进循环的钻眼和装岩工作量,循环进尺以及每班的循环次数,炮眼深度主要是根据岩石性质、巷道断面大小、循环作业方式、凿岩机类型、炸药威力、工人技术水平等因素来确定。单从爆破理论分析,采用中深孔(大于2.5m)爆破最为合理,从近年发展趋势来看,炮眼深度逐渐由浅孔向中深孔发展,合理的炮眼深度应以高速、高效、低成本、便于组织正规循环作业为原则。

在巷道掘进中,通常是以月进尺任务和凿岩、装岩设备的能力来确定每一循环的炮眼深度,采用气腿凿岩机时,炮眼深度以1.8~2.5m为宜,我矿采用YT29型凿岩机,故炮眼深度一般在2.0m以

左右(掏槽眼为2.2m)。

三、炮眼数目:

炮眼数目的多少直接影响钻眼工作量、爆破岩石的块度、巷道的形状等。炮眼数目取决于岩石性质、巷道断面尺寸、炮眼直径和炸药性能等因素。合理的炮眼数目应以保证爆破效果的实现为原则。一般是先以岩层性质和断面大小进行初步估算,然后在断面图上做出炮眼布置,得出炮眼总数,并通过实践调整修正。

炮眼数目出可根据单位炸药消耗量,按下式估算后,再按上述经验方法确定炮眼数目:

N=qSmη/aP

式中N为炮眼数目;q为单位炸药消耗量,kg/m3;S为巷道掘进面积,㎡;m为每个炸药长度,m;η为炮眼利用率;a为装药系数,即装药长度与炮眼长度之比,一般取0.5~0.7;P为每卷炸药的质量,kg。

四、炸药消耗量:

炸药消耗量是指爆破1m3实体岩石所需的炸药量,也就是工作面一次爆破所需总炸药量和工作面一次爆下的实体岩石总体积之比,即:

q=Q/V

这是一个很重要的参数,将直接影响到岩石块度、钻眼和装岩的工作量、炮眼利用率、巷道轮廓的整齐程度、围岩的稳定性以及爆破成本等。

影响炸药消耗量的主要因素有以下几点:

1、炸药性能:对同一种岩石,采用威力大的炸药,炸药消耗量就小,反之炸药消耗量就增大。

2、岩石的物理力学性质:一般讲,岩石坚固性系数f愈大,炸药消耗量也愈大,反之则愈小,岩石的层理、节理、裂隙发育程度对炸药消耗量的影响也很大,对同一种岩石来说,如层理、节理、裂隙发达(在一定限度内),炸药消耗量就会减少。

3、自由面的大小和数目:自由面数目增多,炸药消耗量就会减少,在巷道掘进中,每爆破单位体积岩石所需克服的巷道周边阻力随断面而变化,巷道断面愈小,所需克服的周边阻力愈大,所需炸药消耗量也愈大;随着巷道断面积的增大,巷道周边并不是成正比例增大,所以爆破单位体积岩石所克服的周边助力则相对减少,故炸药消耗量也减少。

除上述因素外,还有炮眼直径和炮眼深度等,因影响因素太多,到目前为止,还没有解决精确计算炸药消耗量问题的办法,多采用定额选用。

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

初中高爆破工程技术人员考试爆破设计相关参数计算方法.pdf

一、装药密度(克每立方厘米):2号岩石乳化0.95-1.3、粉状乳化0.85-1.05、1号粉状铵油0.9-1.0、多孔粒状铵油0.8-0.9、岩石改性铵油0.9-1.1、岩石膨化铵油0.8-1.0、重铵油0.85-1.3 线装药密度(千克每米):圆周率*(d的平方)*装药密度/4000 二、钻机直径(多孔铵油炸药时取装药密度0.85克每立方厘米)对应的线装药主要有:40mm-1.07千克每米、50-1.67千克每米、65-2.82千克每米、70-3.27千克每米、76-3.85千克每米、90-5.41千克每米、100-6.67千克每米、110-8.07千克每米、120-9.6千克每米 三、常用药卷(2号岩石乳化炸药)型号:1、直径32mm 长度20cm药量150g;2、直径35mm长度20cm药量200g 四、各个爆破单耗(千克每立方米):光面线装药密度 0.15-0.2、预裂线装药密度为0.25-0.4、台阶(深)0.4-0.6、台阶(浅)0.5-1.2、基坑0.3-0.35、沟槽一般取0.5、井巷掘进1.2-2.4(一般取1)、隧道同井巷一般取1左右、拆除砖混1-1.5、拆除混凝土1.5-2、混泥土基础一般取1、桩井2-3、立井2-4、水下钻孔(0.45+(0.05-0.15)H)五、台阶(深孔)爆破:H台阶高度已知,钻机直径D 一般取H/100,底盘抵抗线W=KD其中K取(30-40),超深h=(8-12)D,孔距a=mW其中m取(1-1.25),排距b=(0.6-1.0)W,若三角形布孔则b=asin60,孔深L=(H+h)/sin,堵塞长度L2=(20-30)D,单耗q(0.4-0.6)一般取0.5左右,q1线装药密度根据公式核算具体见第一项,根据线装药算出单孔装药量与根据单耗算出的单孔装药量(Q=qHaW)对比,调整a或者b或者q单耗,

