高斯定理

高斯定理
高斯定理

简析高斯定理在电场中的应用

高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为

01

()

1/n

i i S E ds q φε==?=∑?? (1)

高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种:

1) 球对称性, 如点电荷, 均匀带电球面或球体等;

2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面

3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。

根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是:

1 待求场强的场点必须在高斯面上;○

2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○

3 与E 垂直的那部分高斯面上各点的场强应相等;○

4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。

步骤:

1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等);

2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过

该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n

与E 平行时,

E 的大小要求处处相等,使得E

能提到积分号外面;

3.计算电通量???S d E

和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。

应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。

利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。

典型例题:

例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强.

解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3)

带电面右半空间

的场强与左半空间的场强,对带电平面是对称的.

为了计算右方一点A 的场强,在左取它的对称点B ,以AB 为轴线作一圆柱,如图所示. 对圆柱表面用高斯定理,

?∑=

+=?=s

e e e q ds E 0

εφφφ两个底面

侧面 (1) 0=侧e φ (2)

ES e 2=两个底面φ (3)

圆柱内的电荷量为

∑=S q σ (4)

把(2)、(3)、(4)代入(1)得

02εσ

=E =12810

85.82103.9--???V/m=5.25×103 V/m

例题2、设有一根无限长块均匀带正电直线,电荷线密度为λ=5.0×10-9C/m ,放置在真空中,求空间距直线1m 处任一点的场强.

解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在无限长块均匀直线上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与直线垂直向外的方向上存在(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)以直线为轴线的圆柱面上各点的场强数值相等,方向垂直于柱面(如图).

根据场强的分布,我们以直线为轴作长为l ,半径为r 的圆柱体.把圆柱体的表面作为高斯面,对圆柱表面用高斯定理:

?∑=

+=?=s

e e e q ds E 0

εφφφ两个底面侧面 (1)

r l E E S e πφ2==侧侧 (2)

0=两个底面e φ (3)

圆柱内的电荷量为

∑=l q λ (4)

把(2)、(3)、(4)代入(1)得

r E 02πελ

==1

1085.814.32100.512

9?????--V/m=89.96 V/m 例题3、设有一半径为R 的均匀带正电球面,电荷为q ,放置在真空中,

求空间任一点的场强.

解:由于电荷均匀分布在球面上,因此,空间任一点P 的的场强具有对称性,方向由球心O 到P 的径矢方向(如果带负电荷,电场方向相反),在与带电球面同心的球面上各点E 的大小相等.

根据场强的分布,我们取一半径为r 且与带电球面同系同心的球面为为高斯面,如图所示.

若R r <,高斯面2S 在球壳内,对球面2S 用高斯定理得 ?∑=

?=?=s

e q r

E ds E 0

2

4επφ球内 因为球壳内无电荷,∑=0q ,所以

0=球内E

若R r >,高斯面1S 在球壳外,对球面1S 用高斯定理得∑=q q ,故有

24επq

E R =

2

04r

q E πε=

由此可知,均匀带电球面内的场强为零,球面外的场强与电荷集中在球心的点电荷所产生的场

强相同.

例题4、均匀带电球壳的场强。

设有一半径为R 、均匀带电为Q 的薄球壳。求球壳内部和外部任意点的电场强度。

解:因为球壳很薄,其厚度可忽略不计,电荷Q 近似认为均匀分布在球面上。由于电荷分布是球对称的,所以电场强度的分布也是球对称的。因此在电场强度的空间中任意点的电场强度的方向沿径矢,大小则依赖于从球心到场点的距离。即在同一球面上的各点的电场强度的大小是相等的。

以球心到场点的距离为半径作一球面,则通过此球面的电通量为

E r dS E S d E S

S

e 2 4π=?=?=Φ????

根据高斯定理,通过球面的电通量为球面内包围的电荷

εq

e =

Φ

当场点在球壳外时 Q q = 电场强度为 2

04r Q E πε=

当场点在球壳内时 0=q

电场强度为 0=E

例题5、均匀带电球体的场强。

设有一半径为R 、均匀带电为Q 的球体。求球体内部和外部任意点的电场强度。

解:由于电荷分布是球对称的,所以电场强度的分布也是球对称的。因此在电场强度的空间中任意点的电场强度的方向沿径矢,大小则依赖于从球心到场点的距离。即在同一球面上的各点的电场强度的大小是相等的。

以球心到场点的距离为半径作一球面,则通过此球面的电通量为

E r dS E S d E S

S

e 2 4π=?=?=Φ????

