工程断裂力学

工程断裂力学
工程断裂力学

工程断裂力学76 (2009) 709–714

内容列表可以在ScienceDirect期刊获得

工程断裂力学

杂志主页: https://www.360docs.net/doc/216454657.html,/locate/engfracmech

AA7075-T651在交变载荷下裂纹形核的显微结构形貌

H. Weiland a,*, J. Nardiello b, S. Zaefferer c, S. Cheong a, J. Papazian b, Dierk Raabe c

a 美国铝业有限公司,100技术驱动,美国铝业中心,宾夕法尼亚15069,美国

b 诺斯罗普2格鲁曼公司AEW/EW系统,925 S,.牡蛎湾路,贝思佩奇,纽约11714,美国

c普朗克铁研究所,普朗克Stra?e 1,,杜塞尔多夫D 40237,德国

文章信息摘要

文章历史: 一系列由7075-T651铝合金制作的疲劳试验样品被打断成各种寿命的部分和2007年1月9日收到一定数量脱胶,破裂的粒子和在金属基体中的破裂决定了定量是加载周期的函数2008年11月24日收到修订后的形式根据发现,只有破裂的第二相粒子,在一个基体裂纹中形核。晶体学关于一个独2008年11月26日录入立的裂纹和它的三维形状是由在扫描显微镜下一系列的切片通过应用聚焦离子束2008年12月10日网上可获得粉末与取向成像显微技术结合决定。这些极限数据显示裂纹萌生方向,受金属基体

中扩展的裂纹的晶体取向影响。。

关键字:

裂纹萌生

AA7075

3D微观结构

疲劳 @2008爱思唯尔有限公司保留所有权利。

1.介绍

优化的铝合金对航天航空应用,需要定量的理解不同控制形核的显微结构特性和裂纹在金属基体中的扩展。此外,在整体部分,裂纹在连接处的停滞不是给定的,显微结构的作用变得越来越重要。需要定量的理解,在复杂微观结构下的损伤演化。

当前对于航空航天应用铝合金的发展,基于一个良好的理解,关于微观结构下破坏的相关性质影响,例如断裂韧性和疲劳[1-5]。然而,铝合金上个世纪上半年的发展,例如AA7075,主要使用Edisonian方法。尽管存在一些研究,关于老化条件对性能的影响,详细分析显微结构属性下控制裂纹形核和单调生长区间,或者在那时候开发的铝合金没有采用交变载荷。然而,在早期理论上可知,含铁第二相在5-50微米直径范围,一般被称为夹杂相,是裂纹的起始点位置[1]。因此,此后的铝合金发展包括减少铁和硅元素提高损伤的相关性质。另一方面,如果粒子密度减少,正如当前阶段铝合金,其他显微结构下的特征,例如晶界和晶粒取向,将有助于裂纹的形核和扩展。读者可以参考文献[1-5],详细的讨论商业铝合金微观结构的损坏的影响。它必须指出,外推法得到的知识在Al-Cu系统(2xxx系列合金)不能容易的推测Al–Zn(7xxx系列合金),因为相和强化机制不同。

在目前的研究中,一部分数量脱粘和破裂的粒子,决定了一定数量是疲劳循环的函数,来自中断的疲劳试验。此外,破裂粒子在开裂基体中形核的尺寸和相关的裂纹长度是确定的。晶体学中关于裂纹和三维形状由来自一系列的切片通过聚焦离子束制粉和取向成像显微技术的结合决定。这些数据显示一开始裂纹的生长方向,同时由粒子周围的局部应力场和基体中正在生长的裂纹的晶向决定。

