物理化学Ⅱ13统计热力学基础(三)-分子配分函数和正则系综(范康年) 2

物理化学Ⅱ13统计热力学基础(三)-分子配分函数和正则系综(范康年) 2
物理化学Ⅱ13统计热力学基础(三)-分子配分函数和正则系综(范康年) 2

物理化学答案——第六章-统计热力学

第六章 统计热力学基础 内容提要: 1、 系集最终构型: 其中“n*”代表最可几分布的粒子数目 2.玻耳兹曼关系式: 玻耳兹曼分布定律: 其中,令 为粒子的配分函数。玻耳兹曼分布定律描述了微观粒子能量分布中最可几的分布方式。 3、 系集的热力学性质: (1)热力学能U : (2)焓H : **ln ln ln ! i n i m i i g t t n ≈=∏ 总2,ln ( )N V Q U NkT T ?=?i i i Q g e βε-=∑ *i i i i i i i i n g e g e N g e Q βεβεβε---==∑ m ln ln S k t k t ==总

(3)熵S : (4)功函A : (5)Gibbs 函数G : (6)其他热力学函数: 4、粒子配分函数的计算 (1)粒子配分函数的析因子性质 粒子的配分函数可写为: ,ln ln ln ()m N V S k t Q Q Nk NkT Nk N T =?=++? (i) t v e n r kT i i kT kT kT kT kT t r v e n t r v e n t r v e n Q g e g e g e g e g e g e Q Q Q Q Q εεεεεε------===∑∑∑∑∑∑2,ln N V Q H U pV NkT NkT T ??? =+=+ ????ln Q A NkT NkT N =--ln Q G NkT N =-() 22 ln ln ln ln V V U Q Q C Nk Nk T T T ????? ==+ ??????

《物理化学》课程教学大纲

《物理化学》课程教学大纲 参考书:天津大学主编,《物理化学》高等教育出版社,2010年5月第五版 王岩主编,《物理化学学指导》,大连海事大学出版社,2006年6月 于春玲主编,《物理化学解题指导》。大连理工大学出版社,2011年11月 开课单位:轻工与化学工程学院基础化学教学中心 简介: 物理化学课程是化工类专业重要理论基础课,其内容主要包括:化学热力学、统计热力学、化学动力学三大部分。其先行课要求学生学习高等数学、大学物理、无机化学、分析化学、有机化学。 物理化学是从化学变化和物理变化联系入手,采用数学的手段研究化学变化的规律的一门科学。研究方法多采取理想化方法,集抽象思维和形象思维,其实验是采用物理实验的方法。 化学热力学采用经典的热力学第一定律、热力学第二定律、热力学第三定律,从宏观上研究化学变化过程的规律,通过理论计算来判断化学反应的方向和限度(化学平的衡位置)、以及平衡状态时系统的相变化、界面变化、电化学变化、胶体化学变化的规律,同时,研究影响这些变化规律的因素(如:温度、压力、浓度、组成等等)。 统计热力学则从微观上,用统计学的方法,研究化学反应的变化规律。试图通过理论的计算热力学的状态函数。 化学动力学研究化学反应的速率和机理,以及影响化学反应速率的条件(如:温度、压力、浓度、组成、催化剂等等)。通过化学反应的条件控制化学反应的进行,通过化学反应机理的研究,确定化学反应的速率方程。 第一章气体的pVT性质 考核内容: 一、理想气体的状态方程 二、理想气体混合物 三、气体的液化及临界参数 四、真实气体状态方程 五.对应状态原理及普遍化压缩因子图 第二章热力学第一定律 考核内容: 一、热力学基本概念 二、热力学第一定律 三、恒容热、恒压热,焓 四、热容,恒容变温过程、恒压变温过程1.热容

统计热力学基础复习整理版汇总

统计热力学基础 一、单选题 1) 统计热力学主要研究(A )。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系(D) 耗散结构(E) 单个粒子的行为 2) 体系的微观性质和宏观性质是通过( C)联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3) 统计热力学研究的主要对象是:( D) (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4) 下述诸体系中,属独粒子体系的是:(D ) (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体(D) 理想气体(E) 真实气体 5) 对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:(B ) (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理(E) 能量均分原理 6) 在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:(B ) (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7) 在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:(A ) (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8) 以0到9这十个数字组成不重复的三位数共有(A ) (A) 648个(B) 720个(C) 504个(D) 495个 9) 各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:(B ) (A)?ε t > ?ε r > ?ε v > ?ε e(B)?ε t < ?ε r < ?ε v < ?ε e (C) ?ε e > ?ε v > ?ε t > ?ε r(D)?ε v > ?ε e > ?ε t > ?ε r (E)?ε r > ?ε t > ?ε e > ?ε v 10) 在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:(C ) (A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系 11) 对于定域子体系分布X所拥有的微观状态t x为:( B)