根据高斯定理,通过球面的电通量为球面内包围的电荷

εq

e =

Φ

当场点在球体外时 Q q = 电场强度为 2

04r Q E πε=

当场点在球体内时 3333343

4R

Qr r R Q q ==

ππ 电场强度为 3

04R Qr E πε=

例题6、无限长均匀带电直线的场强。

设有一无限长均匀带电直线,单位长度上的电荷,即电荷线密度为λ,求距离直线为r 处的电场强度。

解:由于带电直线无限长,且电荷均匀分布,所以电场的场强沿垂直于该直线的径矢方向,而且在距直线等距离的各点的场强的大小相等,即电场分布是柱对称的。以该直线为轴线作一圆柱面为高斯面,长为h ,半径为r 。由于场强与上下底面的法线垂直,所以通过圆柱的上下两个底面的电通量为零,而通过圆柱侧面的电场强度的通量为rh E π2。又此高斯面所包围的电量为h λ,所以根据高斯定理有 0/2ελπh rh E = 由此可知,电场强度为 r

E 02πελ

=

例题7、无限长均匀带电平面的场强。

设有一无限长均匀带电平板,单位面积上的电荷,即电荷面密度为σ,求距离平板为r 处的电场强度。

解:由于带电平板无限长,且电荷均匀分布,所以带电平板两侧电场的分布具有对称性,所以场强沿垂直于该平面,而且在距平面等距离的各点的场强的大小相等。作圆柱面为高斯面,此圆柱面穿过带电平面,且对带电平面是对称的。其侧面的法线方向与场强垂直,而通过圆柱侧面的电场强度的通量为零;由于场强与两个底面垂直,所以通过圆柱的两个底面的电通量为ES 。又此高斯面所包围的电量为σS ,所以根据高斯定理有 0/2εσS ES = 由此可知,电场强度为 0

2εσ=

E 即无限大均匀带电平面的场强与场点到平面的距离无关,而且场强的方向与带电平面垂直。无限大带电平面的电场是匀强电场。

小结:高斯定理在电场中的一般应用步骤:

(1)根据电荷分布的对称性分析电场分布的对称性。

(2)在待求区域选取合适的封闭积分曲面(称为高斯面)。要求:

曲面必须通过待求场强的点,曲面要简单易计算面积; 面上或某部分曲面上各点的场强大小相等;

且面上或某部分曲面上各点的法线与该处的E

方向一致或垂直或是成恒定角度,以便于计

算。

(3)应用高斯定理求解出E

的大小。(?∑=?=s

s e q ds E 0

)(εφ内).

(4)说明E

的方向。

高斯定理在空间对称引力场中的应用解析

本科毕业论文 题目:高斯定理在空间对称引力场的应用 姓名:石宇 学号:20120341006 院别:工程技术学学院 专业:物理学 年级:2012级1班 指导教师:黄永超

目录 1引言 (1) 2引力场建立的背景及初步认识 (2) 2.1引力场建立的背景 (2) 2.2引力场的初步认识 (2) 3静电场中高斯定理的理解与应用 (3) 3.1静电场中高斯定理的理解 (3) 3.1静电场中高斯定理的应用 (4) 4静电场与万有引力场的分析与类比 (5) 4.1静电场与万有引力场的分析 (5) 4.2静电场与万有引力场的类比 (5) 5高斯定理在空间对称引力场中的应用 (8) 5.1质量分布具有球对称性 (8) 5.2质量分布具有轴对称性 (9) 5.3质量分布具有面对称性 (10) 6结束语 (11) 参考文献 (12) 致谢 (13)

摘要 在静电场中,当电荷具有某种对称性时,场强的计算可以通过应用高斯定理而简化计算。所以,本文将通过比较静电场和引力场,从而用类比的方法把静电场中高斯定理的形式推广到万有引力场中。在此基础上,通过万有引力场中的“高斯定理”,从而解决在空间对称引力场中的相关问题。 关键词:高斯定理;万有引力;空间对称引力场;应用

Abstract In the electrostatic field, when the charge has a certain symmetry, the field strength calculation can be calculated by applying the simplified Gauss theorem. Therefore, this article will compare the electrostatic field and the gravitational field, which by analogy method to form an electrostatic field Gauss theorem to the gravitational field. On this basis, through the gravitational field of the "Gauss theorem" to solve symmetric gravitational field in space related issues. Learn gravitational field Gauss theorem space symmetry. Key words: Gauss theorem; gravitation; space symmetric gravitational field; application

高斯定理--说课

物理教研室第周教研活动(说课) 高斯定理 说课人: 一、教学对象 授课学生: 2017级大二学生 教学对象分析: 数学基础:对于简单的一维、二维积分基本掌握; 物理基础:在前面我们学习了电场、电场线电场强度、电场强度通量的基本知识,而这一节的内容其实还是电场强度的通量的一种特殊求法。 学生为大学二年级学生,已经学习了高等数学,能够进行微积分和矢量运算;并且已经学习了电场、电场线电场强度、电场强度通量的基本知识, 二、使用教材及参考教材 1.使用教材 《物理学教程》(第三版)下册,马文蔚、周雨青、解希顺编,高等教育出版社。---该教材中高斯定理的验证比较简单,需参考其它教材改进。 2.参考交材 1)《普通物理学》(第五版)第二册,程守洙、江之永主编,高等教育出版社。

