第二讲-绝对值------王三祝

第二讲-绝对值------王三祝
第二讲-绝对值------王三祝

第二讲绝对值

王三祝

绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.

下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.

一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即

绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.

结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.

例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?

(1)|a+b|=|a|+|b|;

(2)|ab|=|a||b|;(3)|a-b|=|b-a|;

(4)若|a|=b,则a=b;

(5)若|a|<|b|,则a<b;

(6)若a>b,则|a|>|b|.

解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.

(3)对.

(4)不对.当a≥0时成立.

(5)不对.当b>0时成立.

(6)不对.当a+b>0时成立.

例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.

解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.

再根据绝对值的概念,得

|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.

于是有

原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.

例3已知x<-3,化简:|3+|2-|1+x|||.

分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.

解原式=|3+|2+(1+x)||(因为1+x<0)

=|3+|3+x||

=|3-(3+x)|(因为3+x<0)

=|-x|=-x.

解因为 abc≠0,所以a≠0,b≠0,c≠0.

(1)当a,b,c均大于零时,原式=3;

(2)当a,b,c均小于零时,原式=-3;

(3)当a,b,c中有两个大于零,一个小于零时,原式=1;

(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.

说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.

例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.

解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.

(1)当y=2时,x+y=-1;

(2)当y=-2时,x+y=-5.

所以x+y的值为-1或-5.

例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.

解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是

|a-b|19=0且|c-a|99=1,①

|a-b|19=1且|c-a|99=0.②

由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b ±1,于是|b-c|=|a-b|=1.无论①或②都有

|b-c|=1且|a-b|+|c-a|=1,

所以

|c-a|+|a-b|+|b-c|=2.

解依相反数的意义有

|x-y+3|=-|x+y-1999|.

因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|

x+y-1999|=0.即

由①有x-y=-3,由②有x+y=1999.②-①得

2y=2002, y=1001,

所以

例8 化简:|3x+1|+|2x-1|.

分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们

为三个部分(如图1-2所示),即

这样我们就可以分类讨论化简了.

原式=-(3x+1)-(2x-1)=5x;

原式=(3x+1)-(2x-1)=x+2;

原式=(3x+1)+(2x-1)=5x.

说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.

例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.

分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.

解有三个分界点:-3,1,-1.

(1)当x≤-3时,

y=-(2x+6)-(x-1)+4(x+1)=x-1,

由于x≤-3,所以y=x-1≤-4,y的最大值是-4.

(2)当-3≤x≤-1时,

y=(2x+6)-(x-1)+4(x+1)=5x+11,

由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.

(3)当-1≤x≤1时,

y=(2x+6)-(x-1)-4(x+1)=-3x+3,

由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.

(4)当x≥1时,

y=(2x+6)+(x-1)-4(x+1)=-x+1,

由于x≥1,所以1-x≤0,y的最大值是0.

综上可知,当x=-1时,y取得最大值为6.

例10设a<b<c<d,求

|x-a|+|x-b|+|x-c|+|x-d|

的最小值.

分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.

解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.

因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:

所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).

例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.

分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有

|4-5x|=4-5x且|1-3x|=3x-1.

故x应满足的条件是

此时

原式=2x+(4-5x)-(1-3x)+4

=7.

练习二

1.x是什么实数时,下列等式成立:

(1)|(x-2)+(x-4)|=|x-2|+|x-4|;

(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).

2.化简下列各式:

(2)|x+5|+|x-7|+|x+10|.

3.若a+b<0,化简|a+b-1|-|3-a-b|.

4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.

5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p ≤x≤15的x来说,T的最小值是多少?

6.已知a<b,求|x-a|+|x-b|的最小值.

7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).

(1)在A,C点的右边;

(2)在A,C点的左边;

(3)在A,C点之间;

(4)以上三种情况都有可能.

