复数加减运算重难点

复数加减运算重难点
复数加减运算重难点

§3.2.1复数代数形式的加减运算及其几何意义

本节的重点是复数加法法则,复数与从原点出发的向量的对应关系。难点是复数减法法则的推导过程,复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不轻易接受。

(1)在复数的加法与减法中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当0,0==d b 时,与实数加法法则一致;②验证实数加法交换律、结合律在复数集C 中仍然成立;③符合向量加法的平行四边形法则.

(2)复数加法的向量运算:设21,OZ OZ 分别与复数di c bi a ++,对应,画出向量21,OZ OZ 后,提问向量加法的平行四边形法则,并让学生自己

画出和向量,画出向量OZ 后,问与它对应的复数是什么,即求点Z 的坐标.

(3)通过实例引入复数加法的三角形法则.在学生对复数加法可按向量加法的平行四边形法则来进行有了一定的了解后,可以引导学生回顾一下向量加法还可按三角形法则来进行:这时先画出第一个向量,再以第一个向量的终点为起点画出第二个向量,那么,由第一个向量起点O 指向第二个向量的终点Z 的向量,就是这两个向量的和向量.通过对向量加法法则的复习,学习了复数加法的几何意义,温故而知新。

(4)通过具体实例使学生感受复数加法的三角形法则的好处.例如当21,OZ OZ 在同一直线上时,求它们的和,用三角形法则来解释,可能

比“画一个压扁的平行四边形”来解释轻易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便.

(5)如何使学生更好理解复数的减法?首先可以类比实数的减法,规定复数的减法是加法的逆运算,即用加法定义两个复数的差,然后只要依据复数的加法,复数相等的条件就可以得到复数减法的法则。这一过程实际上是待定系数法,同时待定系数法也是确定复数的一个一般方法。类比已经学过的知识,有效学习新知识,学生更易理解、接受。

复数的加减与乘法运算

3.2.1复数的加减与乘法运算 教学目标: 1. 理解复数加法、乘法法则的合理性及复数差的定义。 2. 掌握复数加减法和乘法法则,能够熟练地进行复数的加、减法和乘法运算。 3. 理解共轭复数的概念。 教学重、难点: 重点:复数的加、减,乘的运算法则和运用。 难点:对复数乘法法则有关性质的理解。 经典例题分析 一、 加减运算 例1. 计算: (1)()();532-i i -++ (2)( )( ) ;2121i i + -++ - (3)()()().,332R b a i bi a bi a ∈---+ 变式:计算:()()();43431i i -++ ()()();54232i i --+- ()()()()i i i 3322653+---+- 二、 复数的乘法运算 例2. 计算: ()()();32431i i --+ ()( )( ) ;23232i i +- + ()()()();243213i i i ---+ ()()214i + 变式:计算:.23 21-23 21-??? ? ? ?-???? ? ?+ i i

三、 共轭复数 例3. 已知复数z 满足i z i z z 242+=?+?,求复数z 。 变式:若虚数()0,,≠∈+=b R b a bi a z 满足z z =2,求z 。 四、 因式分解 例4. 在复数范围内分解因式. ()412 +x ;()4 4 2b a -;()2 2 2 23c b ab a +++;()3242 ++x x 。 变式:求i 2的平方根,并将44+z 在复数集内分解因式。

课后练习 1. 复数23-i 的共轭复数为__________. 2. 复数432i i i i z +++=的值为__________. 3. 若i i z --=++33,则=z __________. 4. 若()()ti i ++12为纯虚数,则=t __________. 5. 计算:()()()=---++i i i 35366__________. 6. i 是虚数单位,计算=++32i i i __________. 7. 设(),2,43,221i z i z i z z f --=+=-=则()=-21z z f __________. 8. 设,R m ∈复数()()()mi i m m i m z 213222+-+-++=,若z 为纯虚数,则=m 9. 若复数i z i z -=+=3,121,则=?21z z __________. 10. 若复数i z i z 96,29421+=+=,其中i 为虚数单位,则复数()i z z 21-的实部 为__________. 11. i z 21-=,则=+?z z z __________. 12. 设复数()R x i x z i z ∈+=+=2,121,若21z z ?为实数,则=x __________. 13. 已知复数z 满足()i i z 31021-++,则=z __________. 14. 若复数z 同时满足iz z i z z ==-,2(i 为虚数单位),则=z __________. 15. 已知()()()()()R y x i y x x y z i x y y x z ∈+--=-++=,,3524,4321。设 21z z z -=,且,213i z +=求21z z ?。 16. 解方程()035322 =+++-i x i x 。 17. 已知z C z ,∈为z 的共轭复数,若i z i z z 313+=-?,求z 。