如今工作的目的,确定一定数量第二相粒子在交变载荷控制裂纹形核的作用,目的是确定以微观结构为基础,预测以这些合金制成的机身零件部分寿命。后者将另行公布。

2.实验步骤

用7075-T651制作一个76.2毫米厚板(屈服强度551Mpa,极限拉伸强度557Mpa)。一系列尺寸为47.5 mm*355.6mm*5.7mm开两个孔的疲劳试样(图1a),在T/4位置加工一个肋板,大约在金属板表面以下19毫米,这个孔直径4.8毫米。样品孔的表面在测试之前抛光,有利于通过扫描电镜进行微观组织分析(SEM)。样品在276 MPa低周疲劳下测试(3 Hz, R = 0)(室温,相对湿度35%,恒幅加载)。在这些测试条件下,样品典型失效接近9000个循环,周期从10到9000的一系列中间样品被生产出来(见表1),对于每个使用期限,火柴棍状样品被减掉,这样每个孔沿中间加载方向被减掉(图1b)。结果是四个样品有各自使用期限。这个几何样品允许在每个孔的最大应力处进行微观结构观察。这是预期中破坏萌生的位置。

失败的样品不仅分析孔中裂纹萌生位置还有孔中次生裂纹。火柴棍样品定量分析了脱层的数量密度和破裂的粒子,还有随着破裂粒子的基体破裂。所有扫面电子显微镜分析的执行,用SIRION扫面电子显微镜优化了背散射电子(BSE)成像。在放大倍率2000倍下,每个实验条件,收集20个背散射电子图像。单独的图像区域22,008 μm2,导致分析总面积0.44mm2,一个30平方像素的限制,排除任何粒子不到0.08μm2。发现所有粒子立体特性,识别出脱胶和破裂粒子,并且关于基体开裂中的破裂粒子形核,由半自动图像处理完成,通过蔡司透镜,用KS400图像分析软件。连续切片的三维微观组织分析用一个蔡司横梁连接1540聚焦离子束-扫面电子显微镜,用能谱仪/三维逻辑电子背向散射衍射系统,配备数码摄像头。20μm*30μm切片被剪成和相对样品表面15度并且垂直线间距离0.5μm。每个切片具有反散射电子和取向成像显微特征。关于这个三维微观组织分析技术的更多细节能在[6]中找到。

Fig. 1a. 带有加载方向指示的疲劳试验试样示意图

Fig. 1b. 由测试试样切成的火柴棍样品几何图。灰色阴影区域分析。

表1

3.结果与讨论

3.1断裂产生处

所有起始位置关于基本的裂纹和独立的组成粒子联系在一起(Fig. 2a and b),直径尺寸比5μm更大。在这个材料没有观察到萌生来自晶界处局部滑移。在孔表面,基本裂纹下,大量次生裂纹被观察到(Fig. 2b and c)。这些次生裂纹和组成粒子纵梁有联系。由粒子纵梁的几何图形,它可以推论,观察到的基本裂纹起始位置,组成纵梁成分的一端。断裂面显示,穿晶断裂是这些合金破坏的典型特征,以曲折的断裂表面和缺乏晶粒间晶面为特征。

Fig. 2. (a) 和 (b) 是起始点例子,(b) 观察裂纹和孔表面, (c)孔表面。

Fig. 3. 组成粒子脱粘。.

3.2 损坏进展

一系列增加循环寿命的样品提供机会去研究微观结构损坏的发生和发展。组成粒子密度被确定为2637粒子/mm2。100次循环以后,微观结构下的第一次损坏以脱粘的形式能被观察到(Fig. 3)和组成粒子破裂(Fig. 4)。所有粒子中不到百分之1破裂,然后大约三倍显示脱粘迹象(表1)。脱粘粒子尺寸比粒子评价尺寸略小,这时候的样品中,没有裂纹出现在铝基体中,1000次循环以后,粒子的损坏显著增加。在这个阶段,所有组成粒子中,3.6%发生破裂,8%发生脱粘。基体中出现一些破裂,全部和粒子破裂有联系,没有脱粘

的粒子。这个观察到基体开裂仅仅和破裂联系,没有脱粘粒子可以理解为应力强度因子。一个弯曲的脱粘界面,比如图3,导致应力强度因子重要性不如破裂粒子影响铝合金基体。破裂源自最高的应力强度因子微观组织,这是破裂粒子和创立微观结构中,疲劳寿命中占大约10%。