预裂爆破技术参数的计算与选1

预裂爆破技术参数的计算与施工 技术开发部唐自平 摘要合理的确定预裂爆破参数是确保预裂爆破达到理想效果的关键因素。本文以理论计算和工程内比为列,简要介绍了预裂爆破技术参数的计算和施工方法。 关键词预裂爆破技术参数施工 1·概述 预裂爆破是指预先在爆破开挖区主炮孔引爆前,在开挖区与保留区之间形成一条与开挖区边界一致的、具有一定宽度要求的裂缝。以此达到防震、减震,提高一次起爆药量,减少开挖区爆破地震波对保留区内地下构筑物或地上建筑物的爆震危害;预防开挖区爆破时对保留区边坡的破坏,减少爆破对边坡稳定性的破坏和清邦工作量,加快施工进度的目的。预裂爆破和光面爆破都是属于工程控制爆破。合理的确定预裂爆破参数则是取得其理想效果的关键。预裂爆破技术的关键是预裂孔的破坏控制和预裂缝隙的形成及其质量,以达到满足保留区边坡面上的半孔率、坡面不平正度和裂纹深度及阻震、减震的技术要求。 预裂爆破的发展已有三十多年的历史,在工程实践中,技术人员从理论和运用技术方面已总结出了许多经验,并在水利工程建设、岩石基础、边坡甚至洞室等石方爆破开挖、石型材开采和城市保留控制爆破拆除等方面的运用取得了可喜的成果。但在理论上还不成熟,至今还没有一套公认通用的设计计算方法。本文试图从理论上和设计方法上做进一步的探讨。以供设计和施工参考。 2·预裂爆破的基本原理 预裂爆破的基本原理是综合利用缓冲原理、等能原理、断裂力学机理和应力叠加原理,结合爆破现场实际情况,通过合理的设计其爆破孔网参数、装药参数及装药结构和起爆网路,达到其主要技术要求。 所谓缓冲原理就是优选合适的炸药和装药结构,以缓和爆轰压力对岩石孔壁的冲击作用,减少或避免粉碎区和次生裂缝的产生,使爆炸能量得到合理得分配和利用。其方法一是选用爆速低、猛度小和威力大的炸药;二是采用具有合理的不耦合系数及装药结构形式的不耦合装药。 等能原理是指选择合适的装药量,使每个炮孔产生的爆炸能与每个孔担负的预裂面积所需要的能量相等,没有多余的能量造成其他破坏性裂隙;既预裂爆破的药量恰好等于分离岩体并形成一定的断裂面积所需要的药量。 应力叠加原理:为了控制裂隙面仅沿炮孔中心连线形成,应用应力叠加理论需要沿预裂面布置一排适当加密的炮孔,并同时起爆,在炮孔连线上形成应力叠加,使叠加后的拉应力大于岩石的抗拉强度,而其他方向的爆破拉力低于岩石的强度,裂隙仅沿炮孔中心连线形成。 断裂力学机理:由于岩石是一种各向异性的多裂隙脆性材料,岩体内存在着某些自然裂纹,在高压爆生气体作用下,孔间拉应力使原有裂纹呈张开型。如果其应力强度因子大于岩石的断裂韧性,裂纹将扩展;如果应力强度因子大于大于岩石的断裂韧性,裂纹将高速扩展;如果应力强度因子小于岩石的断裂韧性,裂纹将停止扩展。 总上所述,预裂爆破的力学理论是岩体爆破成缝机理的基础,在岩体爆破成缝过程中,应力波和爆生气体共同作用的结果形成了贯通裂缝,其中,爆生气体起着决定作用。预裂爆破裂隙形成的全过程大体可分为开裂、扩展和止裂三个阶段:在成排孔预裂爆破时,爆生气体以较高的压力峰值瞬间作用于炮孔壁上并使孔壁四周产生许多径向微裂纹,其大小和方向是随机的;随后在压力作用下继续扩展;由于相邻炮孔的存在,改变了炮孔壁附近环向应力

爆破计算公式

6.6 爆破参数与爆破图表 6.6.1 爆破参数 (1)单位炸药消耗量 3,对应断面面积S==0.7~2.5kg/m按照新奥法爆破施工设计经验,单位耗药量K22,硬质砂岩,岩石完整性?=3~64m,以及“电子三所”振动的特殊要求,拟定~20m3,因小导洞开挖后凌空面较大,kg/m=1.8进尺1.5米左右。为了确 保掏槽效果小导硐取K3kg/m=K1.1同理次导硐和光面爆破扩至设计面单位炸药消耗量取。(2)每循环爆破总药量的确定 依据Q=K×L×S (43) 式中:Q:每循环爆破总装药量(kg); 3);K:炸药单耗量(kg/m L:爆破掘进进尺(m);2)。:开挖断面面积(m S小导硐: 32,,导洞开挖面积S=7.5m,L=8K=1.kg/m1.5m Q=K×L×S=1.8×1.5×7.5=20.25kg 次导硐: 32,.467m,L=1.5m,导洞开挖面积S=K=1.1 kg/m Q=K×L×S=1.1×1.5×46.7=77.1kg 扩挖至设计界面: 32,m 34.21 kg/m,导洞开挖面积,L=1.5mS=1.K=Q=K×L×S=1.1×1.5×34.2=56.4kg (3)单段最大装药量计算 3/α3来确定单段药量初始值。)V/KQ=R采用目前国内常用的经验公式:(R-爆 破振动的安全距离, V-保护对象所在地质点振动安全允许速度, K、α-与爆破点至计算保护对象间的地形、地质条件有关的系数和衰减指数 因岩层处于硬质砂岩地段根据经验取K=120,α=2.0,以最近点居民房(危房)的振速要求为条件,考虑到电子三所的爆破振动影响,按文物要求V=0.5cm/s,R取25米计算。 Q=4.2kg 周边施打减震孔可以减震30%~50%,取30%,即单段最大爆破药量为4.2×1.3=5.46kg,小导硐按此药量进行钻爆设计。 次导洞、隧道扩挖至设计断面爆破时临空面较大,减振效果较好,主要由单段最大药量控制,与总药量无关,按减振50%考虑,即单段最大爆破药量为5.46×1.5=8.2 kg,按此药量设计。 6.6.2 爆破图表 小导硐爆破设计、次导硐爆破设计、最后光面爆破设计见下:图27~29和表2~4。

爆破参数表

第一分段爆破参数表 序 号 名称 眼号 眼数 (个) 眼深 (mm ) 眼距 (mm ) 装药量 爆破顺序 联线 方式 个/眼 kg/圈 1 掏槽眼 1~6 6 2200 550 4 9.6 I 串 并 联 2 掏槽眼 7~34 28 2000 569 4 44.8 I 3 辅助眼 35~54 20 2000 663 4 32 III 4 辅助眼 55~79 25 2000 686 4 40 III 5 辅助眼 80~106 26 2000 649 3 31.2 III 6 辅助眼 107~138 31 2000 62 7 3 37.2 V 7 辅助眼 139~175 36 2000 541 3 43.2 V 8 辅助眼 176~217 41 2000 507 2 32.8 VII 9 周边眼 218~283 65 2000 446 2 52 VII 合计 283 322.8 说明:1、炸药选用煤矿许用三级水胶炸药,炸药规格为φ35mm ×400mm 药卷, 2、雷管选 用毫秒延期导爆管,地面380V 电源起爆;分上下两层爆破,根据岩性及时调整爆破参数; 预期爆破效果表 序号 指 标 单位 数量 1 炮眼利用率 % 90 2 每循环进尺 m 1.8 3 每循环爆破实体岩石体积 m 3 128 4 每立方米岩石雷管消耗量 个/ m 3 2.2 5 每立方米岩石炸药消耗量 kg/ m 3 2.52