复数代数形式的加减运算及其几何意义(教案)

新授课:3.2.1 复数代数形式的加减运算及其几何意义 教学目标 重点:复数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 知识点:.掌握复数代数形式的加、减运算法则; .理解复数代数形式的加、减运算的几何意义. 能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想. 在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神. 自主探究点:如何运用复数加法、减法的几何意义来解决问题. 考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题. 易错易混点:复数的加法与减法的综合应用. 拓展点:复数与其他知识的综合. 一、引入新课 复习引入 .虚数单位:它的平方等于,即; .对于复数: 当且仅当时,是实数; 当时,为虚数; 当且时,为纯虚数; 当且仅当时,就是实数. .复数集与其它数集之间的关系:. 一一对应 .复数几何意义: 复数复平面内的向量 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算. 【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫. 二、探究新知

探究一:复数的加法 .复数的加法法则 我们规定,复数的加法法则如下: 设,是任意两个复数,那么: 提出问题: ()两个复数的和是个什么数,它的值唯一确定吗? ()当时,与实数加法法则一致吗? ()它的实质是什么?类似于实数的哪种运算方法? 学生明确: ()仍然是个复数,且是一个确定的复数; ()一致; ()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神. .复数加法的运算律 实数的加法有交换律、结合律,复数的加法满足这些运算律吗? 对任意的,有 (交换律), (结合律). 【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力. .复数加法的几何意义 复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗? 设分别与复数对应,则有,由平面向量的坐标运算有 . 这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:

复数代数形式的乘除运算教案

复数代数形式的乘除运算教案 教学目标: 1 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 2 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 3 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 课型:新知课 教具准备:多媒体 教学过程: 复习提问: 已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数) 加法法则:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 减法法则:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减) (a+bi )±(c+di) = (a±c) + (b±d)i

复数的加法运算满足交换律: z1+z2=z2+z1. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3) 讲解新课: 一.复数的乘法运算规则: 规定复数的乘法按照以下的法则进行: 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究: 复数的乘法是否满足交换律、结合律? 乘法对加法满足分配律吗? 二.乘法运算律: (1)z1(z2z3)=(z1z2)z3 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i, z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i. 又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1. ∴z1z2=z2z1. (2)z1(z2+z3)=z1z2+z1z3

复数加减法练习题

复数加减法练习题 例计算 ?; ?; ?? 分析:根据复数加、减法运算法则进行运算。 解:???i?6?i. ???[2?]i??7?7i. ????i??11i. 确定向量所表示的复数 例如图,平行四边形OABC,顶点O、A、C分别 表示0,3?2i,?2?4i,试求: AO所表示的复数,BC所表示的复数. 对角线CA所表示的复数. 对角线OB所表示的复数及OB的长度. 分析:要求某个向量对应的复数,只要找出所求的向量的始点和终点。或者用向量的相等直接给出所求的结论.解:AO??OA ?AO所表示的复数为?3?2i. ?BC?AO, ?BC所表示的复数为?3?2i. CA?OA?OC, ?CA所表示的复数为??5?2i

对角线OB?OA?AB?OA?OC,它所对应的复数为 ??1?6i |OB|??622?37 求正方形的第四个顶点对应的复数 例复数z1?1?2i,z2??2?i,z3??1?2i,它们在复平面上的对应点是一个正 方形的三个顶点,求这个正方形的第四个顶点对应的复数。 分析1:利用AD?BC或者AB?DC求点D对应的复数。 解法1:设复数z1,z2,z3所对应的点分别为A、B、C,正方形的第四个顶点D对应 的复数为x?yi则 AD?OD?OA?? ??i BC?OC?OB???1?3i ∵ A D?BC,∴?i?1?3i. ?x?1?1 ?y?2??3?x?2?y??1∴ ? 解得? 故点D对应的复数2?i. 分析2:利用正方形的性质,对角钱相等且互相平分,相对顶点连线段的 中点重合,即利用正方形的两条对角线交点是其对称