第二讲-绝对值

第二讲 绝对值 绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与 不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据 绝对值的定义来解决这些问题。 一.基础知识回顾: 1.绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点与原点的距离,数a 的绝对值记作a ,读作a 的绝对值。 2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值还是0。 3.绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对任意 有理数a ,总有a ≥0。 4绝对值的求法:绝对值是一种运算,这个运算符号是“ ”,求一个数的绝对值就是想办 法去掉绝对值符号,对于任意有理数a ,有 ? ?????<-≥=)0()0(a a a a a 。 5.数轴上两点间的距离公式:若数轴上两点,A B 所表示的数为,a b ,则,A B 两点间的距离为a b - 6.零点:使某个绝对值等于0的x 的值叫做式子(方程、不等式)的零点。 7、绝对值的基本性质:⑴非负性:0a ≥;⑵a a =- ⑶ab a b = (4)b b a a =(0a ≠) (5)222n n n a a a ==(n 为正整数); 8、与绝对值有关的最值问题: (1)x 的最小值为_____(其中x 为任意实数); (2)代数式x a x b -+-,当a x b ≤≤时取得最小值为a b -(其中a b <); (3)代数式x a x b x c -+-+-,当x b =时取得最小值为a c -(其中a b c <<);思 考: 若1a <2a <3a <…

含绝对值的不等式

含绝对值的不等式 [学习要求] (1)理解并掌握解含绝对值的不等式的基本思路是化去绝对值符号,转化为不含绝对值符号的不等式(或不等式组)来解。 (2)弄懂去绝对值符号的理论依据,掌握去绝对值符号的主要方法,会解简单的含有绝对值的不等式。 [重点难点] 1.实数绝对值的定义: |a|= 这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。 2.最简单的含绝对值符号的不等式的解。 若a>0时,则 |x|a x<-a或x>a。

注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。 3.常用的同解变形 |f(x)|g(x) f(x)<-g(x)或f(x)>g(x); |f(x)|<|g(x)| f2(x)

评注:绝对值的概念是分类定义的,因此,在解决这类问题时,必须要分类讨论。 例2:型如:|x|a,(其中a>0)不等式的解法。 探路:利用不等式的乘方法则或绝对值意义均可。 解:当a>0时, |x|a x2>a2x>a或x<-a;其几何意义为 评注: 解:型如|x|0)和|x|>a,(a>0)的不等式,可以利用平方法化为关于x的二次不等式来解;也可以利用定义法来解,均可求得它们的解集。今后,要熟记|x|0)的解集为-aa,(a>0)的解集为x>a或x<-a是十分重要的。 例3:由定理-“|a|-|b|≤|a+b|≤|a|+|b|”导出定理:“|a|-|b|≤|a-b|≤ |a|+|b|” 探路:利用“代换法” 证明:由定理一可知,|a|-|-b|≤|a+(-b)|≤|a|+|-b|,即|a|-|b|≤|a-b|≤ |a|+|b|

1.2.4--绝对值(第二课时)(新人教版七年级上洋思教案)

1.2.4 绝对值(第二课时) 学习目标:1.知识与技能 会利用绝对值比较两个负数的大小. 2.过程与方法 利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力. 3.情感、态度与价值观 敢于面对数学活动中的困难,有学好数学的自信心. 重点:利用绝对值比较两个负数的大小. 难点:利用绝对值比较两个异分母负分数的大小. 教学过程 一、板书课题,揭示目标 在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|。 例如,+2的绝对值是2,记作|+2| = 2; -3的绝对值是3 ,记作|- 3| = 3. 一个数的绝对值与这个数的关系: 1.正数的绝对值是它本身,即当a是正数时,那么|a|=a; 2.负数的绝对值是它的相反数,即当a是正数时,那么|a|=-a; 3.0的绝对值是0,即当a=0,那么|a|=0。 二、讲授新知 图1.2-6给出了一周中每天的最高气温和最低气温,你能将这14个温度按从低到高的顺序排列吗? -4℃,-3 ℃,-2 ℃,-1 ℃,0 ℃,1 ℃,2℃, 3 ℃,4 ℃,5 ℃,6 ℃,7 ℃,8 ℃,9 ℃你能在数轴上按顺序把这些数表示出来吗? 在数轴上你有何发现? 你觉得两个有理数可以比较大小吗? 数学中规定:数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数大于右边的数。 由这个规定可知: -6<-5,-5<-4,……-2<0,-1<1,2<4,…… 正数大于0,0大于负数,正数大于负数。