随着循环周期增加,脱粘粒子数量增加;然而,破裂的组成粒子数量增加,好像达到饱和。此外,基体中的破裂,放射总是来自一个粒子内的破裂,数量同样达到饱和。随着大约20%和基体裂纹相关的组成粒子破裂,考虑到裂纹在基体中高循环周期增长的相对数量,全部循环寿命由低周期最初的低周期循环决定。

3.3最初裂纹位置的三维分析

组织分析报告以孔的表面为特点,裂纹形成地方。然而,它很有可能潜在的微观结构有助于观察裂纹的形成和生长。因此,连续切片使用聚焦离子束-扫描电子显微镜。装载1000次循环周期的样品被选出。两个位置进行分析,只有一个裂纹分析将在此详细讨论。一个产生基体裂纹的粒子被选中。十个切片被切成一个50纳米的部分。每一层通过取向成像显微技术观察特征。决定每个独立晶粒的晶粒形态和晶体取向。被选定的粒子,P1,大约8μm长(Fig. 4),并且完全随着基体破裂来自破裂粒子,破裂基体的生长大约在长轴45度方向,后者与疲劳轴向加载一致。在两个切削到材料表面之后,有一个但是比表面组成粒子大,P2,开始显示(Fig. 5),这个表面下的粒子部分开裂(Fig. 5黑涩箭头),并且和基体裂纹没有联系。粒子P1,在表面显示的那个粒子,有一个次生基体裂纹在第一个裂纹对面。它可以看做来自关于每个基体裂纹相对位置分析断裂面裂纹,延伸到大约到正常样品表面的晶粒基体中,裂纹没有显示斜的迹象。

晶粒的晶体方向包括裂纹萌生,由取向成像显微技术决定(Fig. 6)。在孔表面的可见裂纹(在P1 in Figs. 4 and 5上),在晶粒内部形核取向靠近(110)[110],基体包含表面下裂纹在fig.5中由P1指向P2,在一个晶粒内存在靠近(001)[110]取向。这个晶粒取向已经在文献中频繁的提出,作为与合金有联系的裂纹[2]。在每个切片中比较裂纹面和有效滑移系统,显示在孔表面明显的基体裂纹,贯穿在分析大量滑移系统其中之一(Fig. 6顶部)。裂纹和有效的滑移面对齐,没有暗示是解理型断裂。表面下的断裂,没有和任何滑移系统对齐,没有有效的对称的滑移系统,±45°的结构关于破裂面,例如模型1开裂。

由关于主要裂纹随滑移系统和角度裂纹来自加载方向的准则,假设这个裂缝在模式2条件的剪切应力下形成。次生裂纹很可能也是

Fig. 4.挑选出5000次循环周期下的3D微观结构。箭头指向基体裂纹。

Fig.5.在孔表面3毫米下的6号切片。P1:表面粒子;P2:表面下的粒子。白色箭头指向基体裂纹。黑色箭头指向表面下的粒子部分破裂。P2中垂直的白色线是人工成像线。

Fig.6. (a) 关于图5的取向成像显微分析图。通过晶向正常的铝板进行颜色标号。单位晶胞基本滑移面和滑移方向被划分出来,晶粒产生基体裂纹。双箭头表明加载方向。(b)颜色代码适用(a)。(这个图例中,对于涉及到的颜色的显示,读者参考这篇文章网络版本)

模型2号裂纹。但是由于系统有效的滑移面没有传播远的限制,这个未解决问题是关于表面下粒子作用。由于它更大的体积和较小的瘦长形状,在疲劳寿命阶段,没有完全断裂。可以很明显观察到,裂纹在基体中的形核靠近第二相粒子,第二相粒子需要完全断裂,建立适合粒子断裂条件需要更深一步的研究,然而,三维特性很明显,就是延伸率,相对尺寸和几何结构至关重要。