中心求解. 解法2:设复数 z1,z2,z3所对应的点分别为A、B、C,正方形的第四个顶点D对应 的复数为x?yi 因为点A与点C关于原点对称,所以原点O为正方形的中心. ∴ 点O也是B与D点的中点,于是由??0 ∴ x?2,y??1. 故D对应的复数为2?i. 小结:解题1一定要善于发现问题中可能被利用的条件,寻找最佳的解题方法,解法2利用正方形是如C对称固形,解题思路较巧. 根据条件求参数的值 例已知z1?a2?3?i,z2?a?1?i分别对应向量, OZ1,OZ2,若向量Z2Z1对应的复数为纯虚数,求a的值.分析:Z2Z1对应的复数为纯虚数,利用复数减法先求出Z2Z1对应的复数,再利用复数为纯虚数的条件求解即得.解:设向量Z2Z1对应复数z ∵Z2Z1?OZ1?OZ2 ∴z?z1?z2?a2?3?i?[a2?1?i] ?[?]?[?]i ??i

复数加减运算重难点

§3.2.1复数代数形式的加减运算及其几何意义 本节的重点是复数加法法则,复数与从原点出发的向量的对应关系。难点是复数减法法则的推导过程,复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不轻易接受。 (1)在复数的加法与减法中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当0,0==d b 时,与实数加法法则一致;②验证实数加法交换律、结合律在复数集C 中仍然成立;③符合向量加法的平行四边形法则. (2)复数加法的向量运算:设21,OZ OZ 分别与复数di c bi a ++,对应,画出向量21,OZ OZ 后,提问向量加法的平行四边形法则,并让学生自己 画出和向量,画出向量OZ 后,问与它对应的复数是什么,即求点Z 的坐标. (3)通过实例引入复数加法的三角形法则.在学生对复数加法可按向量加法的平行四边形法则来进行有了一定的了解后,可以引导学生回顾一下向量加法还可按三角形法则来进行:这时先画出第一个向量,再以第一个向量的终点为起点画出第二个向量,那么,由第一个向量起点O 指向第二个向量的终点Z 的向量,就是这两个向量的和向量.通过对向量加法法则的复习,学习了复数加法的几何意义,温故而知新。

(4)通过具体实例使学生感受复数加法的三角形法则的好处.例如当21,OZ OZ 在同一直线上时,求它们的和,用三角形法则来解释,可能 比“画一个压扁的平行四边形”来解释轻易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便. (5)如何使学生更好理解复数的减法?首先可以类比实数的减法,规定复数的减法是加法的逆运算,即用加法定义两个复数的差,然后只要依据复数的加法,复数相等的条件就可以得到复数减法的法则。这一过程实际上是待定系数法,同时待定系数法也是确定复数的一个一般方法。类比已经学过的知识,有效学习新知识,学生更易理解、接受。

高考全国卷Ⅰ文科数学复数及其运算汇编

新课标全国卷Ⅰ文科数学汇编 复数及其运算 一、选择题 【2017,3】下列各式的运算结果为纯虚数的是( ) A .2(1)i i + B .2(1)i i - C .2(1)i + D .(1)i i + 【2016,2】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( ) A .3- B .2- C .2 D .3 【2015,3】已知复数z 满足(z -1)i =1+i ,则z=( ) A .-2-i B .-2+i C .2-i D .2+i 【2014,3】3.设1 1z i i =++,则|z |=( ) A .21 B .22 C .23 D .2 【2013,2】212i 1i +(-)=( ). A .11i 2-- B .11+i 2- C .11+i 2 D .1 1i 2- 【2012,2】复数32i z i -+=+的共轭复数是( ) A .2i + B .2i - C .1i -+ D .1i -- 【2011,2】复数5i 12i =-( ). A .2i - B .12i - C .2i -+ D .12i -+ 解 析 一、选择题 【2017,3】下列各式的运算结果为纯虚数的是( ) A .2(1)i i + B .2(1)i i - C .2(1)i + D .(1)i i + 解:22(1)121210i i i i +=++=+-=,故选C 【2016,2】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a =( )

A .3- B .2- C .2 D .3 解析:选A . 由题意()()()()12i i 221i a a a ++=-++,故221a a -=+,解得3a =-. 【2015,3】已知复数z 满足(z -1)i =1+i ,则z=( ) A .-2-i B .-2+i C .2-i D .2+i 解:选C . z=11112i z i i i += +=-+=-. 【2014,3】3.设11z i i =++,则|z |=( ) A .2 1 B .2 2 C .2 3 D .2 解:选B .111,1222i i z i i z i -=+=+=+∴==+B . 【2013,2】2 12i 1i +(-)=( ) A .11i 2-- B .11+i 2- C .11+i 2 D .11i 2 - 解析:选B .212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2 -. 【2012,2】复数32i z i -+=+的共轭复数是( ) A .2i + B .2i - C .1i -+ D .1i -- 【解析】选D .因为(3)(2)551(2)(2)5i i i z i i i -+--+= ==-++-,所以1z i =--. 【2011,2】复数5i 12i =-( ). A .2i - B .12i - C .2i -+ D .12i -+ 【解析】选C .()()()()5i 12i 5i 12i 5i 2i 12i 12i 12i 5++===-+--+.