物化教案统计热力学

第 27 次课 2 学时 注:本页为每次课教案首页

第七章. 统计热力学基础 §7.1 概论 统计热力学的研究方法和目的 ⑴何谓统计热力学? 以较简洁的方法将体系的微观性质与宏观性质联系起来,用分子的微观性质与分子间的相互作用表示出体系的热力学函数、函数间的关系及热力学性质。这样得到的理论体系,称为统计热力学。 ⑵统计热力学的研究对象:研究对象与热力学一致。研究含有大量粒子的平衡体系。 ⑶二者在研究方法上的区别:热力学属于宏观理论,是由热力学两个经验定律为基础,研究平衡的宏观体系各性质之间的相互关系。能预测过程自动进行的方向和限度。具有高度的可靠性和普遍性。由于热力学不研究体系的微观性质,所以不能给出微观性质与宏观性质之间的联系。统计热力学的研究方法是微观的方法,从体系所含粒子的微观性质出发,以粒子运动时普遍遵循的力学规律为基础,用统计的方法,直接推求大量粒子运动的统计平均结果,以得出平衡体系各种宏观性质的具体数值。统计热力学把体系的微观性质和宏观性质联系起来了。对简单分子,使用统计热力学的方法进行运算,其结果是令人满意的。但对复杂分子或凝聚体系,应用统计热力学的结果还存在着很大的困难。 热力学和统计热力学从两个不同的方向研究大量粒子运动的规律,彼此联系,互为补充。 ⑷统计方法的分类 一般分为经典统计(以经典力学为基础)和量子统计(以量子力学为基础)。经典统计又分玻尔兹曼统计和吉布斯统计。量子统计分为玻色—爱因斯坦统计和费米—狄拉克统计。从科学发展时间看,先有经典统计后有量子统计。从科学的严谨性来看量子统计更准确更严格。量子统计经近似可得到玻尔兹曼统计。 本章先介绍经典玻尔兹曼统计,然后介绍修正的玻尔兹曼统计,最后介绍玻色—爱因斯坦统计和费米—狄拉克统计。 统计体系的分类 ⑴依据粒子能否分辨,体系分为定位体系和非定位体系。 定位体系:有固定位置,粒子可区分。也称为定域子体系。如晶体。 非定位体系:粒子处于混乱状态,不可分辨。也称为离域子体系。如气体,液体。

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科 B 2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 3.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 5.对于玻尔兹曼分布定律n i =(N/q)·g i·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,n i总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6.对于分布在某一能级εi上的粒子数n i,下列说法中正确是:( ) A. n i与能级的简并度无关 B. εi值越小,n i 值就越大 C. n i称为一种分布 D.任何分布的n i都可以用波尔兹曼分布公式求出 B 7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj和εi上分布的粒子数之比为:( ) A. 0.5exp(ε j/2kT) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2ε j/kT) C 8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是:( ) A.Θv越高,表示温度越高 B.Θv越高,表示分子振动能越小 C. Θv越高,表示分子处于激发态的百分数越小 D. Θv越高,表示分子处于基态的百分数越小 C 11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( )

物理化学答案 第九章 统计热力学初步

第九章统计热力学初步 1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。现有1 mol CO气体于0 oC、101.325 kPa条件下置于立方容器中,试求: (1)每个CO分子的平动能; (2)能量与此相当的CO分子的平动量子数平方和 解:(1)CO分子有三个自由度,因此, (2)由三维势箱中粒子的能级公式 2.某平动能级的,使球该能级的统计权重。 解:根据计算可知,、和只有分别取2,4,5时上式成立。因此,该能级的统计权重为g = 3! = 6,对应于状态。 3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级的 能量差,并求时的。 解:假设该分子可用刚性转子描述,其能级公式为 4.三维谐振子的能级公式为,式中s为量子数,即