( 1 )在数轴上表示下列各数,并比较它们的大小: - 1.5 , - 3 , - 1 , - 5 ( 2 ) 求出(1)中各数的绝对值,并比较它们的大小( 3 )你发现了什么? 解:(1)- 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3; | -1 | = 1 ; | - 5 | = 5. 1 < 1.5 <3 <5 (3)由以上知:两个负数比较大小,绝对值大的反而小 有理数大小比较法则 1.正数大于0,0大于负数,正数大于负数。 2.两个负数,绝对值大的反而小。 三、讲解例题 例1 比较下列各组数的大小 (1)-1和-5 (2)-5 6 和-2.7 解:(1)∵|-1|=1 │-5│=5,而1<5 ∴-1>-5 (2)∵∵|-5 6 |= 5 6 │-2.7│=2.7,而 5 6 <2.7 ∴-5 6 >-2.7 例3. 比较下列这组数的大小 -(-1)和–(+ 3) 解:先化简, -(-1)=1, –(+ 3)=-3 正数大于负数,1>2 即-(-1)>–(+ 3) 四、巩固拓展 1、按从大到小的顺序,用“〈”号把下列数连接起来. -41 2 ,-(- 2 3 ),│-0.6│,-0.6,-│4.2│ 解:∵-(-2 3 )= 2 3 ,│-0.6│=0.6,-│4.2│=-4.2

第三讲 绝对值(解析版)

第三讲绝对值 【课程解读】 ————小学初中课程解读———— 初中课程 【知识衔接】 ————小学知识回顾———— 一、整数: 整数包括正整数、负整数和0. 二、分数: 1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。学-科网 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2.分数的分类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数 三、百分数 1、百分数的意义 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。 2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

四、小数 1.小数是分数的一种特殊形式,但不能说小数就是分数. 2.小数的分类 小数包括有限小数和无限小数,无限小数有包括无限循环小数和无限不循环小数. 注:分数又可分为正分数和负分数,小数也可分为正小数和负小数. ————初中知识链接———— (1)绝对值的定义 一般地,数轴上表示数的点与原点的距离叫做数的绝对值,记作。 注:这里可以是正数,也可以是负数和0. (2)绝对值的性质: 1.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.代数表示(数学语言)是:字母可个有理数。 当是正数时,a =a ; 当是负数时,a =-a ; 当是0时,a =0. 3.互为相反数的两个数的绝对值相等. (3)有理数的比较大小。 1.在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。 2. 正数大于0,也大于负数,0大于负数。 3. 两个负数比较大小,绝对值大的反而小。 【经典题型】 小学经典题型 1.一个两位数,个位上和十位上的数字相同,这样的数有( )。 A .8个 B .7个 C .9个 【答案】C 【解析】 由已知,11,22,33,44,55,66,77,88,99,故答案为C a a a a a a a a

高中数学第一讲不等式和绝对值不等式1.2绝对值不等式1.2.2绝对值不等式的解法自我小测新人教A版选修4_5

1.2.2 绝对值不等式的解法 自我小测 1.不等式3≤|5-2x|<9的解集为( ). A.[-2,1)∪[4,7) B.(-2,1]∪(4,7] C.(-2,-1]∪[4,7) D.(-2,1]∪[4,7) 2.不等式|x+3|-|x-3|>3的解集是( ). A. B. C.{x|x≥3} D.{x|-3<x≤0} 3.已知y=log a(2-ax)在(0,1)上是增函数,则不等式log a|x+1|>log a|x-3|的解集为( ). A.{x|x<-1} B.{x|x<1} C.{x|x<1,且x≠-1} D.{x|x>1} 4.x2-2|x|-15>0的解集是____________. 5.不等式|x+3|-|x-2|≥3的解集为__________. 6.设函数f(x)=|2x-1|+x+3,则f(-2)=______;若f(x)≤5,则x的取值范围是______. 7.不等式4<|3x-2|<8的解集为______. 8.解不等式|x+1|+|x-1|≤1. 9.设函数f(x)=|x-1|+|x-a|.如果对任意x∈R,f(x)≥2,求a的取值范围. 10.设函数f(x)=|2x+1|-|x-4|. (1)解不等式f(x)>2; (2)求函数y=f(x)的最小值. 参考答案 1.答案:D