3.2.2 复数代数形式的乘除运算教学设计

《复数代数形式的乘除运算》的教学设计

i 2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 例1 计算( )()12i i + ()()()2123i i -+ 例2 计算 (1-2i)(3+4i)(-2+i) 练习1 计算 )1)(23)(2()23)(1)(1(i i i i +--+ )]2)(1)[(21)(4() 2)](1)(21)[(3(i i i i i i ++-++- 2.复数乘法的运算律 对任意复数z 1、z 2、z 3∈C ,有 (1)z 1(z 2z 3)=(z 1z 2)z 3 (2)z 1(z 2+z 3)=z 1z 2+z 1z 3 (3)z 1(z 2+z 3)=z 1z 2+z 1z 3. 练习2 计算:(1)(3+4i) (3-4i) ; (2)(1+ i)2. 3.共轭复数 当两个复数的实部相等,虚部互为相反数时,这两个复数叫 做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数。 通常记复数z 的共轭复数为z 。 3.复数除法 满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的 商,记为:(a+bi)÷(c+di)或者di c bi a ++. 除法法则 22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )= i d c ad bc d c bd ac 2 222+-+++. 利用(c +di )(c -di )=c 2+d 2.于是将di c bi a ++的分母有理化得: 例3 计算(12)(34)i i +÷- 四、考点突破 由不同的小组完成相应的对照组,强化学生对复数的乘除运算法则的理解和掌握,同时与多项式乘法类比, 复数代数形式的乘法也满足相应的运算律及乘法公式。 [来源:学.科.网] 理解共轭复数的定义,了解共轭复数的一些性质,并会应用待定系数方法,方程思想解决复数问题。 类比已有的无理分式化简即分母有理化思想方法,(c +di )·(c -di )=c 2+d 2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 强化巩固

复数的减法及其几何意义1

复数的减法及其几何意义 教学目标 1.理解并掌握复数减法法则和它的几何意义. 2.渗透转化,数形结合等数学思想和方法,提升分析、解决问题水平. 3.培养学生良好思维品质(思维的严谨性,深刻性,灵活性等). 教学重点和难点 重点:复数减法法则. 难点:对复数减法几何意义理解和应用. (一)引入新课 上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义) (二)复数减法 复数减法是加法逆运算,那么复数减法法则为(+i)-(+i)=(-)+(-)i, 1.复数减法法则 (1)规定:复数减法是加法逆运算; (2)法则:(+i)-(+i)=(-)+(-)i(,,,∈R).把(+i)-(+i)看成(+i)+(-1)(+i)如何推导这个法则.

(+i)-(+i)=(+i)+(-1)(+i)=(+i)+(--i)=(-)+(-)i. 推导的想法和依据把减法运算转化为加法运算. 推导:设(+i)-(+i)=+i(,∈R).即复数+i为复数+i减去复数+i的差.由规定,得(+i)+(+i)=+i,依据加法法则,得(+)+(+)i=+i,依据复数相等定义,得 故(+i)-(+i)=(-)+(-)i.这样推导每一步都有合理依据.我们得到了复数减法法则,两个复数的差仍是复数.是唯一确定的复数. 复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即(+i)±(+i)=(±)+(±)i. (三)复数减法几何意义 我们有了做复数减法的依据——复数减法法则,那么复数减法的几何意义是什么? 设z=+i(,∈R),z1=+i(,∈R),对应向量分别为, 如图 因为复数减法是加法的逆运算,设z=(-)+(-)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,1为一条边画平行四边形,那么这个平行四边形的另一边2所表示的向量OZ2就与复数z-z1的差(-)+(-)i对应,如图.