。试证明能级的统计权重为 解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。 x盒中放置球数0,y, z中的放置数s + 1 x盒中放置球数1,y, z中的放置数s ………………………………………. x盒中放置球数s,y, z中的放置数1 方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。该平面上为整数的点的总数即为所求问题的解。这些点为平面在平面上的交点: 由图可知, 5.某系统由3个一维谐振子组成,分别围绕着 A, B, C三个定点做振动,总能量为。试 列出该系统各种可能的能级分布方式。 解:由题意可知方程组 的解即为系统可能的分布方式。 方程组化简为,其解为 3

6 3 3 6.计算上题中各种能级分布拥有的微态数及系统的总微态数。 解:对应于分布的微态数为 所以 3 6 3 3 15 10.在体积为V的立方形容器中有极大数目的三维平动子,其,式计算该系统在平衡情况下,的平动能级上粒子的分布数n与基态能级 的分布数之比。 解:根据Boltzmann分布 基态的统计权重,能级的统计权重(量子数1,2,3),因此 11.若将双原子分子看作一维谐振子,则气体HCl分子与I2分子的振动能级间隔分别是 和。试分别计算上述两种分子在相邻振动能级上分布数之比。 解:谐振子的能级为非简并的,且为等间隔分布的 12.试证明离域子系统的平衡分布与定域子系统同样符合波尔兹曼分布,即

统计热力学基本方法

第五章 统计热力学基本方法 在第四章我们论证了最概然分布的微观状态数lnt m 可以代替平衡系统的总微观状态数ln Ω,而最概然分布的微观状态数又可以用粒子配分函数来表示。在此基础上,为了达到从粒子的微观性质计算系统的宏观热力学性质之目的,本章还需重点解决以下两个问题:(1)导出系统的热力学量与分子配分函数之间的定量关系;(2)解决分子配分函数的计算问题。 §5.1 热力学量与配分函数的关系 本节的主要目的是推导出系统的热力学函数与表征分子微观性质的分子配分函数间的定量关系。在此之前先证明β = - 1/(kT ) 一 求待定乘子β 对独立可别粒子系统: ln Ω = ln t m = ln (N !∏i i i ! g i N N ) = ln N ! +i i i ln g N ∑ - ∑i i !ln N 将Stirling 近似公式代入、展开得 ln Ω = N ln N +i i i ln g N ∑ - ∑i i i ln N N 代入Boltzmann 关系式 (4—6)得 S = k (N ln N +i i i ln g N ∑ - ∑i i i ln N N ) 按Boltzmann 分布律公式 N i = q N g i exp (βεi ) ,代入上式的ln N i 中,利用粒子数与能量守恒关系得 独立可别粒子系统: S = k (N ln q -βU ) (5—1a) 独立不可别粒子系统: S = k (N ln q -βU - ln N ! ) (5—1b) 上式表明S 是(U ,N ,β)的函数,而β是U ,N ,V 的函数,当N 一定时,根据复合函数的偏微分法则 N V N U N N V U S U S U S ,,,,??? ? ??????? ????+??? ????=??? ????βββ 对(5—1a,b )式微分结果均为 N V U S ,??? ????N V N V U U q N k k ,,ln ??? ??????? ?????-???? ????+-=βββ (5—2) 又 q = )ex p(g i i i βε ∑ 所以 N V q ,ln ???? ????β = N V q q ,1???? ????β= )ex p(g 1i i i i βεε∑q =N U (5—3) 代入(5—2)式得 N V U S ,? ?? ????= - k β 对照热力学中的特征偏微商关系 T U S N V 1,= ? ?? ???? 便可以得到 kT 1-=β

物理化学 第五版 统计热力学

第七章统计热力学初步练习题 一、判断题: 1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。 2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。 3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。 4.玻尔兹曼分布就是最概然分布,也是平衡分布。 5.分子能量零点的选择不同,各能级的能量值也不同。 6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。 7.分子能量零点的选择不同,分子在各能级上的分布数也不同。 8.分子能量零点的选择不同,分子的配分函数值也不同。 9.分子能量零点的选择不同,玻尔兹曼公式也不同。 10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。 11.分子能量零点的选择不同,所有热力学函数的值都要改变。 12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道q t这一配分函数值就行了。 13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。 14.在计算系统的熵时,用ln W B(W B最可几分布微观状态数)代替1nΩ,因此可以认为W B与Ω大小差不多。 15.在低温下可以用q r = T/σΘr来计算双原子分子的转动配分函数。 二、单选题: 1.下面有关统计热力学的描述,正确的是: (A) 统计热力学研究的是大量分子的微观平衡系统; (B) 统计热力学研究的是大量分子的宏观平衡系统; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列说法正确的是: (A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。