序 号 名称 眼号 眼数 (个) 眼深 (mm ) 眼距 (mm ) 装药量 爆破顺序 联线 方式 个/眼 kg/圈 1 掏槽眼 1~26 26 2200 500 4 41.6 I 串 并 联 2 掏槽眼 27~51 25 2000 500 4 40 I 3 辅助眼 52~77 26 2000 500 4 41.6 III 4 辅助眼 78~103 26 2000 500 4 41.6 III 5 辅助眼 104~129 26 2000 500 3 31.2 III 6 辅助眼 130~155 26 2000 500 3 31.2 V 7 辅助眼 156~181 26 2000 500 3 31.2 V 8 辅助眼 182~207 26 2000 500 2 20.8 VII 9 周边眼 208~270 63 2000 500 2 50.4 VII 合计 270 329.6 说明:1、炸药选用煤矿许用三级水胶炸药,炸药规格为φ35mm ×400mm 药卷, 2、雷管选 用毫秒延期导爆管,地面380V 电源起爆;分上下两层爆破,根据岩性及时调整爆破参数; 预期爆破效果表 序号 指 标 单位 数量 1 炮眼利用率 % 90 2 每循环进尺 m 1.8 3 每循环爆破实体岩石体积 m 3 123.5 4 每立方米岩石雷管消耗量 个/ m 3 2.18 5 每立方米岩石炸药消耗量 kg/ m 3 2.67

隧道爆破设计计算

Ⅳ级围岩爆破设计 工程概况 大瑶山隧道位于广东省乐昌市的庆云镇至两江镇的九峰河,隧道全长 10331m,隧道以碳酸盐岩和碎屑岩为主,隧道内考虑到断裂带、部分浅埋段岩体 2风化、破碎等,隧道围岩多为Ⅳ级。隧道穿越地区有断裂构造,围岩较为破碎, 裂缝较发育,断裂带附近易富水,岩溶水赋水性为中等,碎屑岩及浅变质岩属含 水丰富的基岩裂隙水含水层,所以地下水较发育。隧道断面设计为马蹄型,跨度 B=,高为H=。 爆破方案选择 为了保证隧道的开挖质量,又能加快施工速度,缩短工期,故IV级围岩实 施爆破区段采用上、中、下三台阶开挖的光面爆破方案,由于围岩较为破碎,所 以采用段台阶法,实现及早支护封闭。由于采用三台阶的开挖方法,所以每循坏 进尺的爆破工作都要分成三部分完成的。对于一个开挖断面,先对上台阶进行爆 破开挖、出渣,当上台阶向前开挖推进一定距离后,再对中、下进行爆破作业,应尽量减少相邻两个工作面之间施工相互干扰。每月施工28天,采用2班循环 掘进平行作业,月掘进计划进尺为120m。 爆破参数选择 (一)上台阶参数计算 (1)炮眼数N 断面炮眼数是受多个因素限制,它和爆破作业面积、围岩等级等因素有关。炮眼 数目N可根据式(4-1)计算得出: (4-1) 式中,q—炸药消耗量,一般取~ 实际根据表4-1选取:

,,,。 S—爆破作业的面积,由开挖断面图可知,IV 级围岩开挖断面 , 上台阶断面积为,中台阶断面积,下台阶断面积;仰拱断面积。 —系数,根据表4-3取值,选取时要综合考虑各类炮眼,上台阶取; —药卷的炸药质量,2号岩石铵梯炸药的每米质量见表4-2;本工程中取; 根据上式计算得出,上台阶炮眼数为N1109个,中台阶炮眼数为N2102个,下台阶炮眼数为N394个,仰拱炮眼数为N425个。 表4-1 隧道爆破单位耗药量() 开挖部位和掘进断面积/围岩类别 ⅣⅤⅢⅣⅡⅢI 单自由面 4—6 7—9 10—12 13—15 16—20 40—43 多自由面扩大挖底 表4—2 2号岩石铵梯炸药每米质量值 药卷直径32353840444550 (kg/m)

爆破参数的确定

爆破参数的确定 一、炮眼直径: 炮眼直径的大小对钻眼效率、全断面炮眼数目、炸药消耗量和爆破岩石块度与岩壁平整度均有影响,因此,应根据巷道断面大小、块度要求、炸药性能和凿岩机性能综合考虑,进行选择。炮眼直径大,可减少炮眼数目,炸药能量相对集中,也可提高爆破效率,但钻速下降,影响爆破质量和降低围岩稳定性。 在采用气腿式凿岩机的情况下,现场多根据药卷直径确定炮眼直径。目前国内岩巷掘进均采用直径32mm、35mm两种药卷,因炮眼直径比药卷直径大10mm,所以目前的炮眼直径多采用42~45mm。我矿采用的是三级煤矿乳化炸药,炸药直径为32mm,故炮眼直径为42mm。 二、炮眼深度: 炮眼深度决定了每一掘进循环的钻眼和装岩工作量,循环进尺以及每班的循环次数,炮眼深度主要是根据岩石性质、巷道断面大小、循环作业方式、凿岩机类型、炸药威力、工人技术水平等因素来确定。单从爆破理论分析,采用中深孔(大于 2.5m)爆破最为合理,从近年发展趋势来看,炮眼深度逐渐由浅孔向中深孔发展,合理的炮眼深度应以高速、高效、低成本、便于组织正规循环作业为原则。 在巷道掘进中,通常是以月进尺任务和凿岩、装岩设备的能力来确定每一循环的炮眼深度,采用气腿凿岩机时,炮眼深度以1.8~2.5m 为宜,我矿采用YT29型凿岩机,故炮眼深度一般在2.0m以左右(掏

槽眼为2.2m)。 三、炮眼数目: 炮眼数目的多少直接影响钻眼工作量、爆破岩石的块度、巷道的形状等。炮眼数目取决于岩石性质、巷道断面尺寸、炮眼直径和炸药性能等因素。合理的炮眼数目应以保证爆破效果的实现为原则。一般是先以岩层性质和断面大小进行初步估算,然后在断面图上做出炮眼布置,得出炮眼总数,并通过实践调整修正。 炮眼数目出可根据单位炸药消耗量,按下式估算后,再按上述经验方法确定炮眼数目: N=qSmη/aP 式中N为炮眼数目;q为单位炸药消耗量,kg/m3;S为巷道掘进面积,㎡;m为每个炸药长度,m;η为炮眼利用率;a为装药系数,即装药长度与炮眼长度之比,一般取0.5~0.7;P为每卷炸药的质量,kg。 四、炸药消耗量: 炸药消耗量是指爆破1m3实体岩石所需的炸药量,也就是工作面一次爆破所需总炸药量和工作面一次爆下的实体岩石总体积之比,即: q=Q/V 这是一个很重要的参数,将直接影响到岩石块度、钻眼和装岩的工作量、炮眼利用率、巷道轮廓的整齐程度、围岩的稳定性以及爆破成本等。