解析: 所以不等式的解集是(-2,1]∪[4,7). 2.答案:A 3.答案:C 解析:因为a>0,且a≠1,所以2-ax为减函数.又因为y=log a(2-ax)在[0,1]上是增函数, 所以0<a<1,则y=log a x为减函数. 所以|x+1|<|x-3|,且x+1≠0,x-3≠0. 由|x+1|<|x-3|,得(x+1)2<(x-3)2, 即x2+2x+1<x2-6x+9, 解得x<1.又x≠-1,且x≠3, 所以解集为{x|x<1,且x≠-1}. 4.答案:(-∞,-5)∪(5,+∞) 解析:∵x2-2|x|-15>0,即|x|2-2|x|-15>0,∴|x|>5,或|x|<-3(舍去). ∴x<-5,或x>5. 5.答案:{x|x≥1} 解析:原不等式可化为或 或 ∴x∈,或1≤x<2,或x≥2. ∴不等式的解集是{x|x≥1}. 6.答案:6 [-1,1] 解析:f(-2)=|2×(-2)-1|+(-2)+3=6. |2x-1|+x+3≤5,即|2x-1|≤2-x,

1.2.4 绝对值(第二课时)(新人教版七年级上洋思教案)

课题:1.2.4 绝对值(第二课时) 教材:新课标人教版 学习目标:1.知识与技能 会利用绝对值比较两个负数的大小. 2.过程与方法 利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力. 3.情感、态度与价值观 敢于面对数学活动中的困难,有学好数学的自信心. 重点:利用绝对值比较两个负数的大小. 难点:利用绝对值比较两个异分母负分数的大小. 教学过程 一.板书课题,揭示目标 同学们,本节课我们一同学习“1.2.4 绝对值(第二课时)”本节课的学习目标是(投影). 学习目标 会利用绝对值比较两个负数的大小. 二.指导自学 自学指导 请认真看P.13—14的内容.思考P13页思考题中的问题, 5分钟后,比比谁的答案正确. 三.学生自学 1.学生按照自学指导看书,教师巡视,确保人人学得紧张高效. 2.检查自学效果 (1)投影练习 (1)│-3│与│-8│(2)4与-5 (3)0与3 (4)-7和0 (5)0.9和1.2 例1 比较下列各组数的大小 (1)-5 6 和-2.7

(2)-5 7 和- 3 4 解:(1)∵|-5 6 |= 5 6 │-2.7│=2.7,而 5 6 <2.7 ∴-5 6 >-2.7 (2)∵|-5 7 |= 5 7 = 20 28 ,|- 3 4 |= 3 4 = 21 28 ,而 20 28 < 21 28 ∴- 5 7 >- 3 4 例2 按从大到小的顺序,用“〈”号把下列数连接起来. -41 2 ,-(- 2 3 ),│-0.6│,-0.6,-│4.2│ 解:∵-(-2 3 )= 2 3 ,│-0.6│=0.6,-│4.2│=-4.2 而|-41 2 |=4 1 2 ,│-0.6│=0.6,│-4.2│=4.2 且41 2 >4.2>0.6,0.6< 2 3 ∴ -41 2 <-│4.2│<-0.6<│-0.6│<-(- 2 3 ) 例3 自己任写三个数,使它大于-5 7 而小于- 1 8 . 【点评】此题是一个开放型问题,培养学生发散性思维. 例4 已知│a│=4,│b│=3,且a>b,求a、b的值. 【答案】 a=4,b=±3 备选例题 (2004.江苏南通)如图1-2-11所示,在所给数轴上画出数-3,-1,│-2│的点.把这组数从小到大用“〈”号连接起来. 【提示】把它们分别在数轴上点出相关位置,并比较大小. 四.讨论更正,合作探究 1.学生自由更正,或写出不同解法; 2.评讲 讨论交流由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.思考若任取两个负数,该如何比较它的大小呢? 点拨若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低? 【总结】两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.