3.4 总结

关于在高强度、包含大的组成粒子密度的铝合金的损伤演变的系统性研究中,展示出对于疲劳裂纹的形核,局部微观组织有影响。特别的,还观察到粒子-基体脱粘交界处,对铝基体裂纹的形成没有贡献。因此,高密度的脱粘,没有导致裂纹深入基体。铝基体中裂纹总是和组成粒子破裂有关。在样品暴露出疲劳,达到饱和值之前期间,粒子没有在接受基中破裂和经历形核事件。虽然不是所有粒子破裂,还有一些发展成完全的穿晶断裂,仅仅一些小的碎片开始像铝基体中破裂。一个裂纹的三维分析表明,这种情况,裂纹在铝基体中形核,受基体中有效的滑移系统影响,靠近相邻粒子控制的最大应力下的方向。这反过来,由破裂粒子尺寸和几何形状决定,同样,相邻粒子对第一个也有相同作用。

文献

[1] Staley JT. How microstructure affects fatigue and fracture of aluminum alloys. In: Peronne N, editor. Tenth symposium on naval structural mechanics,

Washington DC, 1978. University Press; 1978, ISBN 0-8139-0802-7. p. 671–84.

[2] Starke Jr EA, Lutjering G. Cyclic plastic deformation and microstructure. In: Fatigue and microstructure. Metals Park: ASM; 1979. p. 226–9.

[3] Magnusen PE, Bucci RJ, Hinkle AJ, Brockenbrough JR, Konish HJ. Analysis and prediction of microstructural effects on long-term fatigue performance of

an aluminum aerospace alloy. Int J Fatigue 1997;19(Suppl. 1):S275–83.

[4] Patton G et al. Study of fatigue damage in 7010 aluminum alloy. Mat Sci and Engng 1998;A254:207–18.

[5] Oswald LW. Effects of microstructure on high-cycle fatigue of an Al–Zn–Mg–Cu alloy (Al-7055). Master thesis, University of Pittsburgh; 2003.

[6] Konrad J, Zaefferer S, Raabe D. Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3 Al-based alloy using a 3D EBSD–

FIB technique. Acta Mater 2006;54(5):1369–80.

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力σ及断裂强度极限σb,,说明K1与K1C的区别与联系? 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。 16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德(Westergaard)应力函数?写出Westergaard应力函数的形式,并证明其满足双调和方程。

24、裂纹按其几何特征可分为哪几类? 25、判断下图所示几种力情况下,裂纹扩展的类型 26、D-B 模型的适用条件是什么? 27、什么叫裂纹的亚临界扩展?什么叫门槛值? 28、什么叫腐蚀?什么叫应力腐蚀?什么叫腐蚀临界应力强度因子K ⅠSCC ? 29、什么叫应力疲劳?什么叫应变腐蚀?两者的裂纹扩展速率表达式是否相同?为什么? 30、什么叫腐蚀疲劳? 31、试述金属材料疲劳破坏的特点 32、现有的防脆断设计方法可分为哪几种? 33、什么是疲劳裂纹门槛值,哪些因素影响其值的大小?它有什么实用价值? 34、应力腐蚀裂纹扩展的特征? 第二类椭圆积分Φ0的值 受扭薄壁圆筒