爆破参数计算

6.4中深孔爆破参数的选择和装药量计算 (1)台阶高度:5-15m 。 (2)孔径D :90mm 。 (3)单位炸药消耗量q 与岩石坚硬程度的关系列于下表(本矿体普氏硬度为10~12) 取q=0.45kg/m 3 (4)底盘抵抗线 采用过大的底盘抵抗线会造成根底多,大块率高,后冲作用大;过小则不仅浪费炸药,增大钻孔工作量,而且岩块易抛散和产生飞石危害。底盘抵抗线的大小与钻孔直径、炸药威力、岩石可爆性、台阶高度和坡面角等因素有关,在设计中可用类似条件下的经验公式来计算。 ① 根据钻孔作业的安全条件 B Hctga W +≥1 式中: W1—底盘抵抗线,m 。 H —台阶高度,m ; α—台阶坡面角; B —从钻孔中心到坡顶线的安全距离,一般B=2.5~3m 。 ② 按每孔的装药条件 mq W τ??=78.0D 1 式中:D —孔径,dm ; ?—装药密度,g/ml ; τ—装药系数,一般为0.6~0.8; m —炮孔密集系数,一般为0.8~1.3; q —炸药单耗(根据工程实际需要选择); ③按炮孔直径确定 d W )45~25(1= 取W 1=4m (优化取值) (5)超深h 超深h (m)是指钻孔超过台阶底盘水平的深度。若超深过大,将造成钻机和炸药的浪费。同时还将增加爆破动强度和底盘的破坏。根据经验,超深可按下式确定:

1)35.0~15.0(W h = 或 H h )2.0~1.0(= 式中:1W —底盘抵抗线,m 。 当岩石松软时取小值,岩石坚硬时取大值。对于要求特别保护的底板,应将超深取负值。 (6)孔距a 孔距按下式计算: a =m ×W1 m 为炮孔密集系数,一般为0.8~1.3 取a=3.5~4m (7)排距b b =(0.8~1)×a 取b=2.5~3m (8)孔深L 垂直孔: L =H +h , 倾斜孔: L =(H +h )/Sin α α为炮孔倾角; (9) 填塞长度LT 堵塞长度LT (m)是指装药后炮孔的剩余部分作为填塞物充填的长度。合理的堵塞长度应从降低爆炸气体能量损失和尽可能增加钻孔装药量两个方面考虑。堵塞长度过长将会降低延米爆破量,增加钻孔费用,并造成台阶上部岩石破碎不佳;堵塞长度过短,则炸药能量损失大,将产生较强的空气冲击波、噪声和个别飞石的危害,并影响钻孔下部破碎效果,常用的经验公式为 ???=≥(倾斜孔)垂直孔或11T T )0.1~9.0()()8.0~7.0(L L W W W 或 LT =(20-40)D (m ) (10)单孔药量Q : 单排孔爆破或多排孔爆破的第一排孔的单孔装药量按下式计算: H qaW Q 1= 多排孔爆破时,从第二排孔起,以后各排孔的单孔装药量按下式计算: kqabH Q = 式中:K — 考虑受到前面多排孔的矿岩阻力作用的增加系数k ,一般取1.1~1.2;

爆破参数设定

露天深孔爆破时选择的爆破参数是否合理,直接影响爆破效果和安全,因此,必须根据具体条件和要求,进行认真全面的分析和综合考虑,确定出合适的孔径、孔深、孔距、抵抗线、装药量和爆破顺序等参数。 (1)孔径和孔深。孔径主要依据爆破高度(露天矿的台阶高度)、钻孔设备、岩石性质、炸药品种和爆破要求确定。例如,在露天采矿中,如果采用潜孔钻机,孔径通常可取150~250MM;采用牙轮钻机和钢绳冲击式钻机时,孔径可取250~300MM。孔深由要求的爆破高度加上一定量的超深而定。深孔爆破时,如果小于或等于要求的爆破高度,相邻炮孔的爆破漏斗必将高于底板,出现根底。因此,孔深必须超过台阶高度一定深度,以便降低装药中心位置,从而减少或消除根底,保证爆后台阶的平整。超深值主要依据岩石性质、台阶高度、孔距、排距、地形条件和炸药种类来确定。露天矿中,一般按底盘抵抗线来计算,即超深(0.15~0.25)%;岩石松软、层理发达时,取小值;岩石坚硬时取大值。但要注意超深也不能太大,否则会将底板或下一台阶的顶部破坏。 (2)抵抗线。在露天深孔爆破中,为了便于计算,常用底盘抵抗线代替最大抵抗线。底盘抵抗线是指炮孔中心至台阶坡底线的水平距离。底盘抵抗线是影响爆破效果的重要因素。底盘抵抗线过大,根底较多;过小,不仅增大了工作量,而且还多浪费炸药。因此,计算底盘抵抗线时,应根据台阶高度、岩石性质、炮孔和炸药的直径及钻机的安全性等全面衡量,确定出合理的数值。一般可用以下经验公式

确定%值的系数取值应根据台阶高度与矿岩坚固性选取。台阶高度越小,矿岩坚固性越大,取较小值,反之取较大值。 (3)孔距与排距。孔距^是指同一排炮孔中相邻两个炮孔的中 心线间的距离。排距6是指相邻两排炮孔间的距离。孔距与排距直接影响爆破效果和安全。孔距和排距过小不但钻孔工作量大,而且药量集中于炮孔底部,爆破后台阶底部矿岩爆堆抛掷过远,容易造成将设备埋住、砸坏设备等事故。相反孔距与排距太大,容易出现根底、硬帮、大块多等现象,不仅浪费炸药,还影响正常生产。选择孔距与排距时,除根据底盘抵抗线、爆破高度(台阶高度)、孔径、炸药品种外,还要考虑岩石性质、地质条件及岩层含水程度等情况,并在施工中不断加以调整。孔距值可用底盘抵抗线%和炮孔邻近系数M的乘积来计算。 (4)炮孔装药量。计算深孔爆破炮孔装药量时,首先要确定合理的炸药单位消耗量,这是直接影响爆破效果及安全的主要因素之一。据目前露天深孔爆破的实际情况来看,因现场的条件不一样,还没有精确和统一的计算方法,一般情况都是根据下列几种具体条件来综合考虑,并在爆破后通过爆堆情况、岩石破碎程度等进行调整:1)岩石性质和地质条件。不同的岩石其坚固性也不相同,一般情况下,越坚硬的岩石越难爆破。但是有的岩石虽然很硬,因节理发育,韧性差,却容易爆破;同样,有的岩石虽然较软,因含水性强、弹性好,却又难以爆破。因此,一般情况下岩石坚硬时,应适当将炸