第二讲:数轴上的数(绝对值、数的大小比较)

课 题 第二讲:数轴上的数(绝对值、数的大小比较) 教学目标 1、理解绝对值的意义,会求一个数的绝对值 2 、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数 的大小,能利用数轴对多个有理数进行有序排列。 3、能正确运用符号“<”“>”“∵”“∴”写出表示推理过程中简单的因果关系。 重点、难点 重点:1、绝对值的概念和求一个数的绝对值 2、运用法则借助数轴比较两个有理数的大小。 难点:1、绝对值的几何意义及求绝对值等于某一个正数的有理数。 2、利用绝对值概念比较两个负分数的大小。 考点及考试要求 教学内容 知识框架 一 激情引趣,导入新课 1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A 处,乙车向西行驶了10公里到达B 处。若规定向东为正,则A处记做__________,B处记做__________。(请学生口答) 以O为原点,取适当的单位长度画数轴,并标出A、B的位置。(请学生作图) 2、这两辆出租车在行驶的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(学生观察思考交流后答)。 3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示- 34 和34 的点呢? 我们发现,一对相反数虽然分别在原点两边,但它们到原点的距离是相等的。一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。一个数a 的绝对值表示为a 。 注意:①与原点的关系 ②是个距离的概念 求绝对值的法则:1、一个正数的绝对值是它本身 2、一个负数的绝对值是它的相反数 3、0的绝对值是0 4、互为相反的两个数的绝对值相等 上述三条用字母可表述成:(1)如果a>0,那么a a = (2)如果a<0,那么a =-a (3)如果a=0,那么a =0。即0≥a (非负数) 任意一个数的绝对值只可能等于正数或0 4、以下是某天我国5个城市的最低气温: 哈尔滨:-20 ℃ 北京:-10℃ 武汉:5℃ 上海:0℃ 广州:10℃ 比较这一天下列两个城市间气温的高低:

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

2绝对值

第二讲绝对值 【数学小故事】: 动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。 丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?” 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 一、回顾与预习 (一)知识回顾 1、具有、、的叫做数轴。 2、3到原点的距离是,-5到原点的距离是,到原点的距离是6的数有,到原点距离是1的数有。 3、2的相反数是,-3的相反数是,a的相反数是, -a b的相反数是。 (二)探究新知 问题1、两位同学在书店O处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A处,乙车向西行驶了10公里到达B处。若规定向东为正,则A处记做,B处记做。 、的位置; (1)请同学们画出数轴,并在数轴上标出A B 、两点又有什(2)这两辆出租车在行驶的过程中,有没有共同的地方?在数轴上的A B 么特征?

