(word完整版)小升初奥数—排列组合问题

(word完整版)小升初奥数—排列组合问题
(word完整版)小升初奥数—排列组合问题

小升初奥数—排列组合问题

一、 排列组合的应用

【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?

(1)七个人排成一排;

(2)七个人排成一排,小新必须站在中间.

(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.

(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【解析】 (1)775040P =(种)。

(2)只需排其余6个人站剩下的6个位置.66720P =(种).

(3)先确定中间的位置站谁,冉排剩下的6个位置.2×6

6P =1440(种).

(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).

(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。

【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,

那么确保打开保险柜至少要试几次?

【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,

3;2,2,2,3六种。 第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;

第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312?=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.

综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.

【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个

数字都不相同的时刻一共有多少个?

【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不

同的数字,所以有2

6P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有2

7P 种选法,所以共有2

6P ×27P =1260种选法。

从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。

【例 4】 4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:

⑴ 甲不在中间也不在两端; ⑵ 甲、乙两人必须排在两端;

⑷男女相间.

【解析】⑴先排甲,9个位置除了中间和两端之外的6个位置都可以,有6种选择,剩下的8个人随

意排,也就是8个元素全排列的问题,有8

88765432140320

P=???????=(种)选择.由乘法原理,共有640320241920

?=(种)排法.

⑵甲、乙先排,有2

2212

P=?=(种)排法;剩下的7个人随意排,有

7 776543215040

P=??????=(种)排法.由乘法原理,共有2504010080

?=(种)排法.

⑶分别把男生、女生看成一个整体进行排列,有2

2212

P=?=(种)不同排列方法,再分别对男生、女生内部进行排列,分别是4个元素与5个元素的全排列问题,分别有

4 4432124

P=???=(种)和5

554321120

P=????=(种)排法.由乘法原理,共有2241205760

??=(种)排法.

⑷先排4名男生,有4

4432124

P=???=(种)排法,再把5名女生排到5个空档中,有

5 554321120

P=????=(种)排法.由乘法原理,一共有241202880

?=(种)排法。

【例 5】一台晚会上有6个演唱节目和4个舞蹈节目.求:

⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?

⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?【解析】⑴先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,则是7个元素全排列的问题,有

7 77!76543215040

P==??????=(种)方法.第二步再排4个舞蹈节目,也就是4个舞蹈节

目全排列的问题,有4

44!432124

P==???=(种)方法.

根据乘法原理,一共有504024120960

?=(种)方法.

⑵首先将6个演唱节目排成一列(如下图中的“□”),是6个元素全排列的问题,一共有

6 66!654321720

P==?????=(种)方法.

×□×□×□×□×□×□×

第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间(即上图中“×”的位置),这相当

于从7个“×”中选4个来排,一共有4

77654840

P=???=(种)方法.

根据乘法原理,一共有720840604800

?=(种)方法。

【例 6】⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多少个?(只要求列式)

⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法?

⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法?

⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法?

⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法?

⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法?

【解析】⑴按顺序,有百位、十位、个位三个位置,8个数字(8个元素)取出3个往上排,有3

8

P种.

⑵3种职务3个位置,从8位候选人(8个元素)任取3位往上排,有3

8

P种.

⑶3位同学看成是三个位置,任取8个座位号(8个元素)中的3个往上排(座号找人),每确定一

种号码即对应一种坐法,有3

8

P种.

⑷3个坐位排号1,2,3三个位置,从8人中任取3个往上排(人找座位),有3

8

P种.

⑸3列火车编为1,2,3号,从8股车道中任取3股往上排,共有3

8

P种.

⑹土地编1,2,3号,从8种菜籽中任选3种往上排,有3

8

P种。

【例 7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?

【解析】第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛2

665

15 21

C

?

==

?

场,共8个小组,有2

43

?

组,有6424?=场;第三阶段赛224+=场.根据加法原理,整个赛程一共有120244148++=场比赛。

【例 8】 8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮

必须相邻,满足要求的站法一共有多少种?