爆破参数设计

爆破工程参数设计 1、在隧道爆破作业中通常使用的爆破方案有:(1)定向爆破(2)预裂光面爆破(3)微差爆破(4)聚能爆破 阅读工程概况后可知,该公路隧道的断面比较大,爆破后不但要保证周围围岩的完整性,稳定性,还要使爆破后的边界尽可能的光滑平整,从而减少爆破后边界的清理和修整。为了达到这个目的,地下隧道选择的方案为:光面爆破。 采用光面爆破的方案,可在爆破后获得平整的岩面,以保护岩石不受到破坏。 光面爆破的优点很突出,主要表现在: ①可以减少超、欠挖量,节省工程投资: ②开挖面光洁平整,有利于后期的作业: ③对保留的岩体的破坏很小,有利于巷道围岩及边坡稳定。 在隧道施工中采用光面爆破具有以下优点: ①光面爆破对围岩的破坏要轻微得多,根据声波探测表明,采用光面爆破时,围岩松弛的范围只是普通常规爆破方法的1/3到1/2,从而提高了围岩的稳定性,减少支护工作量。 ②光面爆破可以大大地减少巷道的超欠挖量,提高施工质量,加快施工进度,并节省大量的混凝土衬砌浇筑量。 ③采用光面爆破,围岩的壁面平整,危石少,橇顶工作简单,减轻了表面应力集中现象,避免局部冒落,增进了围岩的稳定和施工安全,并为喷锚支护的使用创造了条件。

光面爆破中掏槽孔布置选用直眼掏槽中的角柱掏槽中的大空眼圆形掏槽。具体的炮孔布置图见——《隧道开挖爆破设计布孔图》 2、爆破器材的确定 爆破的炸药选用1号铵梯炸药,炸药的具体参数如下 组成(%):硝酸铵82±1.5、梯恩梯14±1.0、木粉4±0.5 性能:密度0.95~1.1g/cm3 爆力350ml 猛度13mm 殉爆距6cm 炸药直径35cm 起爆器材雷管:毫秒延期电雷管第四系列LYG30D900电源:220V 交流电 起爆网路线:导线连接 3、爆破参数设计 (1)掘进单循环进尺 确定炮孔深度 L=1 ηηMN L m m L —月或日计划进尺(m ):M —作业的天数,按日进度计算式, M=1;N —每日完成的掘进循环数;η—炮孔利用率,0.85~0.9;1η—正规循环率,0.85~0.9,按日进度计划式,1η=1. 根据掘进每米巷道所需劳动量和工时最小及成本最低等综合考虑和计算,以及任务和循环组织等因素,将爆孔深度数确定如下: 单尺循环进尺确定为3.5m 掏槽孔、空孔深度为3.7m 周边孔、崩落孔深度为3.5m (2)炮眼距离

控制爆破参数的设计

控制爆破参数的设计。 爆破参数的正确选择是爆破取得成功的关健因素,在钻孔直径Ф250mm和梯段高度H=15m已确定的条件下,对爆破效果影响最大的是底盘抵抗线和单耗药量的正确选取。根据国内外大孔径钻孔爆破的常用理论及经验公式可求得千里坑料场岩石条件下适于 Ф250mm钻孔直径常规爆破的底盘抵抗线值W=(5.1~8.7)m;根据面板坝对爆破石料最大料径和级配组成的不同要求,可由B.M库兹涅佐夫关于介质炸药爆炸应力决定块度平均 尺寸的半理论半经验公式: 式中:X—爆渣的平均尺寸,cm; Q—炸药重量,kg; V0—爆破岩石的体积,m3; A—与岩石坚固系数的相关系数。 和拉桑公式: 式中:Y80—破碎的爆岩有80%通过的筛孔尺寸,m; B—底盘抵抗线,m; S—孔网面积,m2; q—单耗药量,kg/m3; B—岩石系数,kg/m3。 经过试算,可分别确定主、次堆石料和过渡料的孔网参数和炸药单耗。同时根据地质条件和以往爆破经验,控制底盘抵抗线与炸药药卷直径之比在20~30之间,而各孔的装药长度不小于两倍的底盘抵抗线,以充分体现深孔梯段的特点。其余参数则根据已定抵抗线尺寸来确定,超钻深取(0.2~0.3)W,堵塞长度取(0.8~1.0)W,而孔间距取(1.2~1.3)W根 据以上计算,确定爆破试验的参数如表2 项目抵抗线 (m) 孔距 (m) 孔深 (m) 堵塞长度 (m) 孔数 (孔) 排数 (排) 总装药量 (kg) 爆破总方 量 (m3) 单耗药 量 (kg/m3) 过渡料 4.60 5.8715.0 5.48133459658750.78 主堆石 料5.74 6.47 15.0 5.9093361260630.60 次堆石 料6.307.30 15.0 5.50103339657610.59

光面爆破施工中爆破参数的选择原则与优化

光面爆破施工中爆破参数的选择原则与优化 摘要:在隧道施工以及巷道掘进中常常需要进行爆破,有的还需要保证爆破后的壁面具有一定的平整度,所以就用到了光面爆破技术。由于光面爆破技术可以保证新壁面平整且不会受到破坏,所以得到了广泛的应用,成为了巷道掘进以及隧道施工中关键的施工环节。进行光面爆破中最重要的是对爆破参数的选择,只有选择合理的参数,才能确保爆破起到预期效果,并保证爆破的安全。文章分析了光面爆破中参数选择的原则,并探讨对于爆破参数的优化工作。 关键词:光面爆破施工;爆破参数;选择与优化 光面爆破技术可以在隧道或巷道掘进施工中使用,并且在爆破后保证新避免的完整与平整,所以得到了广泛的应用。根据这种爆破技术的特点,又将其称为轮廓爆破或周边爆破。在隧道施工以及巷道掘进过程中,通过优化爆破参数以及施工组织等,以达到提高施工效率的目的,对于爆破参数的优化称为快速掘进中重要的组成部分。光面爆破效果的优劣直接关系着工程的成本以及质量。 1 光面爆破施工中爆破参数的选择原则与优化 进行光面爆破的过程中,爆破参数的选择直接关系着爆破的效果,对工程施工质量与进度也有很大的影响。选择合适的爆破参数,可以提升爆破壁面的平整度,这样就能节约工程施工喷浆的用量,达到降低施工成本的目的;同时平整的壁面有利于隧道或巷道的通风;另外,选着适当的爆破参数可以保证实施爆破不会产生爆破裂隙,很大程度上确保了施工的安全。 光面爆破的爆破参数有很多,主要包括炮孔深度、不耦合系数、临近系数、炮眼间距、装药密集系数、最小抵抗线以及装药的结构的参数。在上述参数中,炮孔的深度以及炮孔的直径需要根据工程的实际情况取值,剩下的爆破参数在选择过程中需要按照一定的原则进行。具体的原则为: 对于不耦合系数的选择,要坚持作用到炮孔孔壁的压力大于岩石的抗拉强度,但是必须低于其抗压强度。根据实践证明,不耦合系数的选择需要根据岩性差别以及所用炸药的种类不同进行确定,一般来说不耦合系数取值在 1.5~2.5之间;邻近系数就是爆破炮孔的密集程度,对于这一系数的选择需要根据工程的实际情况进行选择,这一系数对爆破效果有很大的影响,其取值的过大或过小,会造成爆破后形成的壁面留下岩梗或巨坑,通过实践证明,邻近系数的取值一般在0.8~1.0之间,并且根据岩性的不同区别选择,岩石如果较硬,则选择较大的邻近系数,反之则选择较小的邻近系数;对于炮孔的装药结构方面,常用的装药结构有两种,一种是单段空气柱式,另一种是分段空气间隔结构。对于两种装药结构的选择,需要根据炮孔的深度进行选择。如果炮孔深度在1.5~2.0 m之间,一般使用单段空气柱装药结构,这种结构在操作上比较简单,很容易掌握装药流程,对于炮孔深度在2.0 m以上的,需要用空气间隔分段装药结构,就是用两包炸药放置于炮孔中,但是两者之间的间隔要控制在殉爆距离以外,可以在两包炸药间放一些间隔物,防止药包发生串动现象。最小抵抗线是进行光面爆破的光面