2)《新世纪大学物理》下册,陈颖聪、田杨萌主编,华东师范大学出版社。 三、所选内容在本课程中的地位 “高斯定理”是大学物理(二)电磁学篇章中“静电场”(也即教材中第九章)这一章中的重点,是期末考试必考的知识点。高斯定理是电场的重要性质之一。高斯定理是在库仑定律基础上得到的,它适用范围比后者更广泛。库仑定律只适用于真空中的静电场,而高斯适用于静电场和随时间变化的场,高斯定理是电磁理论的基本方程之一。 四、教学目标及其重难点 教学目标: 1)理解电通量的概念 2)理解并识记高斯定理表达式 3)掌握利用高斯定理求电荷对称分布的带电体周围电场强度的方法 教学重难点: 1)高斯定理的理解(重点) 2)高斯定理计算电场强度的条件和方法(重点、难点) 五、教学方法 1.讲授法(主要方法) 复习:电场、电场线、电场强度、电场强度通量复习等基本理论; 新课:高斯定理

对高斯定理的理解

对高斯定理的理解 1.高斯面S是静电场中的任意闭合曲面.但S面上不能有有限的电荷分布。 2.从高斯定理看电力线的性质:高斯定理说明正电荷是发出E通量的源,负电荷是吸收E通最的源。若闭合面内存在正(负)电荷.则通过闭合面的E通量为正(负).表明有电力线从面内(面外)穿出(穿入),即正(负)源电荷发射(吸收)电场线;若闭合面内没有电荷,则通过闭合面的E通量为零,意味着有多少电场线穿入就有多少电场线穿出,说明在没有电荷的区域内电场线不会中断. 在闭合面内,电荷空间分布的变化将改变闭合面上各点场强的大小和方向,但只要电量相同.就不会改变通过整个闭合面的E通量: 在闭合面外,有无电荷及其如何分布,将会影响闭合面上各处场强的大小和方向,但对通过整个闭合面的E通量没有贡献。 3.利用库仑定律和叠加原理导出高斯定理,库仑定律在电荷分布已知情况下,能求出场强的分布;高斯定理在电场强度分布已知时.能求出任意区域的电荷;当电荷分布具有某种对称分布时.可用高斯定理求出这种电荷系的场强分布,而且这种方法在数学上比用库仑定律简便得多;对于静止电荷的电场,可以说库仑定律与高斯定理是等价的;在研究运动电荷的电场或一般地随时间变化的电场时,库仑定律不再成立,而高斯定理却仍然有效。所以说:高斯定理是关于电场的普遍的摹本规律。 高斯定理求电场步骤 高斯定理的一个重要应用。是用来计算带电体周围电场的电场强度。实际上。对称性不是应用高斯定理求场强的条件,对于具有对称性.且能应用高斯定理求场强的问题,由于具有对称性.总可选择合适的高斯面而使计算较为简便:但在某些非对称情况下,只要高斯定理中的f-E·ds能够进行积分,则无论电荷或电场分布是否具有对称性,均能应用高斯定理求电场强度。因此对称性不是应用高斯定理求场强的条件,应用高斯定理求场强的关键是看(1)左边的积分能否进行,过分强调对称性,往往导致忽视应用高斯定理求场强的数学条件,造成对高斯定理的误解,应用高斯定理求场强问题的步骤: 1.分析场强或电荷分布的特点.进行对称性分析和判断,即由电荷分布的对称性。分析场强分布的对称性,非对称情况下,判断能够进行积分,判断f.E·ds 能否用高斯定理来求电场强度的分布。这一步是解题的关键,也是解题的难点。常见的对称性有球对称性包括均匀带电球面、球体、点电荷;轴对称性包括均匀带电的“无限长”圆柱面、圆柱体、细直线;面对称性包括均匀带电的“无限大”平面、平板。 2.根据场强分布的特点。作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过该高斯面的电通量容易计算。一般地。高斯面各面元的法线矢量n与E平行或垂直,n与E平行时.E的大小要求处处相等,使得E能提到积分号外面。 3.计算电通量f E·dS和高斯面内所包围的电荷的代数和。最后由高斯定理求出场强。

静电场中的高斯定理

静电场中的高斯定理 [摘要] 高斯定理是静电学的重要定理,它可以通过数学证明方法得到,同时 要注意高斯面的选择和对高斯定理的理解。 [关键字] 高斯定理 高斯面 证明 注意事项 [内容] 高斯定理是静电学中的一个重要定理,它反映了静电场的一个基本性质,即静电场是有源场,其源就是电荷。可以将其表述为:在静电场中,通过任意闭合曲面的电通量,等于该闭合曲面所包围的电荷的代数和的ε0 分之一,而与闭合曲面外的电荷无关。高斯定理的表达式如下: ? ?= ?=ΦV e dq 1 d εS S E 其中,E 表示在闭合曲面上任一dS 面处的电场强度,而EdS 则表示通过面元dS 的电场强度通量, 就表示通过整个闭合曲面S 的电场强度通量, 习惯上称闭合曲面S 为高斯面。由高斯定理可知:静电场是有源的,发散的,源头在电荷所在处,由此确定的电场线起于正电荷,终于负电荷。 下面对于静电场中的高斯定理进行证明: (a )点电荷在球面中心 点电荷q 的电场强度为 r r q 41 30??=πεE 球面的电通量为 2 20S 2 030q r 4r 4q d r 4q d r r q 41 d εππεπεπε= ??==???=????S S S E S S (1) (b )点电荷在任意闭曲面外

