植物转录因子及转录调控数据与分析平台

植物转录因子及转录调控数据与分析平台
植物转录因子及转录调控数据与分析平台

植物转录因子及转录调控数据与分析平台

PlantTFDB:植物转录因子数据库

URL: https://www.360docs.net/doc/1f8536167.html,

包含资源:植物转录因子的家族分类规则、基因组转录因子全谱、丰富的注释、转录因子结合图谱(binding motifs)、转录因子预测、系统发生树等

涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等165个物种。

PlantRegMap:植物转录调控数据与分析平台

URL: https://www.360docs.net/doc/1f8536167.html,

包含资源:植物转录调控元件、植物转录调控网络、转录因子结合位点预测、转录调控预测与富集分析、GO富集分析、上游调控因子富集分析等。

涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等156个物种。

ATRM: 拟南芥转录调控网络及其结构和演化分析

URL: https://www.360docs.net/doc/1f8536167.html,

包含资源:基于文本挖掘和人工校验的拟南芥转录调控网络、植物转录调控网络的结构和演化特征

涉及物种:拟南芥

植物转录因子及转录调控数据与分析平台(导航页)

我们致力于为广大科研人员提供一个关于植物转录因子和转录调控、集数据和分析于一体的高质量平台,为研究和理解植物转录调控系统保驾护航。

植物转录因子数据库(PlantTFDB)

一套完整的植物转录因子分类规则

覆盖绿色植物各大分支的转录因子全谱

丰富的功能和演化注释

基因组范围的高质量转录因子结合矩阵(156个物种)

在线转录因子预测平台

植物转录调控数据与分析平台(PlantRegMap)

基于高通量实验(ChIP-seq和DNase-seq)和比较基因组方法鉴定的多种转录调控元件

基于转录因子结合矩阵和转录调控元件推测的转录调控网络

涉及165物种的GO注释

一套植物转录调控预测与分析工具,包括转录因子结合位点预测、转录调控预测与富集分析、GO富集分析及上游调控因子富集分析等

拟南芥转录调控网络及其结构和演化特征(ATRM)

基于文本挖掘和人工校验的拟南芥转录调控网络

植物转录调控网络的结构和演化特征

转录调节位点和转录因子数据库介绍_张光亚

10生物学通报2005年第40卷第11期 2003年即Watson和Crick发表DNA双螺旋结构50周年,宣布了人类基因组计划的完成,与此同时,其他许多生物的基因组计划已完成或在进行中,在此过程中产生的大量数据库对科学研究的深远影响是以前任何人未曾预料到的。然而遗憾的是,许多生物学家、化学家和物理学家对这些数据库的使用甚至去何处寻找这些数据库都只有一个比较模糊的概念。 基因转录是遗传信息传递过程中第一个具有高度选择性的环节,近20年来对基因转录调节的研究一直是基因分子生物学的研究中心和热点,因此亦产生了大量很有价值的数据库资源,对这些数据库的了解将为进一步研究带来极大便利,本文对其中一些数据库进行简要介绍。 1DBTSS DBTSS(DataBaseofTranscriptionalStartSites)由东京大学人类基因组中心维护,网址:http://dbtss.hgc.jp。最初该数据库收集用实验方法得到的人类基因的TSS(TranscriptionalStartSites,转录起始位点)数据。对转录起始位点(TSS)的确切了解具有非常重要的意义,可更准确的预测翻译起始位点;可用于搜索决定TSS的核苷酸序列,而且可更精确地分析上游调控区域(启动子)。自2002年发布第一版以来已作了多次更新。目前包含的克隆数为190964个,含盖了11234个基因,在SNP数据库中显示了人类基因中的SNP位点,而且现在含包含了鼠等其他生物的相关数据。DBTSS最新的版本为3.0。 在该最新的版本中,还新增了人和鼠可能同源的启动子,目前可以显示3324个基因的启动子,通过本地的比对软件LALIGN可以图的形式显示相似的序列元件。另一个新的功能是可进行与已知转录因子结合位点相似的部位的定位,这些存贮在TRANSFAC(http://transfac.gbf.de/TRANSFAC/index.html)数据库中,免费用于研究,但TRANSFAC专业版是商业版本。 DBTSS对匿名登录的用户是免费的,该网站要求用户在使用前注册,用户注册后即可使用。主页分为2个区域,一个介绍网站的部分信息和用户注册,另一区域为用户操作区,该区约分为10个部分,可分别进行物种和数据库的选择、BLAST、SNP以及TF(转录因子)结合部位搜索等部分。后者的使用可以见网页中的Help部分,里面有比较详细的介绍。DBTSS还提供了丰富的与其他相关网站的链接,如上文提到的TRANSFAC数据库、真核生物启动子数据库(Eukaryot-icPromoterDatabase,http://www.epd.isb-sib.ch/)以及人类和其他生物cDNA全长数据库等。 2JASPAR JASPAR是有注释的、高质量的多细胞真核生物转录因子结合部位的开放数据库。网址http://jaspar.cgb.ki.se。所有序列均来源于通过实验方法证实能结合转录因子,而且通过严格的筛选,通过筛选后的序列再通过模体(motif)识别软件ANN-Spec进行联配。ANN-Spec利用人工神经网络和吉布斯(Gibbs)取样算法寻找特征序列模式。联配后的序列再利用生物学知识进行注释。 目前该数据库收录了111个序列模式(profiles),目前仅限于多细胞真核生物。通过主页界面,用户可进行下列操作:1)浏览转录因子(TF)结合的序列模式;2)通过标识符(identifier)和注解(annotation)搜索序列模式;3)将用户提交的序列模式与数据库中的进行比较;4)利用选定的转录因子搜索特定的核苷酸序列,用户可到ConSite服务器(http://www.phylofoot.org/consite)进行更复杂的查询。JASPAR数据库所有内容可到主页下载。 与相似领域数据库相比,JASPAR具有很明显优势:1)它是一个非冗余可靠的转录因子结合部位序列模式;2)数据的获取不受限制;3)功能强大且有相关的软件工具使用。JASPAR与TRANSFAC(一流的TF数据库)有较明显的差异,后者收录的数据更广泛,但包含不少冗余信息且序列模式的质量参差不齐,是商业数据库,只有一部分是可以免费使用。用户在使用过程中会发现二者的差异,这主要是由于二者对数据的收集是相互独立的。另外该数据库还提供了相关的链接:如MatInspector检测转录因子结合部位,网址http://transfac.gbf.de/programs/matinspector/;TESS转录元件搜索系统,网址http://www.cbil.upenn.edu/tess/。 转录调节位点和转录因子数据库介绍! 张光亚!!方柏山 (华侨大学生物工程与技术系福建泉州362021) 摘要转录水平的调控是基因表达最重要的调控水平之一,对转录调节位点和转录因子的研究具有重要意义。介绍了DBTSS、JASPAR、PRODORIC和TRRD等相关数据库及其特征、内容和使用。 关键词转录调节位点转录因子数据库生物信息学 !基金项目:国务院侨办科研基金资助项目(05QZR06) !!通讯作者