【解析】 冬冬要站在小悦和阿奇的中间,就意味着只要为这三个人选定了三个位置,中间的位置就一定要留

给冬冬,而两边的位置可以任意地分配给小悦和阿奇. 小慧和大智不能相邻的互补事件是小慧和大智必须相邻 小光和大亮必须相邻,则可以将两人捆绑考虑

只满足第一、三个条件的站法总数为:321237

2423P P P 3360C C ????=(种) 同时满足第一、三个条件,满足小慧和大智必须相邻的站法总数为:3

222262322P P P P 960C ????=(种)

因此同时满足三个条件的站法总数为:33609602400-=(种)。

【例 9】 某池塘中有A B C 、、三只游船,A 船可乘坐3人,B 船可乘坐2人,C 船可乘坐1人,今有3个成

人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?

【解析】 由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C 船.

⑴若这5人都不乘坐C 船,则恰好坐满A B 、两船,①若两个儿童在同一条船上,只能在A 船上,此

时A 船上还必须有1个成人,有1

3

3C =种方法;②若两个儿童不在同一条船上,即分别在A B 、两船上,则B 船上有1个儿童和1个成人,1个儿童有12

2C =种选择,1个成人有1

33C =种选择,所以有236?=种方法.故5人都不乘坐C 船有369+=种安全方法;

⑵若这5人中有1人乘坐C 船,这个人必定是个成人,有1

3

3C =种选择.其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必须有1个成人,有1

2

2C =种方法,所以此时有326?=种方法;②若两个儿童不在同一条船上,那么B 船上有1个儿童和1个成人,此时1个

儿童和1个成人均有1

2

2C =种选择,所以此种情况下有32212??=种方法;故5人中有1人乘坐C 船有61218+=种安全方法.所以,共有91827+=种安全乘法.

【例 10】 从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?

⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选; ⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人。

【解析】 ⑴恰有3名女生入选,说明男生有5人入选,应为35

810

14112C C ?=种; ⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:

8871

181010843758C C C C --?=;

⑶4人必须入选,则从剩下的14人中再选出另外4人,有4

141001C =种; ⑷从所有的选法818C 种中减去这4个人同时入选的4

14C 种: 84181443758100142757C C -=-=.

⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:

817261441441434749C C C C C +?+?=。

【例 11】 在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音

响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?

【解析】 按具有双项技术的学生分类:

⑴ 两人都不选派,有3

5543

10321

C ??=

=??(种)选派方法;

若此人要安装电脑,则还需2人安装电脑,有2554

1021

C ?==?(种)选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110?=(种)选法;

若此人安装音响设备,则还需从3人中选2人安装音响设备,有2332

321

C ?==?(种)选法,

需从5人中选3人安装电脑,有3

554310321

C ??==??(种)选法.由乘法原理,有31030?=(种)选法.

根据加法原理,有103040+=(种)选法; 综上所述,一共有24080?=(种)选派方法. ⑶ 两人全派,针对两人的任务可分类讨论如下:

①两人全安装电脑,则还需要从5人中选1人安装电脑,另外会安装音响设备的3人全选上安装音响设备,有515?=(种)选派方案; ②两人一个安装电脑,一个安装音响设备,有22535432

602121

C C ???=

?=??(种)选派方案; ③两人全安装音响设备,有3

5543

3330321

C ???=?

=??(种)选派方案.

根据加法原理,共有5603095++=(种)选派方案.

综合以上所述,符合条件的方案一共有108095185++=(种).

【例 12】 有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从

中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?

【解析】 针对两名英语、日语都精通人员(以下称多面手)的参考情况分成三类:

⑴ 多面手不参加,则需从5名英语翻译员中选出4人,有41

55

5C C ==种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有515?=种选择.

⑵ 多面手中有一人入选,有2种选择,而选出的这个人又有参加英文或日文翻译两种可能:

如果参加英文翻译,则需从5名英语翻译员中再选出3人,有3

5543

10321

C ??=

=??种选择,需从4名

日语翻译员中选出4人,有1种选择.由乘法原理,有210120??=种选择;

如果参加日文翻译,则需从5名英语翻译员中选出4人,有41

55

5C C ==种选择,需从4名日语翻译员中再选出3名,有31

4

44C C ==种选择.由乘法原理,有25440??=种选择.根据加法原理,多面手中有一人入选,有204060+=种选择.