复数 教案(绝对经典)

复 数 复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,并且一般在前三题的位置,主要考查对复数概念的理解以及复数的加减乘除四则运算,难度较小. 【复习指导】 1.复习时要理解复数的相关概念如实部、虚部、纯虚数、共轭复数等,以及复数的几何意义. 2.要把复数的基本运算作为复习的重点,尤其是复数的四则运算与共轭复数的性质等.因考题较容易,所以重在练基础。 基础梳理 1.复数的有关概念 (1)复数的概念 形如a +b i (a ,b ∈R )的数叫作复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数,若b ≠0,则a +b i 为虚数,若a =0且b ≠0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复平面 建立直角坐标系来表示复数的平面,叫作复平面.x 轴叫作实轴,y 轴叫作虚轴.实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数. (5)复数的模 向量OZ →的模r 叫作复数z =a +b i 的模,记作__|z |__或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2,实际上就是指复平面上的点Z 到原点O 的距离;|z 1-z 2|的几何意义是复平面上的点Z 1、Z 2两点间的距离. (2)复数z 、复平面上的点Z 及向量OZ → 相互联系,即z =a +b i(a ,b ∈R )?Z (a ,b )?OZ → . 3.复数的四则运算 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 (1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2 =a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0).

复数 复数的减法及其几何意义 教案

复数·复数的减法及其几何意义·教案 教学目标 1.理解并掌握复数减法法则和它的几何意义. 2.渗透转化,数形结合等数学思想和方法,提高分析、解决问题能力. 3.培养学生良好思维品质(思维的严谨性,深刻性,灵活性等). 教学重点和难点 重点:复数减法法则. 难点:对复数减法几何意义理解和应用. 教学过程设计 (一)引入新课 师:上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义) (二)复数减法 师:首先规定,复数减法是加法逆运算,那么复数减法法则为(a+bi)-(c+di)=(a-c)+(b-d)i,(板书) 1.复数减法法则 (1)规定:复数减法是加法逆运算; (2)法则:(a+bi)-(c+di)=(a-c)+(b-d)i(a,b,c,d∈R). 如何推导这个法则呢? 生:把(a+bi)-(c+di)看成(a+bi)+(-1)(c+di). (学生口述,教师板书) (a+bi)-(c+di)=(a+bi)+(-1)(c+di)=(a+bi)+(-c-di)=(a-c)+(b-d)i. 师:说一下这样推导的想法和依据是什么? 生:把减法运算转化为加法运算,利用乘法分配律和复数加法法则. 师:转化的想法很好.但复数和乘法分配律在这里作为依据不合适,因为复数乘法还没有学,逻辑上出现一些问题. 生:我觉得可以利用复数减法是加法逆运算的规定来推导. (学生口述,教师板书) 推导:设(a+bi)-(c+di)=x+yi(x,y∈R).即复数x+yi为复数a+bi减去复数c+di的差.由规定,得(x+yi)+(c+di)=a+bi,依据加法法则,得(x+c)+(y+d)i=a+bi,依据复数相等定义,得 故(a+bi)-(c+di)=(a-c)+(b-d)i. 师:这样推导每一步都有合理依据. 我们得到了复数减法法则,那么两个复数的差是什么数? 生:仍是复数. 师:两个复数相减所得差的结果会不会是不同的复数? 生:不会. 师:这说明什么? 生:两个复数的差是唯一确定的复数. 师:复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即(a+bi)±(c+di)=(a±c)+(b±d)i.

复数乘除法公开课优秀教案

§3.2.2复数代数形式的乘除运算 【学习目标】 1.理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算; 2.理解并掌握复数的除法运算实质是分母实数化类问题; 【重点难点】 重点:复数代数形式的除法运算. 难点:对复数除法法则的运用. 【学法指导】 复数乘法运算是按照多项式与多项式相乘展开得到,在学习时注意将2 i 换成1-;除法是乘法的逆运算,所以复数的除法运算可由乘法运算推导获得,但是也可由互为共轭复数的两个复数的乘积为实数,先将复数的分母实数化,再化简可得,学习时注意体会第二种方法的优势和本质. 【知识链接】 1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21; 2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21; 3.复数的加法运算满足交换律:1221z z z z +=+; 4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++; 5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=. 【问题探究】 探究一、复数的乘法运算 引导1:乘法运算规则 设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行: =?21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2 i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数. 引导2:试验证复数乘法运算律 (1)1221z z z z ?=?