ChIP-Seq技术在转录因子结合位点分析的应用

ChIP-Seq技术在转录因子结合位点分析的应用 摘要:染色质免疫沉淀(Chromatin immunoprecipitaion, ChIP)技术是用来研究细胞 内特定基因组区域特定位点与结合蛋白相互作用的技术。将ChIP与第二代高通量测序技术相结合的染色质免疫沉淀测序(chromatin immunoprecipitation followed by sequencing,ChIP-Seq)技术能在短时间内获得大量研究数据,高效地在全基因组范围内检测与组蛋白、转录因子等相互作用的DNA区段,在细胞的基因表达调控网络研究中发挥重要作用。本文 简要介绍了ChIP-Seq技术的基本原理、实验设计和后续数据分析,以及ChIP-Seq技术在 研究转录因子结合位点中的。 关键词:ChIP-Seq;转录因子; 引言 染色质是真核生物基因组DNA主要存在形式,为了阐明真核生物基因表达调控机制,对于蛋白质与DNA在染色质环境下的相互作用的研究是基本途径。转录因子是参与基因表达调控的一类重要的细胞核蛋白质,基因的转录调控是生物基因表达调控层次中最关键的一层,转录因子通过特异性结合调控区域的DNA序列来调控基因转录过程。转录因子由基础转录因子和调控性转录因子两类组成,其中基础转录因子在转录起始位点附近的启动子区,与RNA聚合酶相互作用实现基因的转录;而调控性转录因子一般与位置多样的增强子序列结合,再通过形成增强体在组织发育、细胞分化等基因表达水平调控中发挥极其重要的作用[1]。 ChIP-Seq是近年来新兴的将ChIP与新一代测序技术相结合,在全基因s组范围内分析转录因子结合位点(transcription factor binding sites,TFBS)、组蛋白修饰(histone modification)、核小体定位(nucleosome positioning)和DNA 甲基化(DNA methylation)的高通量方法[2-4]。其中ChIP是全基因组范围内识别DNA与蛋白质体内相互作用的标准方法[5],最初用于组蛋白修饰研究[6],后来用于转录因子[7]。同时,新一代测序技术的迅猛发展也将基因组学水平的研究带入了一个新的阶段,使得许多基于全基因组的研究成为可能。相对于传统的基于芯片的ChIP-chip (chromatin immunoprecipitation combined with DNA tiling arrays),ChIP-seq 提供了一种高分辨率、低噪音、高覆盖率的研究蛋白质-DNA 相互作用的手段[8],可以应用到任何基因组序列已知的物种,可以研究任何一种DNA 相关蛋白与其靶定DNA 之间的相互作用,并能确切得到每一个片段的序列信息.随着测序成本的降低,ChIP-seq 逐步成为研究基因调控和表观遗传机制的一种常用手段。此外,为了达到更好的检测效果和更为完整的信息,近年来,将ChIP-Seq和ChIP-chip两者融合的研究具有很好的应用前景[9,10]。 转录因子在器官发生过程中起至关重要的作用,在全基因组水平将转录因子定位于靶基因DNA是认识转录调控网络的有效方法之一,了解基因转录调控的关键是识别蛋白质与DNA的相互作用。ChIP-Seq技术能够揭示转录因子的结合位点和确定直接的靶基因序列,可在体内分析特定启动子的分子调控机制,因此被广泛应用于转录调控机制的研究。本文主要就这一技术在转录因子结合位点研究中的基本原理、实验设计和数据分析等技术层面、以及实际应用层面进行讨论。 1 ChIP-seq基本原理及实验设计 1.1 ChIP技术 蛋白质与DNA相互识别是基因转录调控的关键,也是启动基因转录的前提。ChIP是在全基因组范围内检测DNA与蛋白质体内相互作用的标准方法[11],该技术由Orlando等[12]于1997年创立,最初用于组蛋白修饰的研究,后来广泛应用到转录因子作用位点的研究中[13]。ChIP的基本原理为:活细胞采用甲醛交联后裂解,染色体分离成为一定大小的片段,然后用特异性抗体免疫沉淀目标蛋白与DNA交联的复合物,对特定靶蛋白与DNA片段进行