实用文档之爆破计算方法

实用文档之"路基石方开挖爆破方法" 本工程石方开挖涉及两种:半挖半填断面的开挖和全挖断面的开挖,采用深孔(浅孔)松动爆破为主,在设计边坡外预留光爆层采用光面爆破,确保边坡平顺,避免扰动和破坏边岩体。 1、深孔松动爆破法 采用梯段爆破,用9m3潜孔钻机钻孔,孔径90mm ,炮孔按梅花型布置,炸药选用2号岩石硝铵炸药,一般台阶高度H=8.0m 。 1.1爆破参数计算公式 ⑴最小抵抗线长度计算: H m q e l D W ???????? =τ785.0 式中:D 为炮孔直径 △为装药密度(kg/m3),一般取900; H 为阶梯高度(m); l 为预计炮孔深度(m),l =H+h (h 为钻根长度[m]); h 对于岩石取(0.15~0.35)W ,岩石较硬时取上限; τ为装药长度系数(当H<10m 时,τ=0.6;当H=10~15m 时,τ=0.5m;当H>15m 时,τ=0.4m ) e q 为炸药单位消耗量(kg/m3),按下表取值:

m 为炮孔密度系数,一般取0.8~1.2; ⑵每一炮孔的装药量Q (kg )计算:Q=0.33.e.q.ν=0.33.e.q.a.H.W 式中:ν为每一深孔药包所爆破的岩石体积(m3)。 1.2本项目爆破设计参数(以K29+800-K30+000段为例) 该段95%属于Ⅳ类石方爆破。采用9m3潜孔钻机钻孔,75°孔径90mm ,台阶高度H=4.0m 。岩层为次坚石,用2#岩石硝铵炸药,各参数计算如下: ⑴最小抵抗线长度确定: 假定钻根长h=0.5m,预计炮孔深度l=4+0.5=4.5m.取△=900kg/m3, τ=0.6,m=1.1,e=1.0,次坚石为六类土,查表得知q 取1.7kg/m3,则抵抗线为 W=0.09x(0.0785x900x4.5x0.6/1x1.7x1.1x4)1/2=1.437 ⑵钻根长:h=0.2W=0.3m= ⑶炮孔深:l=4+0.3=4.3 ⑷炮孔间距:a=W=1.437m ⑸每孔需用药: Q=0.33*e*q*a*H*W=0.33*1*1.437*4*1.437=2.73kg 1.3最大安全用药量 根据爆破震速控制测算确定最大一段安全用药量。测算公式如下: 3 1 1 Q V K R ???? ??=α 式中:v ——质点垂直震动安全速度,此处取2cm/s ; R ——爆破中心距被保护目标距离(m ); K 、α——爆破区地形、地质、爆破方法等条件有关的系数和震 波传播衰减系数。此处K 取200, α取1.6; 2、浅孔松动爆破法 对于较浅石方路堑,以及难以采取深孔爆破、开挖规模量小的深路堑,采用浅孔松动爆破。采用梯段爆破,用9m3潜孔钻机钻孔,孔径38mm ,炮孔按梅花型布置,炸药选用2号岩石硝铵炸药,一般台阶高度H=2.0m 。 1.1爆破参数计算公式

煤矿中深孔爆破掏槽参数确定

岩巷中深孔爆破合理掏槽型式的确定 在井巷掘进爆破中,每循环都必须首先掏槽,为大量的继爆炮孔创造破碎补偿空间和自由面。岩巷掘进影响进尺的关键因素就是掏槽爆破,要提高炮眼利用率,就应首先选择合理的掏槽型式和掏槽参数。因此,掏槽爆破是井巷爆破技术中的主要难点和关键。多年来某矿业集团在岩巷掘进中普遍采用1. 5 m 的浅孔爆破,月进尺一直徘徊在60 ~ 80 m,而且成巷质量差,支护费用高,造成采掘接续紧张。后来在原有设备条件下进行了中深孔爆破试验,取得了一定成功。但由于凿岩难度大,工人劳动强度大,为改善这种现状,矿方投资购置了阿特拉斯科普柯凿岩台车,侧卸式装岩机,为实施中深孔爆破,创造了良好条件。 1. 直眼掏槽破岩机理 井巷掏槽爆破一般分为直眼掏槽和斜眼掏槽两种。对于中深孔爆破,由于斜眼掏槽的应用受到巷道断面宽度的限制,所以必须采用直眼掏槽方式。其突出优点是眼深不受巷道断面的限制,并利于机械化钻孔和多台钻机同时作业;其最大缺点是向工作面方向的抛渣能力很弱。从技术难易程度上来讲,直眼掏槽较为复杂,要求严格。直眼掏槽爆破实际上是单自由面下具有一定排列规律和起爆时续的柱状药卷 装药的一种群孔爆破。它的特点是炮眼间距小,炸药单耗高,