07章统计热力学基础(1)

第七章统计热力学基础 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明: U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×, (1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少? 6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度? 7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。

物化优秀教案统计热力学

173 / 23 第 27 次课 2 学时 注:本页为每次课教案首页

第七章. 统计热力学基础 §7.1 概论 统计热力学的研究方法和目的 ⑴何谓统计热力学? 以较简洁的方法将体系的微观性质与宏观性质联系起来,用分子的微观性质与分子间的相互作用表示出体系的热力学函数、函数间的关系及热力学性质。这样得到的理论体系,称为统计热力学。 ⑵统计热力学的研究对象:研究对象与热力学一致。研究含有大量粒子的平衡体系。 ⑶二者在研究方法上的区别:热力学属于宏观理论,是由热力学两个经验定律为基础,研究平衡的宏观体系各性质之间的相互关系。能预测过程自动进行的方向和限度。具有高度的可靠性和普遍性。由于热力学不研究体系的微观性质,所以不能给出微观性质与宏观性质之间的联系。统计热力学的研究方法是微观的方法,从体系所含粒子的微观性质出发,以粒子运动时普遍遵循的力学规律为基础,用统计的方法,直接推求大量粒子运动的统计平均结果,以得出平衡体系各种宏观性质的具体数值。统计热力学把体系的微观性质和宏观性质联系起来了。对简单分子,使用统计热力学的方法进行运算,其结果是令人满意的。但对复杂分子或凝聚体系,应用统计热力学的结果还存在着很大的困难。 热力学和统计热力学从两个不同的方向研究大量粒子运动的规律,彼此联系,互为补充。 ⑷统计方法的分类 一般分为经典统计(以经典力学为基础)和量子统计(以量子力学为基础)。经典统计又分玻尔兹曼统计和吉布斯统计。量子统计分为玻色—爱因斯坦统计和费米—狄拉克统计。从科学发展时间看,先有经典统计后有量子统计。从科学的严谨性来看量子统计更准确更严格。量子统计经近似可得到玻尔兹曼统计。 本章先介绍经典玻尔兹曼统计,然后介绍修正的玻尔兹曼统计,最后介绍玻色—爱因斯坦统计和费米—狄拉克统计。 统计体系的分类 ⑴依据粒子能否分辨,体系分为定位体系和非定位体系。 定位体系:有固定位置,粒子可区分。也称为定域子体系。如晶体。 非定位体系:粒子处于混乱状态,不可分辨。也称为离域子体系。如气体,液体。

物理化学统计热力学:模拟试卷A

物理化学第三章模拟试卷A 班级姓名分数 一、选择题( 共10题20分) 1. 2 分 假定某原子的电子态有两个主要能级,即基态和第一激发态,能级差为1.38?10-21 J,其余能级可以忽略,基态是二重简并的。则在100 K时,第一激发态与基态上的原子数之比为:( ) (A) 3 (B) 0.184 (C) 1 (D) 0.01 2. 2 分 如果我们把同一种分子分布在二个不同能级ε与ε'上的n与n' 个分子看成是“不同种”的分子 A 与A',则这“两种分子”将可按A' A 进行转化而达到平衡。请计算这个“化学平衡”的K n。 3. 2 分 H2O 分子气体在室温下振动运动时C V,m的贡献可以忽略不计。则它的C p,m /C V,m值为(H2O 可当作理想气体):( ) (A) 1.15 (B) 1.4 (C) 1.7 (D) 1.33 4. 2 分 气体CO和N2有相近的转动惯量和相对分子摩尔质量,在相同温度和压力时,两者平动和转动熵的大小为:( ) (A) S t,m(CO)=S t,m(N2), S r,m(CO)>S r,m(N2) (B) S t,m(CO)>S t,m(N2), S r,m(CO)>S r,m(N2) (C) S t,m(CO)=S t,m(N2), S r,m(CO)

第七章 统计热力学基础

第七章统计热力学基础 一、单选题 1.统计热力学主要研究()。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系 (D) 耗散结构(E) 单个粒子的行为 2.体系的微观性质和宏观性质是通过()联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3.统计热力学研究的主要对象是:() (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4.下述诸体系中,属独粒子体系的是:() (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体 (D) 理想气体(E) 真实气体 5.对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:() (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论 (D) 统计学原理(E) 能量均分原理