解含有两个绝对值单位不等式

教学设计与反思 课题 科目 数学 学校年级班级 楚雄一中高二年级9、10班 授课教师 谢祖伟 指导教师 石廷泽 课时 1课时 一、教学内容分析 《绝对值不等式》是高中数学新课改教材选修4-5第一讲第 二 节第二个小问题(第一个小问题是绝对值三角不等式)。在此之前,学生已学习了 一元一次不等式,一元二次不等式,高次不等式,分式不等式以及绝对值函数图象的画法 ,这为过渡到本节的学习起着铺垫作用。本节内容在高考中也占有很大分值,尤其是选做题第三题很多时候都以绝对值不等式的形式来考察学生,因此这部分知识相当重要,学生务必掌握清楚。 不等式在高中数学中不是孤立存在的,在函数、数列、解析几何、平面向量……,几乎所有的章节都有不等式的知识,可以说不等式贯穿了整个高中数学,由此可见不等式的重要性。而含有绝对值符号的不等式的问题又是不等式问题的一个难点,而含有两个绝对值得不等式的问题更是一个重点,我们必须要重视它的地位。 解含有绝对值符号的不等式的问题的基础,解题的基本思想就是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与一般不等式相同。因此,掌握用分类讨论的思想去掉绝对值符号是解含有两个绝对值的不等式的关键。这节课我们在学习了c b ax ≤+和c b ax ≥+型不等式的解法的基础上学习c b x a x ≥-+-和c b x x ≤-+-1型不等式的解法。 二、教学目标 三、学习者特征分析 鉴于我的学生存在以下几点问题:不容易找出c b x a x =-+-时的x 的值,分类讨论有些人有点模糊,在分类讨论思想的运用上还不是很娴熟,所以如何让学生把分类讨论的思想顺其自然的运用到本节课当中很重要。 四、教学策略选择与设计 以问题驱动教学,在这种教学方法下,促使学生在学法上也产生改变,他们必须掌握学习的主动, 学会体验、实践、参与、合作与交流的学习方式。这种学法,更有利于学生形成积极的情感态度,主动思维和大胆实践,提高数学思想和形成自主学习能力的过程。 五、教学重点及难点

第1讲-绝对值和绝对值不等式的解法

第1讲 绝对值和绝对值不等式的解法 5.1 绝对值的概念 定义:我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值. 例如,2-到原点的距离等于2,所以22-=.这一定义说明了绝对值的几何定义,从这一定义中很容易得到绝对值的求法:,00,0,0a a a a a a >??==??-<<,,,原式11110=--+=; (2)当a b c ,,一负二正时,不妨设000a b c <>>,,,原式11110=-++-=. 原式0=.

【例4】若42a b -=-+,则_______a b +=. 解:424204,2a b a b a b -=-+?-++=?==-,所以2a b +=. 结论:绝对值具有非负性,即若0a b c ++=,则必有0a =,0b =,0c =. 练习1:()2120a b ++-=, a =________;b =__________ 解:1,2a b =-=. 练习2:若7322102 m n p ++-+-=,则23_______p n m +=+. 解:由题意,713,,22m n p =-==,所以13237922 p n m m +==+-=-+. 5.1.2 零点分段法去绝对值 对于绝对值,我们经常用到的一种方法是去绝对值,一般采用零点分段法,零点分段法的一般步骤:①找零 点→②分区间→③定符号→④去绝对值符号. 【例5】阅读下列材料并解决相关问题: 我们知道()()() 0000x x x x x x >??==??-

第二讲-绝对值------王三祝

第二讲绝对值 王三祝 绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题. 下面我们先复习一下有关绝对值的基本知识,然后进行例题分析. 一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即 绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值. 结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数. 例1 a,b为实数,下列各式对吗?若不对,应附加什么条件? (1)|a+b|=|a|+|b|; (2)|ab|=|a||b|;(3)|a-b|=|b-a|; (4)若|a|=b,则a=b; (5)若|a|<|b|,则a<b; (6)若a>b,则|a|>|b|. 解 (1)不对.当a,b同号或其中一个为0时成立.(2)对. (3)对. (4)不对.当a≥0时成立. (5)不对.当b>0时成立. (6)不对.当a+b>0时成立. 例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.

解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0. 再根据绝对值的概念,得 |b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c. 于是有 原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c. 例3已知x<-3,化简:|3+|2-|1+x|||. 分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号. 解原式=|3+|2+(1+x)||(因为1+x<0) =|3+|3+x|| =|3-(3+x)|(因为3+x<0) =|-x|=-x. 解因为 abc≠0,所以a≠0,b≠0,c≠0. (1)当a,b,c均大于零时,原式=3; (2)当a,b,c均小于零时,原式=-3; (3)当a,b,c中有两个大于零,一个小于零时,原式=1; (4)当a,b,c中有两个小于零,一个大于零时,原式=-1. 说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用. 例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.