抛掷排渣困难。研究表明,槽腔在形成过程中,大体可分为两个阶段:第一阶段,爆炸冲击波对岩石进行粉碎性破碎,即破碎过程;第二阶段,爆生气体余压膨胀,从而将已破碎的岩石抛出腔外,即抛掷排渣过程。 对于掏槽爆破来讲,保证槽腔成型质量及提高其清洁度是很重要的。根据槽腔形成机理,掏槽眼爆破后,只有装药上端部炸药(即等效集中装药)使岩石破碎,形成弱抛掷,产生爆破漏斗,而柱状装药则仅产生挤压破碎作用,只有极少的能量用于岩石的抛出,绝大部分破碎岩石仍滞留于掏槽眼内,这对后继辅助眼和周边眼的爆破极为不利。为使槽腔体积大而干净,并克服岩石的“再生”现象,在掏槽部位中心钻一同直径(或较大直径)超深200 ~ 300 mm 的空孔,不用堵塞,在中空孔中适当装入一定量、延迟起爆的炸药,以加强抛掷作用。它不仅起到一般空孔的作用,提供临空面和破碎补偿空间,而且还能把装药孔破碎的岩石,进一步破碎抛出槽外,从而加大掏槽的有效深度与体积。 2. 直眼掏槽爆破参数的确定 2.1 掏槽眼间距确定 一般直眼掏槽均布置空孔,作为首爆炮孔的自由面和破碎膨胀空间。首爆炮孔爆炸后,其柱状冲击波或应力波在岩体介质中引起破坏,其破坏区域可分为粉碎区、破裂区以及弹性区。因此,在掏槽设计时,主要以柱状装药在介质中产

预裂爆破参数的选择与改进

预裂爆破参数的选择与改进 刘文华 王自力 顾文彬 (南京工程兵工程学院 南京 210007) 摘 要 介绍了预裂爆破技术参数的选择、计算方法及其改进措施,取得了较好的爆破效果,检验了所取预裂爆破主要参数的合理性,为今后大面积预裂爆破提供了参数依据。 关键词 预裂爆破 参数选取 装药结构 1 前言 预裂爆破是在光面爆破基础上发展起来的一项控制爆破技术,自发明至今已有四十多年的历史。它作为保护设计介质面的技术,在实践中日趋完善,目前已广泛应用于露天矿边坡、水利电力、交通运输、旧建筑物基础拆除、船坞码头等工程之中来提高保留区壁面的稳定性。在工程实践中,为了获得符合要求的预裂壁面,应通过计算分析,确定预裂爆破的主要参数。本文介绍了预裂爆破的几次实验情况,目的是检验所取预裂爆破主要参数的合理性,为今后大面积预裂爆破提供参数依据。 2 第一次爆破情况 2.1 预裂爆破预裂孔参数 2.1.1 钻孔直径D 按工程所具备的钻孔机械设备确定,钻孔机械为Y Q—150型潜孔机钻孔,钻孔直径为D=150mm。2.1.2 炮孔间距a 炮孔间距a根据瑞典古斯塔夫经验公式E=a/D =7.8~12.5确定(E为钻孔间距系数),a=D×E =(7.8~12.5)D,取a=8D=0.8m。 2.1.3 不偶合系数n 为使炸药在炮孔内均匀分布,采用分段间隔不偶合装药,综合多种因素确定预裂装药药卷直径d =57mm,则不偶合系数采用n=D/d=150/57=2.63。 2.1.4 预裂孔孔深L 为了爆破不留根底和不破坏台阶底部岩体的完整性,据实际情况初步选定孔深L=7.5m。 2.1.5 线药密度Q线 为了保证形成贯通相邻炮孔裂缝,采用经验公式: Q线=0.36[R y]0.63a0.67kg/m 式中:a——孔裂距间距;[R y]——岩体的极限抗压强度,kg/cm2。 取[R y]=300kg/cm2,依经验公式计算得Q线= 337g/m。 2.1.6 装药结构 采用分段间隔装药,以导爆索作为起爆元件,将炸药准确地绑在既定位置。采用粗砂及钻孔钻屑堵塞,堵塞长度为l=1.0~1.5m。 2.1.7 排距B取90~110cm。 2.2 爆破效果 2.2.1 抛掷明显,爆堆分散。 2.2.2 上部(约1.5m)超爆,形成漏斗。 2.2.3 中部(2m以下)约3m厚效果很好。残孔率为25/29=86%,不平整度为5~15cm。 2.2.4 底部留有埂底:高1.5~2.0m,宽约1.0~ 1.5m。底部裂缝已贯通,宽度约5mm左右。 2.3 原因分析 2.3.1 钻孔精度较高。 2.3.2 主爆孔药量偏大,预裂孔中间装药量较为合适。 2.3.3 上部出现超爆的原因为装药结构不够合理,顶部药量偏大且开挖时上部岩石破碎严重。 2.3.4 底部出现埂底,主要是底部药量偏小(裂缝太小),还可能是由于底部装药未到底部。 2.4 改进措施 2.4.1 改善预裂孔装药结构,Q线保持不变(单孔药量不变),增大底部药量,相应地减小了顶部药量。底部4卷连续装药(680g/m,中间6卷每卷间隔35cm (243g/m),顶部1m为2卷间隔50cm(170g/m)。 2.4.2 适当增大参数B(根据破坏半径确定); 主爆孔破坏半径r=( b R m S T )1/A?r0. (A= T 2-T ,b=2-A)岩石的动态抗拉强度只有其动态抗压强度的0.1左右,故环向拉应力很容易大于岩石的动态抗拉强度极限,在岩体中产生径向裂缝。 R m=0.125?Q0?D2=0.125×0.95×36002 =1.539M Pa,A=1.5, r=( 0.5×1.539 0.1×110 )1/1.5×64÷2=5.43m 又据经验公式r=(50~100)d(d为药卷直径)得,r =(50~100)×57=2.9~5.7m。主爆区最后一排距预 61 第11卷 第5期1999年9月 西部探矿工程  (岩土钻掘矿业工程)