⑶ 多面手中两人均入选,对应一种选择,但此时又分三种情况: ①两人都译英文;②两人都译日文;③两人各译一个语种.

情况①中,还需从5名英语翻译员中选出2人,有2554

1021

C ?=

=?种选择.需从4名日语翻译员中选4人,1种选择.由乘法原理,有110110??=种选择. 情况②中,需从5名英语翻译员中选出4人,有41

55

5C C ==种选择.还需从4名日语翻译员中选出2人,有2

443

621

C ?=

=?种选择.根据乘法原理,共有15630??=种选择. 情况③中,两人各译一个语种,有两种安排即两种选择.剩下的需从5名英语翻译员中选出3人,

有3

554310321

C ??=

=??种选择,需从4名日语翻译员中选出3人,有31

4

44C C ==种选择.由乘法原理,有1210480???=种选择.

综上所述,由加法原理,这样的分配名单共可以开出560120185++=张.

二、 几何计数

【例 13】 下图中共有____个正方形。

【解析】 每个44?正方形中有:边长为1的正方形有2

4个;边长为2的正方形有23个; 边长为3的正方形

有22个;边长为4的正方形有21个;总共有2222432130+++=(个)正方形.现有5个44?的正方形,它们重叠部分是4个22?的正方形.因此,图中正方形的个数是30554130?-?=。

【例 14】 在图中(单位:厘米):

①一共有几个长方形?

②所有这些长方形面积的和是多少?

3

7

4218125

【解析】 ①一共有(4321)(4321)100+++?+++=(个)长方形;

②所求的和是

[][]

51281(512)(128)(81)(5128)(1281)(51281)2473(24)(47)(73)(247)(473)(2473)+++++++++++++++++++?

+++++++++++++++++++

1448612384=?=(平方厘米)。

【例 15】 由20个边长为1的小正方形拼成一个45?长方形中有一格有“☆”图中含有“☆”的所有长方形

(含正方形)共有 个,它们的面积总和是 。 (第六届走美决赛试题)

【解析】 含☆的一行内所有可能的长方形有:(八种) 含☆的一列内所有可能的长方形有:(六种)

所以总共长方形有6848?=个,面积总和为(12233445)(122334)360+++++++?+++++=。

【巩固】 图中共有多少个三角形?

【解析】显然三角形可分为尖向上与尖向下两大类,两类中三角形的个数相等.尖向上的三角形又可分为6类

(1)最大的三角形1个(即△ABC),

(2)第二大的三角形有3个

(3)第三大的三角形有6个

(4)第四大的三角形有10个

(5)第五大的三角形有15个

(6)最小的三角形有24个

所以尖向上的三角形共有1+3+6+10+15+24=59(个)

图中共有三角形2×59=118(个)。

【例 16】一个圆上有12个点A1,A2,A3,…,A11,A12.以它们为顶点连三角形,使每个点恰好是一个三角形的顶点,且各个三角形的边都不相交.问共有多少种不同的连法?

【解析】我们采用递推的方法.

I如果圆上只有3个点,那么只有一种连法.

Ⅱ如果圆上有6个点,除A1点所在三角形的三顶点外,剩下的三个

点一定只能在A1所在三角形的一条边所对应的圆弧上,表1给出这

时有可能的连法。

Ⅲ如果圆上有9个点,考虑A1所在的三角形.此时,其余的6个点可能分布在:

①A1所在三角形的一个边所对的弧上;

②也可能三个点在一个边所对应的弧上,另三个点在另一边所对的弧上.

在表2中用“+”号表示它们分布在不同的边所对的弧.

如果是情形①,则由Ⅱ,这六个点有三种连法;

如果是情形②,则由①,每三个点都只能有一种连法.

共有12种连法.

Ⅳ最后考虑圆周上有12个点.同样考虑A1所在三角形,剩下9个点的分布有三种可能:

①9个点都在同一段弧上:

②有6个点是在一段弧上,另三点在另一段弧上;

③每三个点在A1所在三角形的一条边对应的弧上.得到表3.