植物转录因子及转录调控数据与分析平台

植物转录因子及转录调控数据与分析平台 PlantTFDB:植物转录因子数据库 URL: https://www.360docs.net/doc/1f8536167.html, 包含资源:植物转录因子的家族分类规则、基因组转录因子全谱、丰富的注释、转录因子结合图谱(binding motifs)、转录因子预测、系统发生树等 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等165个物种。 PlantRegMap:植物转录调控数据与分析平台 URL: https://www.360docs.net/doc/1f8536167.html, 包含资源:植物转录调控元件、植物转录调控网络、转录因子结合位点预测、转录调控预测与富集分析、GO富集分析、上游调控因子富集分析等。 涉及物种:包含拟南芥、水稻、杨树、大豆、玉米、小麦等156个物种。 ATRM: 拟南芥转录调控网络及其结构和演化分析 URL: https://www.360docs.net/doc/1f8536167.html, 包含资源:基于文本挖掘和人工校验的拟南芥转录调控网络、植物转录调控网络的结构和演化特征 涉及物种:拟南芥 植物转录因子及转录调控数据与分析平台(导航页) 我们致力于为广大科研人员提供一个关于植物转录因子和转录调控、集数据和分析于一体的高质量平台,为研究和理解植物转录调控系统保驾护航。 植物转录因子数据库(PlantTFDB) 一套完整的植物转录因子分类规则 覆盖绿色植物各大分支的转录因子全谱 丰富的功能和演化注释 基因组范围的高质量转录因子结合矩阵(156个物种) 在线转录因子预测平台 植物转录调控数据与分析平台(PlantRegMap) 基于高通量实验(ChIP-seq和DNase-seq)和比较基因组方法鉴定的多种转录调控元件 基于转录因子结合矩阵和转录调控元件推测的转录调控网络 涉及165物种的GO注释 一套植物转录调控预测与分析工具,包括转录因子结合位点预测、转录调控预测与富集分析、GO富集分析及上游调控因子富集分析等 拟南芥转录调控网络及其结构和演化特征(ATRM) 基于文本挖掘和人工校验的拟南芥转录调控网络 植物转录调控网络的结构和演化特征

转录和转录水平的调控要点

SECTION 5 转录和转录水平的调控 重点: 转录的反应体系,原核生物RNA聚合酶和真核生物中的RNA聚合酶的特点,RNA的转录过程大体可分为起始、延长、终止三个阶段。真核RNA的转录后加工,包括各种RNA前体的加工过程。基因表达调控的基本概念、特点、基本原理。乳糖操纵子的结构、负性调控、正性调控、协调调节、转录衰减、SOS 反应。 难点: 转录模板的不对称性极其命名,原核生物及真核生物的转录起始,真核生物的转录终止,mRNA前体的剪接机制(套索的形成及剪接),第Ⅰ、Ⅱ类和第Ⅳ类内含子的剪接过程,四膜虫rRNA前体的加工,核酶的作用机理。真核基因及基因表达调控的特点、顺式作用元件和反式作用因子的概念、种类和特点. 以及它们在转录激活中的作用。 一.模板和酶: 要点 1.模板 RNA的转录合成需要DNA做模板,DNA双链中只有一股链起模板作用,指导RNA合成的一股DNA链称为模板链(template strand),与之相对的另一股链为编码链(coding strand),不对称转录有两方面含义:一是DNA链上只有部分的区段作为转录模板(有意义链或模板链),二是模板链并非自始至终位于同一股DNA单链上。 2.RNA聚合酶 转录需要RNA聚合酶。原核生物的RNA聚合酶由多个亚基组成:α2ββ'称为核心酶,转录延长只需核心酶即可。α2ββ'σ称为全酶,转录起始前需要σ亚基辨认起始点,所以全酶是转录起始必需的。真核生物RNA聚合酶有RNA-polⅠ、Ⅱ、Ⅲ三种,分别转录45s-rRNA; mRNA(其前体是hnRNA);以及5s-rRNA、snRNA和tRNA。 3.模板与酶的辨认结合 转录模板上有被RNA聚合酶辨认和结合的位点。在转录起始之前被RNA聚合酶结合的DNA部位称为启动子。典型的原核生物启动子序列是-35区的TTGACA序列和-10区的Pribnow盒即TATAAT序列。真核生物的转录上游调控序列统称为顺式作用元件,主要有TATA盒、、CG盒、上游活化序列(酵母细胞)、增强子等等。和顺式作用元件结合的蛋白质都有调控转录的作用,统称为反式作用因子。反式作用因子已发现数百种,能够归类的称为转录因子(TF),相应于RNA-polⅠ、Ⅱ、Ⅲ的是TFⅠ、TFⅡ、TFⅢ。TFⅡ又有A、B、C、D、E、F多种及其亚类。 基本概念: 1.不对称转录: 两重含义,一是指双链DNA只有一股单链用作转录模板(模板链);二是对不同基因同一单链上某些区段作为模板链而另一些区段作为编码链,即模板链并非永远在同一单链上。 2.编码链: DNA双链上不用作转录模板的那一段单链,因其碱基序列除由T代 替U而外,其他与转录产物mRNA序列相同而得名。