含绝对值的不等式知识点

含绝对值的不等式 x(x 0) x . x(x 0) 2.| x |v a(a>0)的解集是{x |—a v x v a}. | x |> a( a>0)的解集是{x | x v—a 或x > a}. 【思考导学】 1. I ax+ b| v b(b> 0)转化成一b v ax+ b v b的根据是什么 答:含绝对值的不等式| ax+ b| v b转化一b v ax+ b v b的根据是由绝对值的意义确定. 2. 解含有绝对值符号的不等式的基本思想是什么 答:解含有绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与解一般不等式或不等式组相同. 【典例剖析】 [例1]解不等式2v| 2x — 5 | w 7. I2x 5I 2 解法一:原不等式等价于I I |2x 5| 7 2x 5|2 或2x 5 7 2x 5| 7 3 7 原不等式的解集为{x |- K x v 或—v x w 6} 2 2 解法二:原不等式的解集是下面两个不等式组解集的并集 (I)2x 2 5 2x 57 (n)2x50 252x7 不等式组(I )的解集为{x | - v x W 6} 2 不等式组(n)的解集是{x |- i w x v - } 2 3 7 ?原不等式的解集是{x |- 1W x v —或—v x w 6} 2 2 解法三:原不等式的解集是下面两个不等式解集的并集. (I )2 v 2x —5W 7 (n )2 v 5—2x w 7 不等式(I )的解集为{x | - v x w 6} 2 3 不等式(n )的解集是{x |—i w x v 2 3 7 ?原不等式的解集是{x |— 1 w x v 或—v x w 6}. 2 2 点评:含绝对值的双向不等式的解法,关键是去绝对值号.其方法一是转 化为单向不等式组如解法一,再就是利用绝对值的定义如解法二、解法三. [例2]解关于x的不等式: (1) | 2x + 3 | —i v a(a€ R); 1绝对值的意义是:

第3讲 绝对值

绝对值 姓名 学校 日期 【知识要点】 一、绝对值的概念 1.定义:一个数的绝对值就是数轴上表示a 的点与原点的距离,数a 的绝对值记作a ,读作a 的绝对值。 2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值还是0。 3.绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。 4绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对任意有理数a ,总有a ≥0。 5.互为相反数的两个数的绝对值相等,但绝对值相等的两个数相等或互为相反数。 6.绝对值等于它本身的数一定是非负数,绝对值等于它的相反数的数一定是非正数。 二、绝对值的求法 绝对值是一种运算,这个运算符号是“ ”,求一个数的绝对值就是想办法去掉绝对值符号,对于任 意有理数a ,有 (1)(0)0(0)(0)a a a a a a >??==??-??-≤? 【典型例题】 例1 求下列各数的绝对值。 (1)34= ; (2)13-= ; (3)144-= ; (4)132= ; 例2 (1)一个数的绝对值是3,则这个数是 。 (2)一个数的绝对值是0,则这个数是 。 (3)有没有一个数的绝对值是-4? 。 思考:a 与0的大小关系 例3 (1)若2m -=,求m 的值;(2)若a b =,则a b 与的关系是什么? 例4 写出绝对值不大于3的所有整数,并求出它们的和。

例5 如果a 的相反数是最大的负整数,b 是绝对值最小的数,那么a 与b 的和是多少? 例6 数b a ,在数轴上的位置如图,观察数轴,并回答: (1)比较a 和b 的大小; (2)比较a 和b 的大小; (3)判断b a a b b a b a ?--+,,,的符号; (4)试化简a b b a -+-- 经典练习 一、填空题 1.31-的绝对值是 ,31的绝对值是 , 的绝对值是31 . 2.一个正数的绝对值为8,这个数是 ,一个负数的绝对值为8,这个数是 . 3. 的绝对值是它本身, 的绝对值是它的相反数. 4.若0>a ,则=a ;若0

人教版高数选修4-5第1讲:不等式的性质与绝对值不等式(学生版)