共有12×3+3×6+1=55种.

所以当圆周上有12个点时,满足题意的连法有55种。

课后练习:

练习1. 如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、

2厘米和4 厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和。

【解析】 利用长方形的计数公式:横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四

边形)mn 个,所以有(4+3+2+1)×(4+3+2+1)=100,这些长方形的面积和为:(5+7+9+2+12+16+11+21+ 18+23)×(4+6+5+1+10+11+6+15+12+16)=124×86=10664。

练习2. 有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法? 【解析】 初看本题似乎觉得很好入手,比如可以按天数进行分类枚举:

1天吃完的有1种方法,这天吃10块;2天吃完的有9种方法,10=1+9=2+8=……=9+1;

当枚举到3天吃完的时,情况就有点错综复杂了,叫人无所适从……所以我们必须换一种角度来思考.

不妨从具体的例子入手来分析,比如这10块糖分4天吃完:

第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.

我们可以将10个“○”代表10粒糖,把10个“○”排成一排,“○”之间共有9个空位,若相邻两块糖是分在两天吃的,就在其间画一条竖线(如下图).

○○|○○○|○|○○○○

比如上图就表示“第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.” 这样一来,每一种吃糖的方法就对应着一种“在9个空位中插入若干个‘|’的方法”,要求有多少

个不同的吃法,就是要求在这9个空位中插入若干个“|”的方法数。 由于每个空位都有画‘|’与“不画‘|’两种可能:

根据乘法原理,在这9个空位中画若干个“|”的方法数有:9

9

22222512???==L 1442443,这也就说明

吃完10颗糖共有512种不同的吃法。

每个空位都有画“|”与不画“|”两种可能

练习3.用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?

【解析】把大的等边三角形分为“20”层分别计算火柴的根数:

最上一层只用了3根火柴;

从上向下数第二层用了3×2=6根;

从上向下数第二层用了3×3=9根;

……

从上向下数第二层用了3×20=60根;所以总共要用火柴3×(1+2+3+……+20)=630。

练习4. 如图所示,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?

【解析】横放需1996×4根,竖放需1997×3根

共需1996×4+1997×3=13975根。

练习5. 编号为1、2、3、4的四把椅子,摆成一个圆圈。现有甲、乙、丙、丁四人去坐,规定甲、乙两人必须坐在相邻座位上,一共有多少种坐法?(长沙市奥林匹克代表队集训试题)

解析:如右图,四把椅子排成一个圆圈。

当甲坐在①号位时,乙只能坐在②或④号位上,则共有4种排法;同理,当甲分别坐在②、③、④号位上时,各有4种排法。

所以,一共有16种排列法。

练习6. 从1至9这九个数字中挑出六个不同的数填在下图的六个圆圈中,使任意相邻两个圆圈内数字之和都是质数,那么最多能找出______种不同的挑法来。(挑出的数字相同,而排列次序不同的都只算一种)(北京市第九届“迎春杯”小学数学竞赛试题)

解析:在1至9这九个自然数中,奇数有1、3、5、7、9五个,偶数有2、4、6、8四个。要使排列之后,每相邻两个数字之和为质数,则必须奇数与偶数间隔排列,也就是每次取3个奇数和3个偶数。

从五个奇数中,取3个数共有10种方法;

从四个偶数中,取3个数共有4种方法。

但并不是每一种3个奇数和3个偶数都可以排成符合要求的排列。经检验,共有26种排法。

小学奥数排列组合常见题型及解题策略备选题

小学奥数排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有 【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4 424 A 种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3