植物bHLH转录因子研究进展_刘文文

生物技术进展 2013年第3卷第1期7 11 Current Biotechnology ISSN 2095-櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅殯 殯 殯 殯 2341 进展评述 Reviews 收稿日期:2012-12-12;接受日期:2012-12-31基金项目:国家自然科学基因项目(30970221)资助。 作者简介:刘文文,硕士研究生,研究方向为玉米氮利用效率生理学及拟南芥抗逆作用机制。*通讯作者:李文学,研究员,博士,主要 从事小RNA 功能及植物抗逆机制研究。E- mail :liwenxue@caas.cn 植物bHLH 转录因子研究进展 刘文文,李文学 * 中国农业科学院作物科学研究所,北京100081摘 要:bHLH (basic helix-loop-helix protein )是真核生物中存在最广泛的一大类转录因子,其通过特定的氨基酸残基与 靶基因相互作用,进而调节相关基因的表达。系统发育分析表明植物的bHLH 转录因子为单源进化。bHLH 转录因子不仅对于植物的正常生长和发育必不可缺,同时参与植物适应多种逆境胁迫的反应过程。然而,由于植物bHLH 家族成员众多、 参与的生物过程复杂,对于其了解还不是十分清楚。本文针对植物bHLH 的进化、结构特点、生物功能,尤其是在适应逆境胁迫中作用等的最新研究结果进行综述,以期为进一步深入了解植物bHLH 转录因子的功能提供理论参考。关键词:bHLH ;结构特点;生物学功能DOI :10.3969/j.issn.2095-2341.2013.01.02 Progress of Plant bHLH Transcription Factor LIU Wen-wen ,LI Wen-xue * Institute of Crop Science ,Chinese Academy of Agricultural Sciences ,Beijing 100081,China Abstract :Basic helix-loop-helix proteins (bHLHs )are found throughout the eukaryotic kingdom ,and constitute one of the largest families of plant transcription factors.They can regulate gene expression through interaction with specific motif in target genes.Phylogenetic analysis indicates that plant bHLHs are monophyletic.bHLHs are necessary for plant normal growth and development ,and play important roles in abiotic-stress responses.However ,we know little about their origins ,structures ,and functions due to the large quantities and complexity of plant bHLH family.This paper reviews on the evolution ,structure characteristics ,biological function of plant bHLHs ,especially their functions in adapting to abiotic-stress tolerance ,so as to provide a theoretical reference for further research on the function of plant bHLH transcription factors.Key words :bHLHs ;structural features ;biological function bHLH 转录因子广泛存在于真核生物。自 bHLH 发现以来,越来越多的研究表明该转录因子对于真核生物的正常生长及发育必不可缺。在酵母等单细胞真核生物中,bHLH 参与染色体的分离、新陈代谢调节等过程[1] ;在动物中,bHLH 主要与感知外界环境、调节细胞周期、组织分化等 相关 [2 4] 。植物中bHLH 家族成员数量众多,仅 次于MYB 类转录因子,譬如在拟南芥中有超过140个bHLH 转录因子,水稻中则超过160个。家族的庞大不可避免的造成功能冗余,使研究单个bHLH 转录因子的功能相对困难。本文拟对有限的植物bHLH 家族研究结果,尤其是参与植物 适应逆境胁迫过程中的作用进行综述,以期为进 一步深入了解植物bHLH 转录因子的功能的提供理论参考。 1 植物bHLH 的结构特点、家族分类及 进化 1.1 bHLH 的基本结构 bHLH 转录因子因含有bHLH 结构域而得名。bHLH 结构域由50 60个氨基酸组成,可分为长度为10 15个氨基酸的碱性氨基酸区和40个氨基酸左右的α-螺旋-环-α-螺旋区(HLH 区)。

转录组RNAseq术语解释

RNA-Seq名词解释 1.index 测序的标签,用于测定混合样本,通过每个样本添加的不同标签进行数据区分,鉴别测序样品。 2.碱基质量值 (Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。碱基质量值越高 表明碱基识别越可靠,碱基测错的可能性越小。 3.Q30 碱基质量值为Q30代表碱基的精确度在99.9%。 4.FPKM(Fragments Per Kilobase of transcript per Million fragments mapped) 每1百万个map上的reads中map到外显子的每1K个碱基上的fragment个数。计算公式为 公式中,cDNA Fragments 表示比对到某一转录本上的片段数目,即双端Reads数目;Mapped Reads(Millions)表示Mapped Reads总数, 以10为单位;Transcript Length(kb):转录本长度,以kb个碱基为单位。 5.FC(Fold Change) 即差异表达倍数。 6.FDR(False Discovery Rate) 即错误发现率,定义为在多重假设检验过程中,错误拒绝(拒绝真的原(零)假设)的个数占所有被拒绝 的原假设个数的比例的期望值。通过控制FDR来决定P值的阈值。 7.P值(P-value) 即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P<0.05 为显著,P<0.01为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05或0.01。 8.可变剪接(Alternative splicing)