复数的代数形式的乘除运算优秀教案

3.2.2 复数地代数形式地乘除运算 授课人:姚晓燕授课班级:2014级14班 教学要求:掌握复数地代数形式地乘、除运算. 教学重点:复数地代数形式地乘除运算及共轭复数地概念 教学难点:乘除运算 教学过程: 一、知识回顾 复数地加/减运算法则:________________________________________________. 加法运算规律:对任意z 1,z 2,∈C.有交换律_____________________________. 加法运算规律:对任意z 1,z 2,z 3∈C.有结合律___________________________________. 1. 复数乘法运算:我们规定,复数乘法法则如下: 2. 设z 1=a+bi z 2=c+di 是任意两个复数,那么它们地乘积为:(a+bi )(c+di)=_____________. 想一想:复数地乘法与多项式地乘法有何不同?___________________________________._______________________________________________. 注意:两个复数地积是一个确定地复数 3. 应用举例1 计算 (3+4i)(-2-3i) 变式1:(1)若复数(1+b i)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b 等于() A .2B.12C .-12 D .-2 变式2:计算 ⑴(1+i)2⑵(3+4i)(3-4i)

3.共轭复数 定义_____________________________________________________________. 记法:复数z=a+b i 地共轭复数记作______________________________________. 口答:说出下列复数地共轭复数 ⑴z=2+3i⑵z= -6i⑶z= 3 思考 :若z1 , z2是共轭复数,那么 ⑴在复平面内,它们所对应地点有怎样地位置关系? ⑵z1.z2是一个怎样地数? (3)z1与z2地模有何关系? 4.探究:复数地乘法是否满足交换律,结合律以及乘法对加法地分配律? 对任意复数z1=a+bi,z2=c+di,z3=m+ni 则z1·z2=(a+bi)(c+di)= 而z2·z1= (c+di)(a+bi)= ∴z1·z2= 同理可得: 5.乘法运算律 对任意z1 , z2 , z3∈C. 有 z1·z2=(交换律) (z1·z2)·z3= (结合律) z1(z2+z3)=(分配律) 6.复数地除法法则 探究:我们规定复数地除法是乘法地逆运算,试探究复数除法地法则. (a+bi) (c+di)=____________________________________________________(c+di≠0) 步骤—————————————————————————————————

复数乘除法、极坐标

学之导教育中心教案 学生: 梁庭苇授课时间: 课时: 2 年级: 高二教师:廖 课题复数乘除法、极坐标 教学构架 一、知识回顾 二、错题再现 三、知识新授 四、知识小结 教案内容 一、知识回顾 1、几何证明选讲 二、错题再现 1、如图ABC中,D是AB的三等分点,// DE BC,// EF BC,2 AF=,则AB=__________ F E D A B C 2、如图,在ABC中,AD是BC边上中线,AE是BC边上的高,DAB DBA ∠=∠ ,18 AB=,12 BE=,则CE=__________. 本次内容掌握情况总结 教师签字 学生签字 E B D C A

3、如图所示,圆O 的直径AB=6,C 圆周上一点,BC=3,过C 作圆的切线l ,过A 作l 的垂线AD AD 分别与直线l 、圆交于点D 、E ,则∠DAC = __,线段AE 的长为 __. 4、如图所示,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AD=23,AC=6,圆O 的半径为3, 则圆心O 到AC 的距离为________. . 5、如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD=4,BD=8,则圆O 的半径等于 . 6、如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 切⊙O 于A ,∠MAB=250,则∠D= ___ . 7.如图,AB 是圆O 的直径,直线CE 和圆O 相切于点C ,AD ⊥CE 于D ,若AD=1,∠ABC=300, 则圆O 的面积是______. 8.如图,⊙O 的割线PAB 交⊙O 于A 、B 两点,割线PCD 经过圆心O ,PE 是⊙O 的切线。已知PA=6, AB=3 1 7,PO=12,则PE=____ ⊙O 的半径是_______. A D B C E O A B C O D A B O D C O B A D C M N O B A D C E C O A B P D E