工程断裂力学

工程断裂力学76 (2009) 709–714 内容列表可以在ScienceDirect期刊获得 工程断裂力学 杂志主页: https://www.360docs.net/doc/216454657.html,/locate/engfracmech AA7075-T651在交变载荷下裂纹形核的显微结构形貌 H. Weiland a,*, J. Nardiello b, S. Zaefferer c, S. Cheong a, J. Papazian b, Dierk Raabe c a 美国铝业有限公司,100技术驱动,美国铝业中心,宾夕法尼亚15069,美国 b 诺斯罗普2格鲁曼公司AEW/EW系统,925 S,.牡蛎湾路,贝思佩奇,纽约11714,美国 c普朗克铁研究所,普朗克Stra?e 1,,杜塞尔多夫D 40237,德国 文章信息摘要 文章历史: 一系列由7075-T651铝合金制作的疲劳试验样品被打断成各种寿命的部分和2007年1月9日收到一定数量脱胶,破裂的粒子和在金属基体中的破裂决定了定量是加载周期的函数2008年11月24日收到修订后的形式根据发现,只有破裂的第二相粒子,在一个基体裂纹中形核。晶体学关于一个独2008年11月26日录入立的裂纹和它的三维形状是由在扫描显微镜下一系列的切片通过应用聚焦离子束2008年12月10日网上可获得粉末与取向成像显微技术结合决定。这些极限数据显示裂纹萌生方向,受金属基体 中扩展的裂纹的晶体取向影响。。 关键字: 裂纹萌生 AA7075 3D微观结构 疲劳 @2008爱思唯尔有限公司保留所有权利。 1.介绍 优化的铝合金对航天航空应用,需要定量的理解不同控制形核的显微结构特性和裂纹在金属基体中的扩展。此外,在整体部分,裂纹在连接处的停滞不是给定的,显微结构的作用变得越来越重要。需要定量的理解,在复杂微观结构下的损伤演化。 当前对于航空航天应用铝合金的发展,基于一个良好的理解,关于微观结构下破坏的相关性质影响,例如断裂韧性和疲劳[1-5]。然而,铝合金上个世纪上半年的发展,例如AA7075,主要使用Edisonian方法。尽管存在一些研究,关于老化条件对性能的影响,详细分析显微结构属性下控制裂纹形核和单调生长区间,或者在那时候开发的铝合金没有采用交变载荷。然而,在早期理论上可知,含铁第二相在5-50微米直径范围,一般被称为夹杂相,是裂纹的起始点位置[1]。因此,此后的铝合金发展包括减少铁和硅元素提高损伤的相关性质。另一方面,如果粒子密度减少,正如当前阶段铝合金,其他显微结构下的特征,例如晶界和晶粒取向,将有助于裂纹的形核和扩展。读者可以参考文献[1-5],详细的讨论商业铝合金微观结构的损坏的影响。它必须指出,外推法得到的知识在Al-Cu系统(2xxx系列合金)不能容易的推测Al–Zn(7xxx系列合金),因为相和强化机制不同。 在目前的研究中,一部分数量脱粘和破裂的粒子,决定了一定数量是疲劳循环的函数,来自中断的疲劳试验。此外,破裂粒子在开裂基体中形核的尺寸和相关的裂纹长度是确定的。晶体学中关于裂纹和三维形状由来自一系列的切片通过聚焦离子束制粉和取向成像显微技术的结合决定。这些数据显示一开始裂纹的生长方向,同时由粒子周围的局部应力场和基体中正在生长的裂纹的晶向决定。 如今工作的目的,确定一定数量第二相粒子在交变载荷控制裂纹形核的作用,目的是确定以微观结构为基础,预测以这些合金制成的机身零件部分寿命。后者将另行公布。

断裂力学基础(学习笔记)

第一章 断裂力学的基本概念 宏观裂纹的产生: 1) 制造时存在而无损检测漏检:大型锻件容易出现白点裂纹,夹杂裂纹;高强度钢易出现 焊接裂纹 2) 构件中原来存在的较小裂纹,在周期性的工作应力(疲劳应力)下逐渐发展长大的; 3) 腐蚀性价值中工作的构件,在应力和介质联合作用下,小裂纹也会逐渐发展成宏观裂纹; 总之构件内部存在的宏观裂纹是造成构件低应力脆断的直接原因。 材料力学:研究不含宏观裂纹构件的强度、刚度和稳定性; 断裂力学:研究含有宏观裂纹构件的安全性 裂纹:夹渣、气孔、未焊透、大块夹杂; 断裂韧性:只与材料本身、热处理、加工工艺有关; Y a K c Ic σ=是材料抵抗低应力脆性破坏的韧性参数 Ic K 是材料性能,裂纹形状大小Y a 一定时,Ic K 越大,使裂纹快速扩展导致构件脆断所需应力c σ也越高,构件阻止裂纹失稳扩展的能力就越大。 应力场强度因子: Y a K I σ= 断裂韧性Ic K 是应力强度因子I K 的临界值,I K 是裂纹前端应力场强度的度量,它和裂纹大小、形状以及外加应力都有关 断裂力学的应用 a Y K I σ?= Q Y π 1.1= 22212.0??? ? ??-Φ=s Q σσ: 形状因子 Φ是和椭圆轴比有关的椭圆积分,可查手册获得;