植物转录因子汇总2013

Plant Transcription Factor Database v3.0 Center for Bioinformatics , Peking University , China Previous versions:v1.0v2.0 Home | Blast | Search | Download | Prediction | Help | About | Links LFY) Browse by Species open all | close all Taxonomic Group (83 species) (G)-species with genome sequence Chlorophyta (10 species)Bryophyta (1 species) Lycopodiophyta (1 species)Coniferopsida (4 species) Basal Magnoliophyta (1 species)Monocot (17 species) Eudicot (49 species) Bathycoccus prasinos (G)Chlamydomonas reinhardtii (G)Chlorella sp. NC64A (G)Coccomyxa sp. C-169 (G) Micromonas pusilla CCMP1545 (G)Micromonas sp. RCC299 (G) Ostreococcus lucimarinus CCE9901 (G)Ostreococcus sp. RCC809 (G)Ostreococcus tauri (G) Volvox carteri (G) Physcomitrella patens subsp. patens (G) Selaginella moellendorffii (G)Picea abies (Norway spruce) (G)Picea glauca (white spruce)Picea sitchensis (Sitka spruce) Pinus taeda (loblolly pine) Amborella trichopoda (G)Aegilops tauschii (Tausch's goatgrass) (G) Brachypodium distachyon (purple false brome) (G)Hordeum vulgare (barley) (G)Musa acuminata (dwarf banana) (G)Oryza barthii (African wild rice) (G)Oryza brachyantha (malo sina) (G)Oryza glaberrima (African rice) (G)Oryza punctata (G) Oryza sativa subsp. indica (Indian rice) (G)Oryza sativa subsp. japonica (Japanese rice) (G)Phoenix dactylifera (date palm) (G) Phyllostachys heterocycla (moso bamboo) (G)Saccharum officinarum (sugarcane)Setaria italica (foxtail millet) (G)Sorghum bicolor (sorghum) (G)Triticum aestivum (wheat)Triticum urartu (G) Zea mays (maize) (G)Aquilegia coerulea (columbine) (G) Asterids (9 species) Artemisia annua (sweet wormwood)Capsicum annuum (chilli pepper)Helianthus annuus (sunflower) Lactuca sativa (garden lettuce) Mimulus guttatus (spotted monkey flower) (G)

转录因子包括什么主要的功能结构域

转录因子包括什么主要的功能结构域?其主要的结构特点与功能是什么? 作为蛋白质的转录因子从功能上分析其结构可包含有不同区域:①DNA结合域(DNA binding domain),多由60-100个氨基酸残基组成的几个亚区组成;②转录激活域(activating domain),常由30-100氨基酸残基组成,这结构域有富含酸性氨基酸、富含谷氨酰胺、富含脯氨酸等不同种类,一酸性结构域最多见; ③连接区,即连接上两个结构域的部分。不与DNA直接结合的转录因子没有DNA 结合域,但能通过转录激活域直接或间接作用与转录复合体而影响转录效率。 与DNA结合的转录因子大多以二聚体形式起作用,与DNA结合的功能域常见有以几种: ①螺旋-转角-螺旋(helix-turn-helix,HTH)及螺旋-环-螺旋(helix-loop-helix,HLH) 这类结构至少有两个α螺旋其间由短肽段形成的转角或环连接,两个这样的motif结构以二聚体形式相连,距离正好相当于DNA一个螺距(3.4nm),两个α螺旋刚好分别嵌入DNA的深沟。 ②锌指(zinc finger)其结构如图所示,每个重复的“指”状结构约含23个氨基酸残基,锌以4个配价键与4个半胱氨酸、或2个半胱氨酸和2个组氨酸相结合。整个蛋白质分子可有2-9个这样的锌指重复单位。每一个单位可以其指部伸入DNA双螺旋的深沟,接触5个核苷酸。例如与GC盒结合的转录因子SP1 中就有连续的3个锌指重复结构。 ③碱性-亮氨酸拉链(basic leucine zipper,bZIP)这结构的特点是蛋白质分子的肽链上每隔6个氨基酸就有一个亮氨酸残基,结果就导致这些亮氨酸残基都在α螺旋的同一个方向出现。两个相同的结构的两排亮氨酸残基就能以疏水键结合成二聚体,这二聚体的另一端的肽段富含碱性氨基酸残基,借其正电荷与DNA 双螺旋链上带负电荷的磷酸基团结合。若不形成二聚体则对DNA的亲和结合力明显降低。在肝脏、小肠上皮、脂肪细胞和某些脑细胞中有称为C/EBP家族的一大类蛋白质能够与CAAT盒和病毒增强子结合,其特征就是能形成bZIP二聚体结构。

转录分析的5种方法

转录分析的5种方法 信号通路,只有一个目的:将细胞的外部信号转换成细胞的内部变化。不管是胰岛素,还是异亮氨酸,抗原还是肾上腺素,它们的终极目的总是如出一则:对转录活性的改变。 这些对于转录活性的影响来自于转录因子与基因的调控区域:如启动子、增强子、沉默子等结合达到的。经典的凝胶迁移滞后试验(the electrophoretic mobility shift assay)已经成为证明某种蛋白能与特定的短基因序列结合的有力方法手段。但是凝胶迁移滞后试验具有速度慢,通量低,不定量和具有放射性的特点。即使完了你还不知道究竟是何种蛋白或者是蛋白的何种基团负责指导体内转录的变化。 为了弄清楚蛋白与基因序列结合的精确位点,需要利用基于抗体的实验。目前已经有了一些方便快捷的分析试剂,可以有力的帮助进行转录研究分析,其中有一些适用于发现型(筛选多种因子),有一些用于证实猜想的。当然这些总是从初期的工作,进入精细进一步的研究工作。 PROTEIN ARRAYS(蛋白芯片) What they are:固定的转录因子阵列,利用标记的基因序列或者蛋白质进行探索。 What to use them for:用于发现和证实转录因子的结合位点或者蛋白-蛋白相互作用。 Pros(优点):能提供一种在广泛的因子中检测与特定序列结合的因子。 Cons(缺点):可能会错失一些同源因子和一些转录后的变化。 Things to keep in mind:蛋白分析提供了一种在DNA片段中筛选潜在的结合位点的方法。但这种方法缺乏柔韧性,因此只局限于广泛的已研究的因子。 Available kits: Panomics的 TF Protein Array I for DNA-Protein Interactions (48 proteins, Catalog No. MA3505,