6.在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:() (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7.在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:() (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8.以0到9这十个数字组成不重复的三位数共有() (A) 648个(B) 720个(C) 504个(D) 495个 9.各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:() (A)△e t >△e r >△e v >△e e(B)△e t <△e r <△e v <△e e (C) △e e >△e v >△e t >△e r(D)△e v >△e e >△e t >△e r (E)△e r >△e t >△e e >△e v 10.在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:() (A) 气体和晶体皆属定域子体系(C) 气体属离域子体系而晶体属定域子体系 (B) 气体和晶体皆属离域子体系(D) 气体属定域子体系而晶体属离域子体系 11.对于定位系统分布X所拥有的微观状态t x为:(B) (A)(B)

南京大学《物理化学》练习 第三章 统计热力学基础

第三章统计热力学基础 返回上一页 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明:U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×, (1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少?

6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度? 7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。 (3)计算1 mol Ar气在标准状态下的统计熵值。设Ar 的核和电子的简并度均等于1。 8.Na原子气体(设为理想气体)凝聚成一表面膜 (1)若Na原子在膜内可自由运动(即二维平动),试写出此凝聚过程的摩尔平动熵变的统计表达式。 (2)若 Na原子在膜内不动,其凝聚过程的摩尔平动熵变的统计表达式又将如何? (要用相对原子质量Ar,体积V,表面积A,温度T等表示的表达式) 9. 某物X是理想气体,每个分子中含有 n个原子。在273.2K时,X(g) 与N2(g)的C(p,m)值相同,在这个温度下振动的贡献可以忽略。当升高温度后,X(g)的C(p,m)值比N2的C(p,m)值大3R,从这些信息计算n等于多少,X是什么形状的分子。 10. CO的转动特征温度为2.8 K,请找出在240 K时CO最可能出现在J等于多少的量子态上。 (J为转动量子数,取整数,转动简并度为(2J+1))

622物理化学考试大纲

硕士研究生入学统一考试《物理化学Ⅰ》科目大纲 (科目代码:622) 学院名称(盖章):化学化工学院 学院负责人(签字): 编制时间:2014年8月20日

《物理化学Ⅰ》科目大纲 (科目代码:622) 一、考核要求 物理化学主要内容包括气体、化学热力学(统计热力学)、化学动力学、电化学、界面化学与胶体化学等。要求考生熟练掌握物理化学的基本概念、基本原理及计算方法。 二、考核目标 物理化学考试在考查基本知识、基本理论的基础上,注重考查考生灵活运用这些基础知识观察和解决实际问题的能力。它的评价标准是高等学校优秀毕业生能达到及格或及格以上水平,以保证被录取者具有较扎实的物理化学基础知识。 三、考核内容 第一章气体 §1.1 气体分子运动论 §1.2 摩尔气体常数 §1.3 理想气体的状态图 §1.4 气体运动的速率分布 §1.5 气体平动能分布 §1.6 气体分子在重力场中的分布 §1.7 分子的碰撞频率与平均自由程 §1.8 实际气体 §1.9 气液间的转变 §1.10 压缩分子图 掌握理想气体状态方程和混合气体的性质(组成的表示、分压定律、分容定律)。了解分子碰撞频率、平均自由程和实际气体概念,特别要了解实际气体的状态方程(范德华方程)以及实际气体的液化、临界性质、应状态原理与压缩因子图等。 第二章热力学第一定律及其应用 §2.1 热力学概论 §2.2 热平衡与热力学第零定律-温度的概念 §2.3 热力学的一些基本概念 §2.4 热力学第一定律 §2.5 准静态过程和和可逆过程 §2.6 焓 §2.7 热容 §2.8 热力学第一定律对理想气体的应用 §2.9 Carnot循环 §2.10 实际气体 §2.11 热化学 §2.12 赫斯定律 §2.13 几种热效应