第二章 线弹性断裂力学 弹性力学的某些概念: 应力分量:3 应变分量:3 胡克定律和广义胡克定律: 平面应力:z 方向总力和为0,x,y 平面有正应力和切应力,这三个应力沿z 轴(厚度方向)都一样,与z 无关,仅是x,y 的函数,这种应力状态称为平面应力状态。当板很薄时,可认为是平面应力状态。0=z σ 体内应变分量只有三个,厚度方向认为没有应变,这种应变状态称为平面应变状态。()y x z σσυσ+= 对试件来说,厚度很小就是平面应力状态;厚度很大就是平面应变状态;厚度中等,两外表面不受力属于平面应力状态;中间大部分地区由于受两端面的约束,沿厚度方向不能变形,故属于平面应变状态; 三种裂纹组态: 张开型裂纹(I):外加正应力和裂纹面垂直; 最容易引起低应力脆断; 滑开型裂纹(II):外加剪应力和裂纹面平行; 撕开型裂纹(III):外加剪应力与裂纹面错开; 裂纹顶端附近应力场 复变函数求解; 塑性区及其修正: 裂纹尖端应力不可能无限大,材料一旦屈服,弹性规律就失效,若屈服区很小周围仍然是弹性区,经修正线性弹性断裂力学仍然有效; 屈服判据: 最大剪应力判据(屈雷斯加判据):在复杂加载条件下,当最大剪应力等于材料的极限剪应力(即单向拉伸剪应力)时,材料就屈服; 2 2min max max σσστ-==s 形状改变能判据(米塞斯判据):当复杂应力状态的形状改变能密度,等于单向拉压屈服时的形状改变能密度时,材料就屈服; ()()()22132322212s σσσσσσσ=-+-+- xy y x y x τσσσσσσ+-±+=2 )(2221 ()???+=2130 σσυσ

断裂力学分析

在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图10-109所示。 图10-109 在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随r而变化, r是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/r变化。 为选取应变奇异点,相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图10-110表示2D和3D模型的奇异单元。

图10-110 对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。围绕裂纹尖端的第一行单元,必须具有奇异性,如图10-110(a)所示。PREP7中KSCON命令(MainMenu>Preprocessor> Meshing Shape&Size> ConcentratKPs Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。本命令自动围绕指定的关键点产生奇异单元。命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图10-111显示用KSCON命令产生的断裂模型。 图10-111 建立2D模型的其他建议: ●尽可能利用对称条件。在许多情况下根据对称或反对称边界条件,只需要模拟裂纹区的一半,如图10-112所示。