转录因子蛋白质结构分析

植物转录因子蛋白质结构 转录因子是生物体内直接结合或间接作用于基因启动子区域、形成具有RNA聚合酶活性的转录复合体的蛋白质因子,通过其调控基因的表达来影响生物的表型及对外界刺激的保护,从而完成了生物在转录水平的调控。按功能可分为通用转录因子、序列特异性转录因子、辅助转录因子等。而与RNA聚合酶I、Ⅱ、Ⅲ相对应的有3类转录因子,分别是TFI、TFⅡ、TFⅢ。锌指蛋白就是属于其中的TFⅢ型转录因子,它是生物中发现种类最多、研究较为广泛、在真核生物中具有重要调控作用的一类转录因子。 通过对蛋白质的结构进行分析表明,典型的植物转录因子一般由DNA结合区(DNA—binding domain)、寡聚化位点(oligomerization site)、转录的调控区(transcription regulation domain)、细胞核定位信号区(nuclear localization signal,NLS)组成,这些功能区域决定了各个转录因子的具体功能。 DNA结合区(DNA—binding domain)DNA序列中有许多具有重要作用的顺式作用元件,能够识别并与之结合的氨基酸序列就是转录因子的DNA结合区。相同类型的转录因子都能够识别比较保守的氨基酸序列(DNA结合区)。而且植物转录因子的分类依据就是DNA结合区和寡聚化位点的保守区的差异。其中bHLH结构域、bZIP结构域、锌指结构域、MADS结构域、MYC 结构域、MYB结构域和类Myc蛋白等都是典型的植物转录因子的DNA结合区。这些典型的结合区与顺式作用元件识别及结合的特异性由DNA结合区中特定的氨基酸序列来决定。它们与顺式作用元件的亲和性和特异性由DNA结合区的二级结构来决定。 bHLH(basichelix-loop-helix)家族转录因子普遍存在于真核生物中。目前,已在拟南芥中发现了147个bHLH家族转录因子基因。bHLH转录因子约由60个氨基酸残基组成,因HLH结构上游富含碱性氨基酸而得名,含有两个相连的基本亚区,即HLH Motif及其上游富含碱性氨基酸基序,其中碱性氨基酸基序与DNA结合有关,对基因的转录发挥调控作用。bHLH转录因子的HLH 区长为40-50个氨基酸残基,参与二聚体形成,有HLH蛋白的共同模体,即具有两条短小的既亲水又亲脂的两性α-螺旋,螺旋区的长度为15-16个氨基酸,含有各种保守的氨基酸残基,两个α-螺旋由连接区(环)相连,连接环的长度不等,由12-28个氨基酸组成,螺旋的一侧有疏水氨基酸。bHLH转录因子两条α-链依赖疏水氨基酸的相互作用形成同型或异型二聚体,从而与启动子的不同部位相结合。缺少碱性区的HLH蛋白可以与bHLH蛋白形成二聚体,但无结合DNA 的能力。 bZIP转录因子是真核生物转录因子中分布最广泛、最保守的一类转录因子。几乎所有真核细胞中都发现了bZIP结构域的转录冈子。根据植物bZlP转录因子结构特点和功能可以将bZIP 家族划分为10个亚族。所有的bZIP转录因子除了都具有两种保守的结构域外,同一个亚族内的bZIP转录因子还有额外的共有特征,如亮氨酸拉链的大小、类似的DNA结 合碱性结构域和类似的cis元件等。植物bZIP类转录因子的共同结构特点是:(1)含有与特异DNA序列相结合的碱性结构域,大约由20个氨基酸组成,紧靠亮氨酸拉链结构域的N末端,能与专一的DNA序列进行相互作用;(2)参与寡聚化作用的亮氨酸拉链区与碱性区紧密相连,每7个氨基酸的第7位含有一个亮氨酸。亮氨酸拉链形成一个两亲的螺旋结构,该结构参与bZIP蛋白与DNA结合之前的二聚体化;(3)转录因子的N末端含有酸性激活区;(4)以二聚体形式结合DNA,肽链N末端的碱性区与DNA直接结合。 至今,发现了三类锌指结构。一类是类似TFIIIA,如哺乳动物细胞的SP1。第二类锌指结构是通过NMR(核磁共振)检测到的,这类结构有点类似于HTH结构。它是由两个环-螺旋结构组成,命名为“双环-锌-螺旋”(double loop-Zn-helix),锌离子与在环开始部分中的两个半胱氨酸和两个а-螺旋的N端的两个氨基酸残基作用,靠近第一个а-螺旋N端的残基决定了