统计热力学OK

统计热力学 摘要:统计热力学应用统计力学方法研究平衡系统的热力学性质。统计热力学认为物质的宏观性质是大量微观粒子运动量的统计平均值的体现。统计热力学从系统内部粒子的微观性质及其结构的数据出发,在统计原理的基础上,运用力学和统计规律推求大量粒子运动的统计平均结果,从而得到宏观性质。统计力学把热运动的宏观现象和微观机制联系起来,给经典热力学的唯象理论提供了数学证明。随着计算机和量子力学的发展,统计热力学会在工程上有更为广泛的应用。 关键词:统计热力学微观经典热力学 Statistical Thermodynamic Abstract:Statistical thermodynamic applies statistical mechanics method to study the thermodynamic properties of balance system. On the basis of statistical principle, statistical thermodynamic starts from internal system of the micro particle properties and structure of data in view of statistics to derive a lot of particle motion statistical average results, thus obtains the macroscopic properties. Statistical mechanic makes the thermal movement of the macroscopic phenomena and microscopic mechanism connected, providing a mathematical proof to the classical thermodynamic of phenomenological theory. For the development of computer and quantum mechanics, statistical thermodynamic will be more widely used in engineering. Key words:statistical thermodynamic microscopic classical thermodynamics 1 序论 热力学是以热力学三定律为基础,以大量分子的集合体作为研究对象,利用热力学数据,通过严密的逻辑推理,进而讨论平衡系统的各宏观性质之间的相互关系及其变化规律,揭示变化过程的方向和限度[1-3]。从热力学所得到的结论对宏观平衡系统具有高度的普适性和可靠性,但是,热力学处理问题时没有考虑物质的微观结构,而任何物质的各种宏观性质都是微观粒子运动的客观反映[4]。人们希望从物质的微观结构出发来了解其各种宏观性质,这是经典热力学所不能满足的,而统计热力学在这点上弥补了经典热力学的不足[5-6]。 统计热力学从微观粒子所遵循的量子规律出发,研究的对象是大量分子的集合体,用统计的方法推断出宏观物质的各种性质之间的联系,阐明热力学定律的微观含义,揭示热力学函数的微观属性。统计热力学可以根据统计单元的力学性质(如速率,动量,位置,振动等),用统计的方法来推求系统的宏观热力学性质(如压力,热容,熵等)[7-8]。 2 统计热力学 2.1 统计力学的发展历程 统计力学产生于经典分子运动论。麦克斯韦(James Clerk Maxwell,1831—1879) 通常被认为是统计力学理论的奠基人。他率先开始寻找热力学系统的微观处理方法(表征为统计力学特性)和唯象处理方法(表征为热力学特性)之间的联系。1860年麦克斯韦题为《对气体运动论的解释》的论文,第一次提出了统计力学的基本思想。1867年麦克斯韦引入了

统计热力学试题及答案

第六章统计热力学初步练习题 一、判断题: 1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。 2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。 3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。 4.玻尔兹曼分布就是最概然分布,也是平衡分布。 5.分子能量零点的选择不同,各能级的能量值也不同。 6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。 7.分子能量零点的选择不同,分子在各能级上的分布数也不同。 8.分子能量零点的选择不同,分子的配分函数值也不同。 9.分子能量零点的选择不同,玻尔兹曼公式也不同。 10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。 11.分子能量零点的选择不同,所有热力学函数的值都要改变。 12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道q t这一配分函数值就行了。 13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。 14.在计算系统的熵时,用ln W B(W B最可几分布微观状态数)代替1nΩ,因此可以认为W B与Ω大小差不多。 15.在低温下可以用q r = T/σΘr来计算双原子分子的转动配分函数。 二、单选题: 1.下面有关统计热力学的描述,正确的是: (A) 统计热力学研究的是大量分子的微观平衡体系; (B) 统计热力学研究的是大量分子的宏观平衡体系; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列说法正确的是: (A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。

统计热力学

课程性质、目的、任务 统计热力学是化学系主干课《物理化学》课程的一个重要组成部分,是联系平衡态热力学和量子力学的桥梁。通过统计热力学的学习,应使学生明确物质的宏观性质及其规律与组成它们的分子的微观性质及运动规律之间的联系;掌握统计热力学处理问题的基本对象、基本思路、基本假设及局限性;明确统计热力学是如何采用求“平均值”的方法,由物质的微观特性推算物质的宏观性质的。 教学基本要求 1.掌握统计热力学处理问题的基本思路和假设,明确统计方法在描述微观粒子运动状态的重要性; 2.理解粒子的能级分布与状态分布、最概然分布与平衡分布的关系; 3.了解玻尔兹曼分布律的导出及配分函数的引入,掌握两者的物理意义;4.理解配分函数的表达形式,掌握配分函数的基本计算,熟悉独立子体系的配分函数与热力学函数间的关系;掌握由配分函数估算平衡常数的方法及标准摩尔吉布斯自由能函数和标准摩尔焓函数的应用,熟悉统计热力学在导出理想气体状态方程、解释原子晶体热容及诠释热力学定律等方面的应用;5.了解玻色—爱因斯坦统计和费米—狄拉克统计。 教学内容与学时安排 1.统计热力学研究的内容与方法 粒子运动状态的描述 最概然分布与平衡分布3学时 2.玻尔兹曼分布律的导出及配分函数 配分函数与热力学函数间的关系3学时 3.配分函数的计算 统计热力学阐明热力学定律等方面的应用 玻色—爱因斯坦统计和费米—狄拉克统计4学时 4.化学平衡与平衡常数由配分函数估算平衡常数 标准摩尔吉布斯自由能函数和标准摩尔焓函数的应用4学时 5. 复习、考试4学时 考核方式 考试(半开卷) 选用教材 普通高等教育“十一五”国家级规划教材 物理化学(上)