《复数代数形式的加减运算及其几何意义》参考教案2

3.2.1 复数的代数形式的加减运算 教学要求:掌握复数的代数形式的加、减运算及其几何意义。 教学重点:复数的代数形式的加、减运算及其几何意义 教学难点:加、减运算的几何意义 教学过程: 一、复习准备: 1. 与复数一一对应的有? 2. 试判断下列复数14,72,6,,20,7,0,03i i i i i i +----在复平面中落在哪象限?并画出其对应的向量。 3. 同时用坐标和几何形式表示复数121472z i Z i =+=-与所对应的向量,并计算12OZ OZ +。向量的加减运算满足何种法则? 4. 类比向量坐标形式的加减运算,复数的加减运算如何? 二、讲授新课: 1.复数的加法运算及几何意义 ①.复数的加法法则:12z a bi Z c di =+=+与,则12()()Z Z a c b d i +=+++。 例1.计算(1)(14)(72)i i +-+ (2)(72)(14)i i -++ (3)[(32)(43)](5)i i i --++++ (4)(32)(43)(5)]i i i --++++[ ②.观察上述计算,复数的加法运算是否满足交换、结合律,试给予验证。 例2.例1中的(1)、(3)两小题,分别标出(14),(72)i i +-,(32),(43),(5)i i i --++所对应的向量,再画出求和后所对应的向量,看有所发现。 ③复数加法的几何意义:复数的加法可以按照向量的加法来进行(满足平行四边形、三角形法则) 2.复数的减法及几何意义:类比实数,规定复数的减法运算是加法运算的逆运算,即若12Z Z Z +=,则Z 叫做21Z Z 减去的差,21Z Z Z =-记作。 ④讨论:若12,Z a b Z c di =+=+,试确定12Z Z Z =-是否是一个确定的值? (引导学生用待定系数法,结合复数的加法运算进行推导,师生一起板演) ⑤复数的加法法则及几何意义:()()()()a bi c di a c b d i +-+=-+-,复数的减法运算也可以按向量的减法来进行。

复数的乘法及其几何意义教案

复数的乘法及其几何意义教案 教学目标 1.掌握用复数的三角形式进行乘法运算的法则及其推导过程. 2.掌握复数乘法的几何意义. 3.让学生领悟到“转化”这一重要数学思想方法. 4.培养学生探索问题、分析问题、解决问题的能力. 教学重点与难点 重点:复数的三角形式是本节内容的出发点,复数的乘法运算. 难点:复数乘法运算的几何意义,不易为学生掌握. 教学过程设计 师:前面我们学习了复数的代数形式的运算和复数的三角形式,请大家用5分钟的时间,完成以下两道题的演算. (利用投影仪出示) 1.(1-2i)(2+i)(4+3i); (5分钟后) 师:第1题检查了复数乘法运算,答案是25,第2题检查了复数的 请同学们再考虑下面一个问题:

如果把复数z1,z2分别写成 z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2). z1·z2这乘法运算怎样进行呢? 想出算法后,请大家在笔记本上演算,允许同学之间交换意见. (教师在教室里巡视,稍过几分钟,请一位已经做完的同学在黑板上写出推导过程) 学生板演: z1·z2=r1(cosθ1+isinθ1)·r2(cosθ2+isinθ2) =(r1cosθ1+ir1sinθ1)·(r2cosθ2+ir2sinθ2) =(r1r2cosθ1cosθ2-r1r2sinθ1sinθ2)+i(r1r2sinθ1cosθ2+r1r2cosθ1sin θ2) =r1r2[(cosθ1cosθ2-sinθ1sinθ2)+i(sinθ1cosθ2+cosθ1sinθ2] =r1r2[cos(θ1+θ2)+isin(θ1+θ2)]. 师:很好,你是怎样想出来的?为什么这样想? 生:我们已经学过复数的代数形式运算,因此把三角形式化为代数形式,按着代数形式的乘法运算法则就可以完成运算.根据数学求简的原则,运用三角公式把结果化简. 在已知的基础上发展和探索未知的东西,解题时,把未知转化成已知,这是重要的思想方法.我是根据这个思想才想出来的. 师:观察这个问题的已知和结论,同学们能发现有什么规律吗? 生:两个复数相乘,积的模等于各复数模的积,积的复角等于各复数的辐角的和. 师:利用这个结论,请同学们计算: 大家把计算过程写在笔记本上.

复数运算的演示程序.

复数运算的演示程序 【实验题目】 实验1.抽象数据类型? 【问题描述】 用C或C++语言设计并实现一个可进行复数运算的演示程序。 【基本要求】 1.由输入的实部和虚部生成一个复数 2.两个复数求和 3.两个复数求差 4.两个复数求积 【实现提示】 定义复数为由两个相互之间存在次序关系的实数构成的抽象数据类型,则可以利用实数的操作来实现复数的操作。 (下面的内容由学生填写,格式统一为,字体:楷体,行距:固定行距18,字号:小四) 一、【实验构思(Conceive )】(10%) (本部分应包括:描述实验实现的基本思路,包括所用到的离散数学、工程数学、程序设计、算法等相关知识) 复数由实部和虚部构成,可以通过一个含有两个元素的结构体来实现复数的表示,并且通过接受用户的输入,可以实现复数的生成。对于复数的四则运算,可以编写四个函数,通过函数的调用来实现相应的运算。 加减法:(a + bi )±(c + di) = (a ± c ) + (b ± d) i 乘法:(a + bi) * (c + di) = (ac - bd ) + (ad + bc ) i a bi _ (a bi)(c _di) (ac bd)(bc -ad)i 除、:c di _ c2 d2「c2 d2 二、【实验设计(Design)】(15%) (本部分应包括:抽象数据类型的功能规格说明、主程序模块、各子程序模块的伪码说明,主程序模块与各子程序模块间的调用关系)