转录及其调控作业习题

第三章 转录及其调控 测试题 一 . 单项选择题 1.对于大肠杆菌 RNA 聚合酶的叙述,不正确的是( ) A .由核心酶和 σ 因子构成 B .核心酶由 α 2ββ′组成 C .全酶与核心酶的差别在于 β 亚单位的存在 D .全酶包括 σ 因子 E . σ 因子仅与转录起动有关 2.真核生物 RNA 聚合酶Ⅱ对 α -- 鹅膏蕈碱的反应为( ) A .不敏感 B .中度敏感 C .高度敏感 D .低度敏感 E .不确定 3. DNA 双链中,指导合成 RNA 的那条链称作( ) A .模板链 B .冈崎链 C .编码链 D .非编码链 E .以上都不对 4. 关于转录和复制的区别,说法正确的是( ) A. DNA 双链均复制和转录 B. 复制的原料是一磷酸脱氧核苷,转录的原料是一磷酸核苷 C. 复制酶是依赖 DNA 的 DNA 聚合酶,转录酶是依赖 RNA 的 DNA 聚合酶 D. 复制需要引物,转录不需要引物 E. 均遵守碱基配对规律,模板中 A 对应的产物是 T 5. ρ- 因子的功能是( ) A .结合阻遏物于启动区域处 B .增加 RNA 合成速率 C .释放结合在启动子上的 RNA 聚合酶 D .参与转录的终止过程 E .允许特定转录的启动过程 6. 下列关于启动子的描绘哪一项是正确的 ? ( ) A . mRNA 开始被翻译的那段 DNA 顺序 B .开始转录生成 mRNA 的那段 DNA 顺序 C . RNA 聚合酶最初与 DNA 结合的那段 DNA 顺序 D .阻抑蛋白结合的 DNA 部位 E .调节基因结合的部位 ) B .核酸酶 C . RNA 指导的 RNA 聚合酶Ⅱ E . RNA 指导的 DNA 聚合酶 9. 下列关于 rRNA 的叙述错误的是( ) A .原核 rRNA 由 RNA 聚合酶催化合成 B .真核生物部分 rRNA 由 RNA 聚合酶Ⅲ转录合成 7. 真核细胞中经 RNA 聚合酶 I 催化转录的产物是( A . hnRNA B tRNA C .5S rRNA D .U4,U5snRNA E . 5.8S,18S,28SrRNA 前体 8. 转录过程中需要的酶 是( A . DNA 指导的 DNA 聚合酶

转录因子正文

转录因子 摘要:随着众多生物基因组计划的完成及其蛋白质组学研究的不断深入,人类步入了系统生物学时代。基因组计划的完成提供了大量的DNA内在信息,解析出基因组中可能存在的全部基因的阅读框架,因此,接下来研究基因的表达调控特别是转录调控就显得非常迫切。另一方面,蛋白组学研究的突飞猛进给我们描绘出了细胞的蛋白质表达谱和网络谱,接下来研究蛋白质与蛋白质,蛋白质与DNA的相互作用将成为现在及以后相当长一段时间内的研究主题。有生物学家认为,21世纪对人类最具有挑战性的生物学主题就是“基因的全基因组调控”和”细胞的全蛋白质的生理功能”这两大难题。 然而,转录因子是可与基因调控序列结合并调控基因转录的一类核蛋白,研究转录因子就是研究转录调控的分子机制,研究一种或一类特定的蛋白质分子与DNA的结合特性,研究与DNA结合的蛋白质分子是怎样调控基因转录等问题。转录因子的研究实际上已构成上述两大生物学难题的一个交叉点,因此,对转录因子的深入研究已是一件极其迫切而且重要的课题。 DNA转录及转录因子 定义 转录:是指以DNA为模板,在RNA聚合酶的作用下合成mRNA,将遗传信息从DNA分子上转移到mRNA分子上,这一过程成为转录。真核生物DNA的转录在细胞核中进行,原核生物的转录在细胞质的核质区

内进行。 转录单元 转录单元是一段以启动子开始至终止子结束的DNA序列。 转录起始(transcription initiation):转录因子通过识别基因启动子上的特异顺式元件并募集多种蛋白质因子,形成具有RNA聚合酶活性的转录起始复合体,从转录起始位点启动转录的过程。 转录终止子(transcription terminator):基因编码区下游使RNA聚合酶终止mRNA合成的密码子,是一种位于poly(A)位点下游,长度在几百碱基以内的结构。 终止子可分为两类。一类不依赖于蛋白质辅因子就能实现终止作用。另一类则依赖蛋白辅因子才能实现终止作用。这种蛋白质辅因子称为释放因子,通常又称ρ因子 转录因子:能够结合在某基因上游特异核苷酸序列上的蛋白质,活化后从胞质转位至胞核,通过识别和结合基因启动子区的顺式作用元件,启动和调控基因表达。 转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。转录因子是结合在某基因上游特异核苷酸序列上的蛋白质,这些蛋白质能调控该基因的转录。转录因子可以调控核糖核酸聚合酶(RNA聚合酶)与DNA模板的结合。转录因子不单与DNA序列上的启动子结合,也可以和其它转录因子形成-转录因子聚合体,来影