考研化学物理化学必备题集 统计热力学

考研化学物理化学必备题集统计热力学

第六章统计热力学初步练习题 一、判断题: 1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。 2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。 3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。 4.玻尔兹曼分布就是最概然分布,也是平衡分布。 5.分子能量零点的选择不同,各能级的能量值也不同。 6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。 7.分子能量零点的选择不同,分子在各能级上 ·2·

的分布数也不同。 8.分子能量零点的选择不同,分子的配分函数值也不同。 9.分子能量零点的选择不同,玻尔兹曼公式也不同。 10.分子能量零点的选择不同,U,H,A,G 四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。 11.分子能量零点的选择不同,所有热力学函数的值都要改变。 12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道q t这一配分函数值就行了。 13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。 14.在计算系统的熵时,用ln W B(W B最可几分布微观状态数)代替1nΩ,因此可以认为W B 与Ω大小差不多。 ·3·

15.在低温下可以用q r = T/σΘr来计算双原子分子的转动配分函数。 二、单选题: 1.下面有关统计热力学的描述,正确的是:(A) 统计热力学研究的是大量分子的微观平衡体系; (B) 统计热力学研究的是大量分子的宏观平衡体系; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列说法正确的是: (A) 晶体属离域物系而气体属定域物系;(B)气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。 ·4·

物理化学化学专业课程目的与要求

物理化学(化学专业) (physical chemistry) 课程目的与要求 一、物理化学课程的作用和地位 物理化学是化学学科的一个重要分支,是化学专业本科生的一门主干基础课。通过本课程的学习,不仅使学生能系统地掌握物理化学的基本知识和理论基础,而且使他们受到严格的科学训练,具备应用物理化学基本原理和方法去分析和解决问题的能力,培养学生的辩证唯物主义世界观、爱国主义精神以及理论联系实际、艰苦奋斗、勇于创新的科学素质。 二、任务和要求 本课程的任务是介绍化学热力学、统计热力学、化学动力学、电化学和界面及胶体化学的基本原理、方法及应用。通过课堂讲授、自习、讨论课、演算习题、计算机辅助教学、考试等教学环节达到本课程的目的,其基本要求如下:(1)、化学热力学:掌握热力学四大定律、重要热力学公式及其物理意义和应用条件,各热力学量的计算中,掌握标准的选择和非理想体系处理的一般方法,掌握热力学函数表的应用。均相系热力学量之间的关系及转化,据以判断化学变化的方向和限度,掌握相平衡和化学平衡的基本原理及其在实际问题中的应用。了解非平衡态热力学的基本概念。 (2)、统计热力学:掌握玻尔兹曼统计的基本原理,能从微观层次理解体系的一些热力学性质,掌握从分子配分函数及自由能函数表计算简单气相反应平衡常数及理想气体与晶体的热力学函数。 (3)、化学动力学:掌握化学动力学的基本概念及化学动力学的唯象基本规律、反应速率常数、活化能的测定和计算方法,掌握反应级数的求算和反应历程推测的基本方法,初步掌握基元反应速率理论的基本内容、均相和多相催化原理、现代光化学的基本原理及了解分子反应动力学的现代进展。 (4)、电化学:掌握电解质溶液的基本概念和理论、电导及其应用,可逆电池热力学及其应用,了解电极过程动力学的基本内容及其应用,了解电化学基础研究的活跃领域。 (5)、界面及胶体化学:掌握表面热力学以及胶体体系的性质及基本规律、表面活性剂的作用及应用等。 基本内容及学时分配 绪言(1学时)

相关文档
最新文档