闭曲面S 的电通量为 ()??? ?++= ++=??? =?S S S S S E zdxdy r 1ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d 3330S 3030 πεπεπε (2) 根据高斯公式 ?????++=???? ? ???+??+??S V R Q P R Q P dxdy dzdx dydz dxdydz z y x (3) 并考虑到3 33r z r y ,r x === R Q P ,在S 内有连续一阶的偏导数,故式(2)可以用高斯公式计算。 将式(2)代入式(3)中得 ()???? ?? ? =???? ? ??? ???????? ???+???? ???+???? ???= ++= ++=??? =?V 33303330 S 3030 0dxdydz z r z y r y x r x 4q zdxdy r 1 ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d πεπεπεπεS S S S S E

静电场中的高斯定理

静电场中的高斯定理: 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 ()1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平 的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量 只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 下面举一些例子来说静电场中高定理的应用: 例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。试求球体内外的场强分布及其方向。 解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 23d d 4d 4d q V Ar r r Ar r ρ==?π=π 在径为r 的球面内包含的总电荷为 430d 4d Ar r r A V q V r ππρ==?=???? ()r R ≤

高斯定理

电场与磁场的散度定理和旋度定理磁通连续性原理 散度定理(高斯定理):一个矢量通过包围它的闭合面的总通量(矢量的面积分)等于该矢量的散度(和算子点乘)在该闭合面构成的体积内的体积分。散度定理搭建了面积分与体积分之间的转换桥梁。散度定理可用一个球图示。 散度定理是高斯定理在物理中的应用.即矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 旋度定理(斯托克斯定理):一个矢量的闭合线积分等于矢量的旋度(和算子叉乘)在该闭合线围成的开放面上的面积分。旋度定理搭建了线积分与面积分之间的转换桥梁。旋度定理可用一个环图示。 散度定理和旋度定理是将麦克斯韦方程从积分形式向差分形式转化的基础,而麦克方程的差分形式方才便于求解。 高斯散度定律有"两个",分别是对电通密度矢量和磁通密度矢量而言,也即分别描述电场和磁场。高斯定律描述的是流出闭合面的电通/磁通总量与电场源/磁场源之间的对应关系。 1)对电场来说(闭合面内有电场源,对应流出闭合面的是电通总量),高斯定律描述如下:电通密度矢量D在S上的闭合面积分,等于电荷体密度在该闭合面围成的体积内的体积分。D单位C/m^2,电荷体密度单位C/m^3。电场高斯定律的物理意义是:流出闭合面的总电通量等于闭合面内包围的总正电荷。 也就是说,电场源是独立的,电场是一去不返的,从正电荷出发,到负电荷终止。其微分方程如下: 表示电场是有散场,这

是由于自然界存在着自由电荷,因此,▽·E ≠0的地方,味着此处一定存在着净的正电荷或净的负电荷. (1)自然界存在着自由电荷,电子电荷的绝对值e 就是自由电荷的基本值. (2)静电场的场线即E 线始发于正电荷并终止于负电荷,也就是说静电场的E 线不是闭合曲线,它们没有涡旋状结构.即无旋.静电场的这种性质,反映在电场高斯定理和环路定理中. 2)对磁场来说(对应流出闭合面的是磁通总量)(磁通连续性原理),高斯定律描述如下:磁通密度矢量B在S上的闭合面积分,等于0。B单位Wb/m^2。磁场高斯定律的物理意义是:通过任意闭合曲面S 的净磁通量必定恒为零。也就是说,自然界不存在独立的磁场源,磁场是有来有去的,磁力线通过任意闭合面后必然会从相反方向再次通过。磁力线是闭合的! 式子 这就是磁场的“高斯定理”.它反映了磁通量的连续性,所以也被称为“磁通连续性原理”.

高斯定理在电磁学中的应用 毕业论文

第 19 页 ,共 20 页 目 录 1 高斯定理的表述 1.1数学上的高斯公式 1.2静电场的高斯定理 1.3磁场的高斯定理 2高斯定理的证明方法 2.1.1静电场的高斯定理 2.1.2磁场的高斯定理 2.2高斯定理的直接证明 2.3高斯定理的另一种证明 2.4对称性原理及其在电磁学中的应用 3理解和使用高斯定理应注意的若干问题的讨论与总结 (a) 定理中的 E 是指空间某处的总电场强度 (b) 注意ξ int ∑?= ?q dS E s 中 E 和 dS 的矢量性 (c) 正确理解定理中的∑int q (d) 不能只从数学的角度理解ξ int ∑?= ?q dS E s (e) 对高斯面的理解 4 高斯定理的应用? 4.1利用高斯定理求解无电介质时电场的强度 4.2利用高斯定理求解有电介质时电场的强度 5将高斯定理推广到万有引力场中 5.1静电场和万有引力场中有关量的类比 5.2万有引力场中的引力场强度矢量 5.3万有引力场中的高斯定理 6结束语 参考文献