2 爆破参数

1 掏槽方式 掏槽爆破技术是巷道掘进爆破的关键技术,直接关系到一茬炮的成败,必须认真进行科学、合理的技术设计。 掏槽眼应根据巷道岩石条件和巷道断面大小进行设计,通常布置在巷道中央偏下,并尽量选择有弱面的地方。掏槽眼首先爆破时,自由面和空间小,受到的夹制作用大,一般装药量较大。掏槽效果的好坏很大程度上决定了整个掘进爆破的效果。实际发生的炮眼利用率低、崩倒棚子、飞石砸坏工作面设施等现象都是掏槽爆破设计不合理造成的。 目前在巷道掘进中常用的掏槽方式,按掏槽眼的方向可分为斜眼掏槽、直眼掏槽和混合掏槽。 1.1 斜眼掏槽方式 斜眼掏槽是巷道掘进中最常见的掏槽方法,其特点是炮眼与工作面斜交。通常根据岩巷断面的大小和岩层的坚固性来确定炮眼的角度和数目,一般为6~8个炮眼呈对称布置,角度为60°~75°,装药满度系数大约为0.7。 斜眼掏槽的主要优点是: 1)适用于各类岩层的爆破,并能获得较好的掏槽效果。 2)槽腔体积较大,能将爆破槽内的岩石全部或部分抛出,形成有效自由面,为崩落眼爆破创造有利的破岩条件。 3)掏槽眼位容易掌握,槽眼的位置和倾角的精确度对掏槽效果的影响较小。 斜眼掏槽的主要缺点是: 1)钻眼的角度在空间上难以掌握,要求钻工具有较熟练的技术水平;多台钻机作业时互相干扰较大。 2)斜眼掏槽深度受巷道宽度的限制,对于中、小断面巷道,不适于深孔爆破。 3)当巷道断面和炮眼深度变化时,必须相应修改掏槽爆破的几何参数,不可能设计出适合于任何断面和深度的标准掏槽方式。 4)全断面巷道爆破下的岩石抛掷距离较大,爆堆分散,除给清道和装岩造成困难外,还容易崩坏支架和设备。 垂直楔形掏槽的特点及适用条件为: 1)掏槽眼相交的轴线通常为巷道的垂直中线。

爆破技术要求

1 总则 1.0.1 本规范适用于1、2、3级水工建筑物岩石基础开挖工程。 1.0.2 编制水工建筑物岩石基础开挖施工组织设计,应符合本规范的规定。 1.0.3 施工前,建设或设计、勘测单位必须向施工单位提交与施工有关的设计文件、施工图纸,以及工程地质和水文地质资料,并进行技术交底。 1.0.4 施工中,勘测单位必须按照现行《水利水电工程施工地质规程》的规定,进行施工地质工作。 施工地质工作中,若发现实际地质情况与前期地质资料和结论有较大出入,或发现新的不良地质因素,建设、勘测、设计单位必须及时与施工单位协商,以便采取补救措施或修改设计。设计上的重大修改,必须报经原设计审批单位批准。 1.0.5 施工单位必须按照现行《水利水电工程施工测量规范》的规定,进行施工测量工作。 1.0.6 施工单位必须按照设计文件、施工图纸和本规范施工。 施工单位对设计文件、施工图纸存在异议,可向建设、设计、勘测单位提出意见,但在未接到修改设计通知书或修改图纸时,不得在施工中变更设计。 施工单位应做好施工记录和有关资料、报告等的整理、编制工作。 1.0.7 施工单位应积极采取新技术、新材料、新工艺、新设备施工。 1.0.8 水工建筑物岩石基础开挖,应采用钻孔爆破法施工。 严禁在设计建基面、设计边坡附近采用洞室爆破法或药壶爆破法施工。

其他部位如需采用洞室爆破法或药壶爆破法施工,必须通过专门试验(或安全技术论证)证明可行和制定补充规定,并经上级主管部门批准。 1.0.9 本规范未作规定者,应执行现行国家或行业标准的有关规定,若仍无规定可循,应由建设、设计、勘测单位和施工单位协商制定补充规定,并经上级主管部门批准。 -------------------------------------------------------------------------------- 2 开挖、排水和出渣运输 2.1 开挖 2.1.1 开挖前,施工单位必须提出开挖施工计划和技术措施。 2.1.2 开挖应自上而下进行。 某些部位如需上、下同时开挖,应采取有效安全技术措施,并经主管部门同意。未经安全技术论证和主管部门批准,严禁采用自下而上的开挖方式。 2.1.3 设计边坡轮廓面开挖,应采用预裂爆破或光面爆破方法。 高度较大的永久和半永久边坡,应分台阶开挖。 2.1.4 基础岩石开挖,应主要采用分层的梯段爆破方法。 2.1.5 紧邻水平建基面,应采用预留岩体保护层并对其进行分层爆破的开挖方法,若采用其他开挖方法,必须通过试验证明可行,并经主管部门批准。

深浅孔台阶爆破参数

?露天深孔台阶爆破台阶高度H 钻孔直径d 药卷装药直径d1 ?底盘抵抗线W1:W1=k×d W1=(0.6~0.9)H ?超深h:h=(0.15~0.35) W1 h=(0.12~0.30)H h=(8~12)d ?孔距a:a = mW1 m= 1.0~1.25 ?排距b:b = (0.6~1.0) W1 b = a×sin60°= 0.866a ?钻孔深度L:L=(H+h) /sinαL= L1+L2 ?填塞长度L2 :L2 = (20~40) d L2 ≮ 0.75W1 L2 =(0.7~1.0)W1 ?装药长度L1 : ?单耗q:查表 ?线装药密度q1:q1=Q/L1 ?单孔装药量Q: ?根据以上参数经验公式对深孔爆破进行设计: H=15m,d=165mm,确定单耗q=0.35~0.45kg/m3,计算W1、a、b、h、L、L2、单孔药量Q和线装药密度q1。 ?如果计算的单孔药量不能满足填塞长度的要求,则要调整W1、a、b等数值,再重新计算调整。一般来说,岩性、炸药和爆破要求确定后,单耗的数值不应变化太大。 参数设计: H=15m,d=165mm, W1=35d=5.8m,h=1.6m, L=16.6m, a=7m,b=5.8m, 确定单耗q=0.35~0.45kg/m3, 单孔药量Q=qHab=240kg, 采用耦合、连续装药结构,按每m装药量20kg计(装药密度0.95g·cm-3 ), 装药高度L1=12m,填塞长度L2=4.6m。 3.1浅孔爆破主爆区参数设计 孔径d=40mm,台阶高度H=1.5m; 底板抵抗线W1: W1=(0.4~1.0)H,取W1=0.8m; 炮孔间距a:a=(1.0~2.0)W1,取a=1.0m; 炮孔排距b:b=(0.8~1.0) W1,取b=0.8m; 超深h:h=(0.10~0.15) H,取h=0.2m; 炮孔深度L:L=H+h,L=1.7m; 单位耗药量q:根据经验,取q =0.4kg/m3; 单孔装药量Q:Q=qabH=0.4×1×0.8×1.5=0.48kg,取Q=0.5kg。(以上参数根据实爆结果进行调整) 炸药选用直径为32mm的乳化炸药药卷,每支长20cm,重200g,每个炮孔装药长度为0.5m,填塞长度为1.2m。 3.2浅孔爆破预裂爆破参数设计

相关文档
最新文档