小学五年级奥数专题之排列组合题一及答案

1、7个人站成一排,若小明不在中间,共有_______________种站法;若小明在两端,共有_________________种站法。 2、4个男生2个女生共6人站成一排合影留念,有________________种不同的排法;要求2个女生紧挨着有________________种不同的排法;如果要求2个女生紧挨着排在正中间有____________________种不同的排法。 3、A、B、C、D、E、F、G七位同学在操场排成一列,其中学生B与C必须相邻,请问共有________________________种不同的排法。 4、6名小朋友A、B、C、D、E、F站成一排,若A、B两人必须相邻,一共有________________________种不同的站法;若A、B两人不能相邻,一共有________________________种不同的站法;若A、B、C三人不能相邻,一共有________________________种不同的站法。 5、10个相同的球完全分给3个小朋友,若每个小朋友至少得1个,那么共有__________________种分法;若每个小朋友至少得2个,那么共有__________________种分法。 6、小红有10块糖,每天至少吃1块,7天吃完,她共有______________________种不同的吃法。 7、5个人站成一排,小明不在两端的排法共有__________________种。 8、停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有________________________种不同的停车文案。 9、将3盆同样的红花和4盆同样的黄花摆放在一排,要求3盆红花互不相邻,共有____________________种不同的放法。 10、12个苹果分给4个人,每人至少1个,则共有____________________种分法。 11、四年级三班举行六一儿童节联欢活动,整个活动由2个舞蹈、2个演唱和3个小品组成,请问如果要求同类型的节目连续演出,那么共有____________________种不同的出场顺序。

小学奥数~排列组合

5 数的一半,即 A = 60 种,选 B . 奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握, 实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效 途径;下面就谈一谈排列组合应用题的解题策略 . 1.相邻问题捆绑法 :题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排 列. 例 1. A, B, C , D, E 五人并排站成一排,如果 A, B 必须相邻且 B 在 A 的右边,那么不同的 排法种数有 A 、60 种 B 、48 种 C 、36 种 D 、24 种 解析:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A 4 = 24 种, 4 答案: D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 解析:除甲乙外,其余 5 个排列数为 A 5 种,再用甲乙去插 6 个空位有 A 2 种,不同的排 5 6 法种数是 A 5 A 2 = 3600 种,选 B . 5 6 3.定序问题缩倍法 :在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3. A, B, C , D, E 五人并排站成一排,如果 B 必须站在 A 的右边( A, B 可以不相邻)那 么不同的排法种数是 A 、24 种 B 、60 种 C 、90 种 D 、120 种 解析: B 在 A 的右边与 B 在 A 的左边排法数相同,所以题设的排法只是 5 个元素全排列 1 2 5 4.标号排位问题分步法 :把元素排到指定位置上,可先把某个元素按规定排入,第二步 再排另一个元素,如此继续下去,依次即可完成. 例 4.将数字 1,2,3,4 填入标号为 1,2,3,4 的四个方格里,每格填一个数,则每个 方格的标号与所填数字均不相同的填法有 A 、6 种 B 、9 种 C 、11 种 D 、23 种 解析:先把 1 填入方格中,符合条件的有 3 种方法,第二步把被填入方格的对应数字填 入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3 ×1=9 种填法,选 B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例 5.(1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务,不同的选法种数是 A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 解析:先从 10 人中选出 2 人承担甲项任务,再从剩下的 8 人中选 1 人承担乙项任务, 第三步从另外的 7 人中选 1 人承担丙项任务,不同的选法共有C 2 C 1C 1 = 2520 种,选C . 10 8 7

小学奥数~排列组合

奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法种数是52 5 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列 数的一半,即5 51602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务, 第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110 872520C C C =种,选C .

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

小学奥数--排列组合教案

小学奥数-----排列组合教案 加法原理和乘法原理 排列与组合:熟悉排列与组合问题。运用加法原理和乘法原理解决问题。在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从 A 地到 B 地,可以乘火车,也可以乘汽车或乘轮船。一天中,火车有 4 班,汽车有 3 班,轮船有 2 班。那么从 A 地到 B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有 3 条道路(如下图)。从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。加法原理:完成一件工作共有N类方法。在第一类方法中有m 1 种不同的方法, 在第二类方法中有m 2种不同的方法,……,在第N类方法中有m n 种不同的方法, 那么完成这件工作共有N=m 1+m 2 +m 3 +…+m n 种不同方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完成第 二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件工作 共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N 步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。 运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。 【例题一】每天从武汉到北京去,有 4 班火车,2 班飞机,1 班汽车。请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法? 【解析】运用加法原理,把组成方法分成三类:一类乘坐火车,二类乘坐飞机,三类乘坐洗车.