高斯定理在电磁学中的应用 摘要:高斯定理是电磁学的一条重要定理,它不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程。本文比较详细的介绍了高斯定理,并提供了数学法、直接证明法等方法证明它,总结出应用高斯定理应注意的几个问题,从中可以发现高斯定理在解决电磁学相关问题时的方便之处。最后把高斯定理推广到万有引力场中去。 关键词:高斯定理,应用,万有引力场 引言 高斯定理又叫散度定理,高斯定理在物理学研究方面,应用非常广泛,应用高斯定理求曲面积分、静电场、非静电场或磁场非常方便,特别是求电场强度或者磁感应强度。虽然有时候应用高斯定理求解电磁学问题很方便,但是它也存在一些局限性,所以要更好的运用高斯定理解决电磁学问题,我们首先应对高斯定理有一定的了解。 1 高斯定理的表述 1.1数学上的高斯公式 设空间区域V 由分片光滑的双侧封闭曲面S 所围成,若函数,,P Q R 在V 上连续,且有一阶 连续函数偏导数,则 S V P Q R dxdydz Pdydz Qdzdx Rdxdy x y z ?? ???++=++ ????? ?????? 1-1 其中S 的方向为外发向。1-1式称为高斯公式[1] 。 1.2静电场的高斯定理 一半径为r 的球面S 包围一位于球心的点电荷q ,在这个球面上,场强→ E 的方向处处垂直于球面,且→ E 的大小相等,都是2 04q E r πε= 。通过这个球面S 的电通量为 o o o o εππεπεπε φq r r q dS r q dS r q S d E s s s e = ?= = ?=?=??????→ → 22 2 2 4444 其中 S dS ?? 是球面积分,等于2 4r π。从此例中可以看出,通过球面S 的电通量只与其中的电量q 有关,与高斯面的半径r 无关。若将球面S 变为任意闭合曲面,由电场线的连续性可知,通过该闭合曲面的电通量认为0q ε。

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

静电场的高斯定理复习题,DOC

-选择题 1.关于高斯定理的理解有下面几种说法,其中正确的是: ()A 如果高斯面上E 处处为零,则该面内必无电荷; ()B 如果高斯面内无电荷,则高斯面上E 处处为零; ()C 如果高斯面上E 处处不为零,则高斯面内必有电荷; ()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。 〔〕 答案:()D 2. ()A q 3.面的电通量为1φ,2φ,()A φ()B φ()C φ()D φ 4. () A () B () C () D 〔〕答案:()C 5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。在球面上取两块相等的小面积1S 和2S ,其位置如图所示。设通过1S 和2S 的电场强度通量分别为1φ和2φ,通过整个球面的电场强度通量为φ,则 ()A 120,/q φφφε>=;()B 120,2/q φφφε<=; ()C 120,/q φφφε==;()D 120,/q φφφε<=。 〔〕 q S 2

答案:()D 6.一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外;()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内;()D 将高斯面半径缩小。 7.A q -()A ()B 小为()C ()D 〔〕8. ( (9. (Q 60 ε ()C 穿过每一表面的电通量都等于 Q 30 ε;()D 穿过每一表面的电通量都等于0 24Q ε 〔〕 答案:()D 10.高斯定理0 nt i d ε∑?= ?q S E S ()A 适用于任何静电场。

高斯定理[4]

高斯公式又叫高斯定理(或散度定理) 矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。是研究场的重要公式之一。 公式为:∮F·dS=∫▽·Fdv ▽是哈密顿算符 F、S为矢量 高斯定理在物理学研究方面,应用非常广泛。 如:电场E为电荷q(原点处)在真空中产生的静电场,求原点外M(x,y,z)处的散度divE(M). 解:div(qR/(4πr^3)=0 R/r--为r的单位矢量, 本例说明静电场E是无源场。 应用高斯定理(或散度定理)求静电场或非静电场非常方便。特别是求静电场中的场强,在普通物理学中常用,这里就再举二例。 现在用高斯公式推导普通物理中的高斯定理, 设S内有一点电荷Q其电场过面积元dS的通量为 E·dS=Ecosθds =Q/(4πε0r^2)* cosθds θ为(ds^r) ε0----真空中的介电常数 显然cosθds为面元投影到以r为半径的球面的面积,在球体内,面元dS对电荷Q所张的立体角为dΩ= cosθds/r^2 故E·ds= Q/(4πε0)dΩ 因此,E对闭合曲面S的通量为∮E·dS=Q/(4πε0) ∮dΩ=Q/ε0 场强学过普通物理的多数人都知道 下面用高斯公式来推导电荷守恒定律,设空间区域V,边界为封闭面S,通过界面流出的电流应等于体积V内电量的减小率, 即∮J·dS=-∫(dρ/dt)dV J,S ---矢量, dρ/dt--------- 这里为ρ对的偏导数(由于符号在这里用d来代替偏导的符号) ρ-电荷密度 注:J=Ρv’ V’---为速度矢量 用高斯公式进行积分变换, ∮J·dS=∫▽·JdV 可得到电荷守恒定律的微分形式:▽·J+ dρ/dt=0, 此式称电流的连续性方程。 高斯定理 由于磁力线总是闭合曲线,因此任何一条进入一个闭合曲面的磁力线必定会从曲面内部出来,否则这条磁力线就不会闭合起来了。如果对于一个闭合曲面,定义向外为正法线的指向,则进入曲面的磁通量为负,出来的磁通量为正,那么就可以得到通过一个闭合曲面的总磁通量为0。这个规律类似于电场中的高斯定理,因此也称为高斯定理 与静电场中的高斯定理相比较,两者有着本质上的区别。在静电场中,由于自然界中存在着独立的电荷,所以电场线有起点和终点,只要闭合面内有净余的正(或负)电荷,穿过闭合面的电通量就不等于零,即静电场是有源场;而在磁场中,由于自然界中没有单独的磁极存在,N极和S极是不能分离的,磁感线都是无头无尾的闭合线,所以通过任何闭合面的磁通量必等于零。 电场 E (矢量)通过任一闭曲面的通量,即对该曲面的积分等于4π乘以该曲面所包围的总电荷量。公式表达:

高斯定理

§4 高斯定理 一、电力线 1、引入目的:形象化、直观性地描写电场,作为一种辅助工具。 2、引入方法:电场是矢量场,引入电力线要反映场的两个方面方向 大小,在 电场中人为地作出许多曲线,作法如下: (1)反映电场方向——曲线上每点切向与该点场方向一致; (2)反映电场大小——用所画电力线的疏密程度表示,电力线数密度与该点场的大小成正比 ⊥ ??∝ S N E 其中⊥ ??S N 表示通过垂直场方向单位面积的电力线条数——电力线数密度,参见 图1-15。 (a) 垂直时:S N ?? (b) 非垂直时: θ cos S N S N ??= ??⊥ 图1-15 在SI 制中,比例系数取1,则⊥ ??= S N E ,即S E S E N ?=??=?θcos 。更精 确地有:ds E s d E dN θcos =?= 。 例:点电荷Q 均匀辐射N 条电力线,各向同性,半径为r 的球面上电力线数密度为 2 4r N π;而场强2 04r Q E πε= ,两者一致,且0 εQ N = ,球面立体角Ωd 中 E E ΔS ΔS n θ

占有(N d π 4Ω)条。 3、电力线的普遍性质 (1) 电力线起自正电荷(或来自无穷远处)、止于负电荷(或伸向无穷远处), 不会在没有电荷的地方中断——不中断; (2) 对于正、负电荷等量的体系,正电荷发出的电力线全部集中到负电荷上 去——不多余; (3) 无电荷空间任两条电力线不相交——不相交(否则,场则不唯一); (4) 电力线不能是自我闭合线——不闭合。 4、说明 (1) 电力线非客观存在,是人为引入的辅助工具; (2) 电力线可用实验演示; (3) 展示几种带电体电力线的分布(图略)。 二、电通量 静电场是用E 描述的矢量场。一般地,研究矢量场时常引入矢量的通量概念,如:流体力学中的流量θcos s v s v ?=?? 等,静电场中虽无什么在流,但可藉此研究静电场。 1、定义电通量E Φ 在电场中通过一曲面元s ?的电通量E ?Φ定义为: )(c o s N s E s E E ?=??=?=?Φ θ 式中n s s ?=?。因θ可锐角、钝角,故E ?Φ可正、可负。 对于非无限小的曲面,有 ?? ?= = ΦS S E s d E ds E cos 其中,任意曲面S 的法向有两种取法,对于不闭合的曲面,其法向n 取何方向无关紧要。 对于闭合曲面,其电通量定义为: ? ??== ΦS S E s d E ds E θcos

高斯定理

高斯定理陈述报告 班级:电气121班 姓名:徐鹏学号:2012230106 姓名:邵辉学号:2012230158

姓名:王天宇学号:2012230102 高斯定理 高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系 由曲面向外定义为其方向,为闭合曲面内的电荷,为真空电容率,为此处电介质的介电常数(如果是真空的话,其数值为1)。其微分形式;其中,为电荷密度(单位C/m3)。在线性材料中,等式变为。其中为材料的电容率。 基本定义:高斯定理(Gauss Law)也称为高斯公式(Gauss Formula),或称作散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式(通常情况的高斯定理都是指该定理,也有其它同名定理)。 设空间有界闭合区域Ω,其边界?Ω为分片光滑闭曲面。函数P(x,y,z)、 Q(x,y,z)、R(x,y,z)及其一阶偏导数在Ω上连续,那么[1]: 图一(高数上的高斯公式)

(由于百科不支持很多格式及字符,故本词条使用一些截图,本公式请见右侧图一) (如图一)其中?Ω的正侧为外侧,cos α、cos β、cos γ为?Ω的外法向量的方向余弦。 高斯投影 称向量场 的散度(divergence)。[1] 即矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分。它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式,也是研究场的重要公式之一。 其他高斯定理:高斯定理2 定理:凡有理整方程