不等式的性质与绝对值不等式 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点:掌握基本不等式的概念、性质;绝对值不等式及其解法; 教学难点: 理解绝对值不等式的解法 1、基本不等式2 b a ab +≤ (1)基本不等式成立的条件:_____________ (2)等号成立的条件:当且仅当b a =时取等号. 2、几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3、算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为________ ,几何平均数为______,基本不等式可叙述为:两个 正实数的算术平均数不小于它的几何平均数. 4、利用基本不等式求最值问题 已知,0,0>>y x 则

(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). 5、若0x >,则12x x + ≥ (当且仅当1x =时取“=”) 若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 若R b a ∈,,则2 )2(222b a b a +≤+(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 6、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ???<-=>=0,0,00,a a a a a a 7、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0

(精品)数学讲义六年级春季班第2讲:绝对值提高-教师版

分类讨论的数学思想是中考数学的一大难点,而在绝对值这一部分,我们会第一次系统性的接触到分类讨论的数学方法.另外,同学们要理解绝对值的代数意义和几何意义,并运用其进行解题. 对于任意实数a,一定有0 a . 【例1】判断: (1)a一定是正数;() (2)一个数的绝对值的相反数不是正数.() 【难度】★ 【答案】(1)×;(2)√. 【解析】(1)任意数的绝对值是非负数,不一定为正数,为0也行. 【总结】考察绝对值的非负性. 绝对值提高 内容分析 知识结构 模块一:绝对值的非负性 知识精讲 例题解析

2 / 21 【例2】 是否存在x ,使得11x +=?是否存在x ,使得10x +=?若存在,求出x 的值; 若不存在,请说明理由. 【难度】★ 【答案】存在,0;不存在,理由见解析. 【解析】因为11=+x ,所以0=x ,所以0=x ; 因为01=+x ,所以1-=x , 因为任何数的绝对值为非负数,则不存在这样的x . 【总结】考察绝对值的非负性. 【例3】 当x ______时,10x +>;当x ______时,10x +=;当x ______时,10x +<. 【难度】★★ 【答案】1-≠;1-=;不存在. 【解析】因为01≥+x ,所以当01≠+x ,即1-≠x 时,01>+x , 而1+x 为非负数,则不存在这样的x 使得01<+x . 【总结】考察绝对值的非负性. 【例4】 已知23x y -=-+,则x + y =_______. 【难度】★★ 【答案】-1. 【解析】由题意可得:032=++-y x , 因为2-x 和3+y 均为非负数, 所以02=-x 且03=+y , 所以2=x 且3-=y , 所以1-=+y x . 【总结】考察绝对值的非负性.

124绝对值

§1.2.4 绝对值(第 1 课时) 年级:七年级(上)学科:数学执笔:鲁世凯审核:赵光洪 累计: 2 课时课型:新授执教者: 时间:年月日姓名:班级:学号: . 【学习目标】 ◇知识与能力:理解、掌握绝对值概念.体会绝对值的作用与意义 ◇过程与方法:通过实际问题,掌握求一个已知数的绝对值和有理数大小比较的方法. ◇情感、态度与价值观:体验运用直观知识解决数学问题的成功. 【学习重点】绝对值的概念 【学习难点】绝对值的概念与两个负数的大小比较 【教学过程】 一、学前准备 1.预习书P11——p14,写下疑难摘要: . 2. 回忆: (1)什么叫相反数? (2)一个数a的相反数是,在数轴上表示与原点距离相等的点点数有个。(3)怎样化简一个数的符号? 二、探索活动 (一)独立思考·解决问题 问题:如下图 小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近) (二)、师生探究·合作交流 1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是 到原点的距离等于10的数有个,它们的关系是一对 . 这时我们就说10的绝对值 ...是10,—10的绝对值 ...也是10. 例如,—3.8的绝对值是3.8;17的绝对值是17;—61 3 的绝对值是 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣2、练习: 1)、式子∣-5.7∣表示的意义是 . 2)、—2的绝对值表示它离开原点的距离是个单位,记作 . 3)、∣24∣= . ∣—3.1∣= ,∣—1 3 ∣= ,∣0∣= . 3、思考、交流、归纳 由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是 . 用式子表示就是:

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

相关文档
最新文档