(word完整版)小升初奥数—排列组合问题

小升初奥数—排列组合问题 一、 排列组合的应用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。 【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9, 那么确保打开保险柜至少要试几次? 【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3, 3;2,2,2,3六种。 第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择; 第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312?=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择. 综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次. 【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个 数字都不相同的时刻一共有多少个? 【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不 同的数字,所以有2 6P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有2 7P 种选法,所以共有2 6P ×27P =1260种选法。 从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。 【例 4】 4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法: ⑴ 甲不在中间也不在两端; ⑵ 甲、乙两人必须排在两端;

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

小学奥数专题排列组合

排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法 分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)

一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. 四.排列及组合基本公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元 素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示.

小学奥数排列组合

小学奥数排列组合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一.计数专题:④排列组合 一.进门考 1.有四张数字卡片,用这四张数字卡片组成三位数,可以组成多少个? 2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法? 3.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法? 4.从1到500的所有自然数中,不含有数字4的自然数有多少个? 5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米? (2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱? 58 7 6

6*.按1,2,3,4的顺序连线,有多少种不同的连法? 二.授新课 ①奥数专题:乘法原理 专题简析 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。 排列公式: 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边 从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 组合公式: 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .12)112321m m n n m m P n n n n m C m m m P ?-?-??-+==?-?-????()(()()().

奥数(排列与组合)

排列组合应用题的教学设计 致远高中朱英2007.3 解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。 引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动: (1)选其中一人为负责人,共有多少种不同的选法。 (2)每组选一名组长,共有多少种不同的选法4 评述:本例指出正确应用两个计数原理。 引例2 (1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?评述:本例指出排列和组合的区别。 求解排列组合应用题的困难主要有三个因素的影响: 1、限制条件。 2、背景变化。 3、数学认知结构 排列组合应用题可以归结为四种类型: 第一个专题排队问题 重点解决: 1、如何确定元素和位置的关系 元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。 例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法? 分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案34(种),而有的同学则做出容易错误的答案43(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了! 法一:元素分析法(以信为主) 第一步:投第一封信,有4种不同的投法; 第二步:接着投第二封信,亦有4种不同的投法; 第三步:最后投第三封信,仍然有4种不同的投法。 因此,投信的方法共有:34(种)。 法二:位置分析法(以信箱为主) C(种); 第一类:四个信箱中的某一个信箱有3封信,有投信方法1 4第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,

二年级奥数简单的排列组合教

第三讲排列组合问题 例题精讲 在日常生活中,我们经常会碰到许多排列组合问题。 例1从晓明家到博迪教育共有三条路可走,从博迪教育到西湖有两条路可走,那么从晓明家到西湖有多少路可走? 分析:对这种问题的题目分析,可以先画一个简单的示意图: 可以这样想,从晓明家到博迪如果走①,那到鼓楼后,可有甲、乙两条路可走,如果走②、③的话,到博迪后,分别有两条路可以走,所以从晓明家到西湖共有3×2=6(条)路可走。 例2 幼儿园有3种不同颜色(红、黄、蓝)的上衣,4种不同颜色(黑、白、灰、青)的裙子,请问可以搭配出多少套衣服? 分析:按照次序思考,如果穿红色上衣,就会有四种颜色的裙子可以搭配,同样,如果是黄色、蓝色上衣,同样也有四种颜色的裙子可以搭配,因此 可供搭配的种类有3×4=12(种)。所以,总共有12种搭配方法。

例 3 小红昨天去文三路上一家火锅店吃火锅,她准备在牛肉、羊肉和鱼丸中挑选一个肉类,青菜、生菜、香菜、白菜和菠菜中挑选一个蔬菜,在蘑菇、香菇和金针菇中挑选一个菌类,那总共有多少种不同的搭配方法? 分析:肉类三选一,是3;蔬菜五选一,是5;菌类三选一,是3,相乘是45. 例3 从杭州到北京共有5个车站(包括杭州和北京)。每个汽车站售票处要为这条线路准备多少不同的车票? (杭州-上海-苏州-南京-北京) 分析:我们将车站编号为A,B,C,D,E.那么A号站到其他车站的车票共有4种,即A→B,A→C,A→D,A→E。同样,B号站到其他车站的票号也有4种,即B→A,B→C,B→D,B→E。(这里A→B和B→A的车票是不一样的,出发站和终点站不一样)所以每个站都必须准备4种不同的车票。所以总有车票的数量是:4×5=20(种)