至少有一个根。 推论:一元n次方程 有且只有n个根(包括虚根和重根)。 高斯定理3 正整数n可被表示为两整数平方和的充要条件为n的一切形如4k+3形状的质因子的幂次均为偶数。 适用条件:任何电场 静电场(见电场)的基本方程之一,它给出了电场强度在任意封闭曲面上的面积分和包围在封闭曲面内的总电量之间的关系。 根据库仑定律可以证明电场强度对任意封闭曲面的通量正比于该封闭曲面内电荷的代数和,即 公式 这就是高斯定理。它表示,电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。 高斯定理反映了静电场是有源场这一特性。凡是有正电荷的地方,必有电力线发出;凡是有负电荷的地方,必有电力线会聚。正电荷是电力线的源头,负电荷是电力线的尾闾。

电磁场与电磁波例题详解

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??= ?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

大学物理课堂教学设计:高斯定理

课堂教学设计4:高斯定理 【授课内容】:高斯定理 【所在章节】:第7章:静电场与恒定电场7.2节:高斯定理 【授课对象】:2018级大数据学院(软件工程、数字工程、网络工程专业) 【教学学时】:2学时 一、学情分析 (一)教材内容分析 本书将“高斯定理”编排在第7 章“静电场”的第2节,是整个电学部分两个基本定理之一。在本节之前,教材已经介绍了库仑定律求解真空中静止点电荷周围激发的静电场问题,学生感觉利用该定律求解静电场在有些情况下比较复杂.本节内容安排了从特殊到一般的高斯定理的归纳过程,由特殊的以点电荷为球心的球面积分模型出发,进行不断变化,最终得出一般表达式,让学生亲身经历高斯定理的推导过程.根据电荷的分布特点,选择适当的高斯面,使用此定理能够更为方便地求出具有对称性分布的电场强度,将高斯定理与库仑定律联系对比,使学生认识到用高斯定理求解具有某种对称性的带电体周围分布的电场时较一般方法更加简单方便.同时也说明了静电场是有源场.电场中高斯定理的学习为之后稳恒磁场高斯定理的学习和理工科专业后续专业课程(比如电子信息工程专业课《电磁场与波》的学习)中计算电场强度奠定了基础,学生通过学习该定理能掌握科学的思维方法和研究方法,体验物理学中的对称和谐之美。 (二)学生学习基础分析 学生在学习本节之前,已掌握了利用库仑定律求解真空中静止点电荷周围的电场强度E,体会到利用该定律求解对数学尤其是积分运算要求较高且计算过程比较复杂,那么,求解带电体周围激发的静电场E是否还有其他相对简便的方法?静电场是否是有源场?这些都是要和学生共同解决的问题.更重要的是静电场和稳恒磁场的物理规律具有一定的对称性,静电场的学习将为后续稳恒磁场的学习做铺垫。 二、教学目标设计 (一)知识与技能 1、深刻理解电场强度E的闭合曲面积分(或E的通量)与该闭合面所包围电荷之间的关系; 2、电通量概念的理解和正负的判断; 3、对于多个点电荷或连续分布带电体周围激发的电场,理解闭合曲面上E的本质

大物课后部分参考答案及解析

大物课后部分参考答案及解析

第一章 P17 1-2 已知j t A i v v sin 0 ,则j t A i t v dt v r cos 0 由 t A y t v x cos 0 可得A v x A y 0 cos (以出发点为原点) j t mA a m F j t A a cos cos 22 1-4 如图,在B 点时,根据其受力情 况,有 20 2 02130sin 60cos B B B mv mgl l mv mg T 解得)N (92 3 mg T B 在B 点时,根据其受力情况,有 22 21C C C mv mgl l mv mg T 解得) N (183 mg T C 1-6 由题意设kv f ,其受力方向在竖直方向上,则有 注意基本概念的理解和掌握:位移,速注意受力分析,区分出

dt dv m ma kv F mg f F mg 变形可得 dt dv kv F mg m 两边同时积分 t v dt dv kv F mg m 00 整理可得 ) 1(t m k e k F mg v 设沉降距离为y ,则dt dy v )] 1([)1(0 t m k t t m k e k m t k F mg dt e k F mg vdt y 1-9 由题意,当h=50m 时,桶中水已全部漏完,故木桶从井中提到井口所做的功为 J) (3500)(J 3430)1.011(]2.0)[(100 50 500 2 10050 50 0或 gh g h h Mgdh dh gh g m M W 1-14 (1)子弹所受的冲量 ) m /s kg (9)50050(02.0 p I 木块所受的冲量与子弹所受的冲量反向,即)m/s kg (9 木块 I (2)对木块,有) m/s kg (950 m p I 木块,因此kg 18.0 m 。 注意题意,要熟练分析题意,具体问题采注意利用运动学中各物理量之间的关系,注意动量定理的灵活应用