功能:能够显示和构造复数,并且能进行复数的加减乘除运算。主程序模块:void main() { float a,b,c,d; fushu f1,f2,plu,min,mul; printf(" 请按实部虚部的顺序依次输入两个复数:"); scanf("%f%f%f%f",&a,&b,&c,&d); getfushu (f1,a,b); /* 调用getfushu 函数,构造复数f1*/ getfushu (f2,c,d); /* 调用getfushu 函数,构造复数f2*/ printf("\n 您输入的第一个复数是:"); printfushu (f1); printf("\n 您输入的第二个复数是:"); printfushu (f2); plusfushu (plu,f1,f2); /* 调用plusfushu 函数,使复数f1,f2 相加*/ printf("\n 相加结果为:"); printfushu (plu); minusfushu (min,f1,f2); /* 调用minuscomplex 函数,使复数f1,f2 相减*/ printf("\n 相减结果为:"); printfushu (min); multifushu (mul,f1,f2); /* 调用multifushu 函数,使f1,f2 相乘*/ printf("\n 相乘结果为:"); printfushu (mul); printf("\n"); } 子程序模块:void getfushu (fushu& f,float a,float b); /* 构造复数*/ void plusfushu (fushu& plu, fushu f1, fushu f2); /* 实现复数的相加*/ void minusfushu (fushu& min, fushu f1, fushu f2); /* 实现复数的相减*/ void multifushu (fushu& mul, fushu f1, fushu f2); /* 实现复数的相乘*/ void printfushu (fushu f); /* 显示复数*/ 、【实现描述( Implement )】(25%) 本部分应包括:抽象数据类型具体实现的函数原型说明、法、 关键操作实现的伪码算 函数设计、函数间的调用关系,关键的程序流程图等,给出关键算 法的时间复杂度分析。) void getfushu (fushu& f,float a,float b); 通过接受两个数据来构造一个复数f,其中a为复数的实部,b为复数的虚部。 void plusfushu (fushu& plu, fushu f1, fushu f2); 接收两个复数,并对其进行加法运算,将运算结果保存在plu 里。 void minusfushu (fushu& min, fushu f1, fushu f2); 对复数f1,f2 进行减法运算,并将运算结果保存在min 里。 void multifushu (fushu& mul, fushu f1, fushu f2); 对复数f1,f2 进行乘法运算,并将运算结果保存在mul 里。void printfushu (fushu

复数乘除法教案

陈仓高级中学高二数学备课组集体教案 课题 §3.2.2复数代数形 式的乘除运算 撰写人 三维目标 1.知识与技能目标 理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;并掌握复数的除法运算实质是分母实数化类问题; 2.过程与方法目标 通过学习使学生进一步理解算理,提高对运算法则合理性的认识。 3.情感态度价值观 培养学生严密的推理能力,周到细密的计算能力. 重难点 重点: 复数代数形式的除法运算 难点: 对复数除法法则的运用. 课件名称 复数代数形式的乘除运算 上课时间 教学过程 【知识链接】 1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21; 2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21; 3.复数的加法运算满足交换律:1221z z z z +=+; 4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++; 5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=. 【问题探究】 探究一、复数的乘法运算 引导1:乘法运算规则 设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行: =?21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数.

引导2:试验证复数乘法运算律 (1)1221z z z z ?=? (2)()()321321z z z z z z ??=?? (3)()3121321z z z z z z z ?+?=+? 点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究二、复数的除法运算 引导1:复数除法定义: 满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者 di c bi a ++()0≠+di c . 引导2:除法运算规则: 利用()()22d c di c di c +=-+.于是将di c bi a ++的分母有理化得: 原式=22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i d c a d bc d c bd ac 2222+-+++. 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()2 2d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 【典例分析】 例1计算()()()i i i +-+-24321 引导:可先将前两个复数相乘,再与第三个复数相乘. 点拨:在复数的乘法运算过程中注意将2 i 换成-1. 例2计算:(1)()()i i 4343-+ ; (2)() 21i +. 引导:按照复数乘法运算展开即可. 点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.

相关文档
最新文档