小学奥数之排列组合问题.讲课教案

计 数 问 题 教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合的计算公式以及组合数与排列数之间的关系; 4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。 5.根据不同题目灵活运用计数方法进行计数。 知识点拨: 例题精讲: 一、 排 列 组 合 的 应 用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所 以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。 【例 2】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数? 【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式, 一共可以组成255420P =?=(个)符合题意的三位数。 【巩固】 用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数? 【解析】 可以分两类来看: ⑴ 把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有44432124P =???=(种)放法,对应24个不同的五位数; ⑵ 把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P =种选择.由乘法原理,可

奥数:排列组合的基本理论和公式

一、排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。 (一)两个基本原理是排列和组合的基础: (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法。 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。 3 C表示从5个元素中取出3个,总共有多少种不同的取5

法。这是组合的运算。例如:从5个人中任选三个人去参加 比赛,共有几种选法?这就是从5个元素中取出3个的组合 运算。可表示为3 C。其计算过程是35C=5!/[3!×(5-3)!] 5 叹号代表阶乘,5!=5×4×3×2×1=120,3!=3×2×1=6, (5-3)!=2!=2×1=2,所以3 C=5!/[3!×(5-3)!]=120/(6×2)=10 5 针对上面例子,就是从5个人中任选三个人去参加比赛,共有10几种选法。 排列组合公式: 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如 9!=9×8×7×6×5×4×3×2×1。 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现

小学奥数排列组合常见题型及解题策略备选题1

小学奥数排列组合常见题型及解题策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、 3 C 8 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与 排列. A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的【例1】,,,, 排法种数有 A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3

五年级奥数.计数综合.排列组合(ABC级).学生版

一、 排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P . 根据排列的定义,做一个m 元素的排列由m 个步骤完成: 步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法; 步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; …… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种) 方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ?-?-??-+()()() ,即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 二、 排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,知识结构 排列组合

小学奥数排列组合例题

小学奥数排列组合例题

小学奥数排列组合例题 知识点拨: 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法 原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的 步骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 ?这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. 四.排列及组合基本公式 1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示. P m n =n(n-1)(n-2)……(n-m+1) = n! (n-m)! (规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m个元素的组合数.用符号C m n 表示. C m n = P m n /m!= n! (n-m)!×m! 一般当遇到m比较大时(常常是m>0.5n时),可用C m n = C n-m n 来简化计算。 规定:C n n =1, C0 n =1. 3.n的阶乘(n!)——n个不同元素的全排列 P n n =n!=n×(n-1)×(n-2)…3×2×1 例题精讲: 一、排列组合的应用 【例 1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.

小学奥数排列组合.

计数问题 教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合的计算公式以及组合数与排列数之间的关系; 4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。 5.根据不同题目灵活运用计数方法进行计数。 一、排列组合的应用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3

最新北京小学奥数排列组合经典例题.doc

排列组合问题 教学目标: 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合的计算公式以及组合数与排列数之间的关系; 4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。 5.根据不同题目灵活运用计数方法进行计数。 知识点拨: 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法 原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的

步骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. 四.排列及组合基本公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的 个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示. P m n =n(n-1)(n-2)……(n-m+1) = n! (n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m个元素的组合数.用符号C m n 表示. C m n = P m n /m!= n! (n-m)!×m! 一般当遇到m比较大时(常常是m>0.5n时),可用C m n = C n-m n 来简化计算。 规定:C n n =1, C0 n =1. 3.n的阶乘(n!)——n个不同元素的全排列 P n n =n!=n×(n-1)×(n-2)…3×2×1 例题精讲: 一、排列组合的应用 【例 1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

相关文档
最新文档