静电场的高斯定理复习题

- 选择题 1.关于高斯定理的理解有下面几种说法,其中正确的是: ()A 如果高斯面上E 处处为零,则该面内必无电荷; ()B 如果高斯面内无电荷,则高斯面上E 处处为零; ()C 如果高斯面上E 处处不为零,则高斯面内必有电荷; ()D 如果高斯面内有净电荷, 则通过高斯面的电场强度通量必不为零。 〔 〕 答案:()D 2.如在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ()A 0/q ε; ()B 0/2q ε; ()C 0/4q ε; ()D 0/6q ε。 〔 〕 答案:()D 3.在电场强度为E Ej =的匀强电场中,有一如图所示的三棱柱,取表面的法线向外,设过面AA'CO ,面B'BOC ,面ABB'A'的电通量为1φ, 2φ,3φ,则 ()A 1230Ebc Ebc φφφ===; ()B 1230Eac Eac φφφ=-==; ()C 22123Eac Ec a b Ebc φφφ=-=-+=-; ()D 22 123Eac Ec a b Ebc φφφ==+=。 〔 〕 答案:()B 4.已知一高斯面所包围的体积内电荷代数和 0i q =∑,则可肯定: ()A 高斯面上各点场强均为零。 ()B 穿过高斯面上每一面元的电通量均为零。 ()C 穿过整个高斯面的电通量为零。()D 以上说法都不对。 〔 〕 答案:()C 5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。 在球面上取两块相等的小面积1S 和2S ,其位置如图所示。设通过1S 和2S 的电场强度通量分别为1φ和 2φ,通过整个球面的电场强度通量为φ,则 ()A 120,/q φφφε>=; ()B 120,2/q φφφε<=; ()C 120,/q φφφε==; ()D 120,/q φφφε<=。 〔 〕 答案:()D 6.一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外; ()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内; ()D 将高斯面半径缩小。 答案:()B 7.A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。则 x y z a b c E O A A B B C x O q q a 2a S 1 S 2 A S +q r -q B

磁场中的高斯定理另一证明

磁场中的高斯定理另一证明 廖其力1,唐乐2,余艳1,邓娅11重庆邮电大学移通学院,重庆 【摘要】摘要用与毕奥-萨伐尔定律等价的运动电荷产生磁场的第一性原理证明了磁场中的高斯定理,该证明对进一步理解磁场的本质和大学物理教学有一定的借鉴作用。 【期刊名称】应用物理 【年(卷),期】2018(008)003 【总页数】5 【关键词】关键词运动电荷,毕奥-萨伐尔定律,高斯定理 【文献来源】https://https://www.360docs.net/doc/2110936694.html,/academic-journal-cn_applied-physics_thesis/0201264089300.html 1. 引言 1.1. 毕奥-萨伐尔定律发现简介 自丹麦物理学家奥斯特(H. C. Oersted, 1777~1851)在1820年发现电流的磁效应以来,磁场的研究得到了较快发展[1][2],比如,法国数学家兼物理学家安培(A. M. Ampere, 1775~1836)在同年的9月得出判定电流产生磁感应强度方向的右手螺旋定则;10月法国物理学家毕奥(J. B. Biot, 1774~1862) 和萨伐尔(F.Savart, 1791~1841)发现了直线电流产生的磁感应强度跟到直线的距离成反比,跟电流强度成正比。紧接着,法国数学家、物理学家拉普拉斯(P. S. Laplace, 1749~1827)在毕奥、萨伐尔、安培等人的基础上将电流产生的磁场给出了数学表达式,这就是通常所说的毕奥-萨伐尔定律。在1831年法拉第(M. F arday,1791~1867)发现了电磁感应现象,1834年他提出了力线概念,

02.静电场中的高斯定理答案

《大学物理》练习题 No .2 静电场中的高斯定理 班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量 一、 选择题 1.关于电场线,以下说法正确的是 [ B ] (A) 电场线上各点的电场强度大小相等; (B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平 行; (C) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合; (D) 在无电荷的电场空间,电场线可以相交. 2.如图2.1,一半球面的底面圆所在的平面与均强电场E 的夹 角为30° ,球面的半径为R ,球面的法线向外,则通过此半球面的电通量为 [ A ] (A) π R 2E/2 . (B) -π R 2E/2. (C) π R 2E . (D) -π R 2 E . 3.关于高斯定理的理解有下面几种说法,其中正确的是 [ D ] (A) 如高斯面上E 处处为零,则该面内必无电荷; (B) 如高斯面内无电荷,则高斯面上E 处处为零; (C) 如高斯面上E 处处不为零,则高斯面内必有电荷; (D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称的电场 4. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <) , 所带电量分别为a Q 和b Q ,设某点与球心相距r , 当b a R r R <<时, 该点的电场强度的大小为: [ D ] (A) 2b a 0 41r Q Q +? πε (B) 2 b a 041r Q Q -?πε (C) )( 412b b 2 a 0 R Q r Q +?πε (D) 2a 041r Q ?πε 5. 如图2.2所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,轴线方向单位长度上的带电量分别为1λ 和2λ, 则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小

相关文档
最新文档