植物中的MYB转录因子

植物中的MY B转录因子 王希庆1 陈柏君2 印莉萍1 (1首都师范大学生物系,北京100037;2北京大学生命科学学院,北京100871) 摘 要: M Y B转录因子是植物转录因子中最大的家族之一。概述M Y B蛋白的结构、功能、进化以及与DNA结合的多样性。另外,对是否存在冗余M Y B蛋白的问题亦进行了探讨。 关键词: M Y B转录因子 结构 功能 冗余 The Plant MYB T ranscription F actors Wang Xiqing1 Chen Bojun2 Y in Liping1 (1Depart ment of Biology Capital Normal U niversity,Beiji ng100037; 2College of L if e Science Peki ng U niversity,Beiji ng100871) Abstract: The M Y B transcription factors comprise one of the largest families in plant transcription factors.This paper is a survey of main achievements in M Y B proteins’structure、function、evolution and diversity of interaction with DNA.And it is also discussed that whether there is redundant M Y B proteins. K ey words: M Y B transcription factors Structure Function Redundancy 1 引言 在植物的生长发育中,之所以各细胞之间出现了分化,就是因为细胞内基因的表达存在着时间和空间的差异,导致这种差异的主要原因之一就是转录因子(transcription factor,TF)在转录水平上的调节作用[1] 。 转录因子也称为反式作用因子,是指能够与真核基因的顺式作用元件发生特异性相互作用,并对转录有激活或抑制作用的DNA结合蛋白[2]。根据与DNA结合的方式可以把TF分为两类:普遍性转录因子(general transcription factor,GTF)和特异性转录因子(sequence2specific transcription fac2 tor)[3,4,5]。GTF能和启动子的核心序列TA TA框结合,可以激活所有基因的转录,而特异性转录因子和DNA序列上的其它调节元件结合,只能激活特定的基因。 典型的转录因子一般具有4个功能区:DNA结合区、转录调控区、核定位信号区和寡聚化位点。通常根据保守性较强的DNA结合区把转录因子分类,例如螺旋2转角2螺旋(helix2turn2helix)、锌指(zinc finger)结构、亮氨酸拉链(leucine zipper)和MADS盒等结构。M Y B转录因子也是其中非常重要的一类,而且是植物转录因子中最大的家族之一。 最早的M Y B转录因子(v2M Y B)是从鸟类的白血病病毒AMV和E26中发现的,一般认为,v2M Y B 是其前体c2M Y B在氨基端和羧基端缩减部分氨基酸残基而成。玉米的cl基因所编码的蛋白是一个从植物中发现的M Y B转录因子,后来研究发现,在拟南芥和玉米中都存在着大量的M Y B转录因子,它们在转录调节中起着多方面的重要作用。 2 MY B转录因子的结构特征 一般每个M Y B区域,即DNA结合区(DNA2 binding domain)含有51~53个氨基酸,在c2M Y B 蛋白中,含有3个串联的、不完全重复的M Y B区(R1、R2和R3)(图1)[6] ,每个M Y B区折叠成螺旋2转角2螺旋的形式参与与DNA大沟的结合。在每个M Y B区域中,一般都含有3个保守的色氨酸残基(其间隔18~19个氨基酸),起着疏水核心的作用,对于维持HTH的构型有着特别重要的意义[7]。 在c2M Y B的DNA结合区的羧基端有一个酸性的转录激活区(transcription activation domain)[8],一般折叠成双亲性的α2螺旋发挥作用,而且作用有一定的可塑性。一般认为转录激活区区域的氨基酸顺序保守性不是很强,在拟南芥R2R3M Y B家 生物技术通报 ?综述与专论? B IO TECHNOL O G Y BULL ETIN 2003年第2期

转录组学的一些概念

Gene Ontology可分为分子功能(Molecular Function),生物过程(biological process)和细胞组成(cellular component)三个部分。蛋白质或者基因可以通过ID对应或者序列 注释的方法找到与之对应的GO号,而GO号可对于到Term,即功能类别或者细胞定位。 功能富集分析: 功能富集需要有一个参考数据集,通过该项分析可以找出在统计上显 著富集的GO Term。该功能或者定位有可能与研究的目前有关。 GO功能分类是在某一功能层次上统计蛋白或者基因的数目或组成,往往是在GO 的第二层次。此外也有研究都挑选一些Term,而后统计直接对应到该Term的基因或蛋白数。结果一般以柱状图或者饼图表示。 1.GO分析 根据挑选出的差异基因,计算这些差异基因同GO 分类中某(几)个特定的分支的超 几何分布关系,GO 分析会对每个有差异基因存在的GO 返回一个p-value,小的p 值表示差异基因在该GO 中出现了富集。 GO 分析对实验结果有提示的作用,通过差异基因的GO 分析,可以找到富集差异 基因的GO分类条目,寻找不同样品的差异基因可能和哪些基因功能的改变有关。 2.Pathway分析 根据挑选出的差异基因,计算这些差异基因同Pathway 的超几何分布关系, Pathway 分析会对每个有差异基因存在的pathway 返回一个p-value,小的p 值表示差异 基因在该pathway 中出现了富集。 Pathway 分析对实验结果有提示的作用,通过差异基因的Pathway 分析,可以找到 富集差异基因的Pathway 条目,寻找不同样品的差异基因可能和哪些细胞通路的改变有关。与GO 分析不同,pathway 分析的结果更显得间接,这是因为,pathway 是蛋白质之间的 相互作用,pathway 的变化可以由参与这条pathway 途径的蛋白的表达量或者蛋白的活性 改变而引起。而通过芯片结果得到的是编码这些蛋白质的mRNA 表达量的变化。从 mRNA 到蛋白表达还要经过microRNA 调控,翻译调控,翻译后修饰(如糖基化,磷酸化),蛋白运输等一系列的调控过程,mRNA 表达量和蛋白表达量之间往往不具有线性关系,因此mRNA 的改变不一定意味着蛋白表达量的改变。同时也应注意到,在某些pathway 中,如EGF/EGFR 通路,细胞可以在维持蛋白量不变的情况下,通过蛋白磷酸 化程度的改变(调节蛋白的活性)来调节这条通路。所以芯片数据pathway 分析的结果需 要有后期蛋白质功能实验的支持,如Western blot/ELISA,IHC(免疫组化),over expression(过表达),RNAi(RNA 干扰),knockout(基因敲除),trans gene(转基因)等。 3.基因网络分析 目的:根据文献,数据库和已知的pathway 寻找基因编码的蛋白之间的相互关系(不超过1000 个基因)。

相关文档
最新文档