图10-112 ●为获得理想的计算结果,围绕裂纹尖端的第一行单元,其半径应该是八分之一裂纹长或更小。沿裂纹周向每一单元最好有30°~40°。 ●裂纹尖端的单元不能有扭曲,最好是等腰三角形。 3D断裂模型 3D模型推荐使用的单元类型为二十节点块体单元SOLID95,如图10 110(b)所示。围绕裂纹前缘的第一行单元应该是奇异单元。这种单元是楔形的,单元的KLPO面退化成KO线。产生3D断裂模型要比2D模型复杂,KSCON命令不能用于3D模型,必须保证裂纹前缘沿着单元的KO边。 建立3D断裂模型的建议如下: ●推荐的单元尺寸与2D模型一样。此外在所有的方向上,单元的相邻边之比不能超过4∶1。 ●在弯曲裂纹前缘上,单元的大小取决于局部曲率的数值。例如,沿圆环状弯曲裂纹前缘,在150~3000的角度内至少有一个单元。 ●所有单元的边(包括在裂纹前缘上的)都应该是直线。 10.4.2计算断裂参数 在静态分析完成后,可以通过通用后处理器POST1来计算断裂参数,如前面提到的应力强度因子、J积分及能量释放率等。 10 4 2 1应力强度因子 用POST1中的KCALC命令(MainMenu>GeneralPostproc>NodalCalcs>StressIntFactr)计算复合型断裂模式中的应力强度因子(KⅠ,KⅡ,KⅢ)。该命令仅适用于在裂纹区域附近具有均匀的各向同性材料的线弹性问题。使用KCALC命令的步骤如下: (1)定义局部的裂纹尖端或裂纹前缘的坐标系,以X轴平行于裂纹面(在3D模型中垂直于裂纹前缘),Y轴垂直于裂纹面,如图10-113所示。注意:当使用KCALC命令时,坐标系必须是激活的模型坐标系[CSYS]

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

断裂力学概述 2

第一章线弹性断裂力学 线弹性断裂力学研究对象是线弹性裂纹固体,认为裂纹体内各点的应力应变关系是线性的。金属材料中,严格的线弹性断裂问题几乎不存在,因为裂纹的扩展总伴随有裂纹尖端的苏醒变形。但理论和实践都证明,只要塑性区尺寸远小于裂纹的尺寸,经适当修正,用线性理论分析不会产生太大误差。对于低韧高强度钢,或处于低温条件下工作的构件,往往在断裂前裂纹尖端的塑性区尺寸较小,可用线弹性断裂理论进行分析。 一裂纹及其对强度的影响 1.1裂纹分类 1.按几何特征 a 穿透裂纹: 通常把裂纹延伸到构件厚度一半以上的都视为穿透裂纹。 b 表面裂纹 c 深埋裂纹 2.按裂纹力学特征 张开型裂纹裂纹受垂直于裂纹面的拉应力,是裂纹面产生张开位移 滑开型裂纹裂纹受平行于裂纹面且垂直于裂纹前缘的剪应力,裂纹在平面内滑开 撕开型裂纹裂纹受平行于裂纹面且平行于裂纹前缘的剪应力,裂纹相对错开 复合型裂纹裂纹同时受正应力和剪应力的作用,或裂纹与正应力成一角度,这是就同时存在和,或和,称为复合型裂纹,实际裂纹体中裂纹可能是两种或两种以上基本型的组合。 1.2 裂纹对材料强度的影响 带裂纹弹性体受力后,在裂纹尖端区域产生局部应力集中。但是这种集中是局部性的,离开裂纹尖端稍远处应力分布趋于正常。 裂纹尖端区域应力集中程度与裂纹尖端的曲率半径有关,裂纹越尖锐应力集中程度越高。这种应力

集中必然导致材料的实际断裂强度远低于材料理论断裂强度。 二、能量释放率理论 2.1 格瑞菲斯理论(Griffith) 二十世纪二十年代初,英国学者Griffith最先应用能量法对玻璃、陶瓷等脆性材料进行了断裂分析,成功解释了“为什么玻璃等材料的实际断裂强度比用分子结构理论所预期的强度低得多”的问题。 Griffith研究如图厚度为t的薄平板。两端施加均不载荷,处于平行状态并固定两端,构成能量封闭系统,板内总应变能为U0,板内开一长为2a的贯穿裂纹,裂纹处形成上下两个自由表面,作用在两表面的拉应力消失,同时两表面产生张开位移,拉应力做负功,使应变能减小到U0-U。在无限大薄平板内开一个扁平贯穿椭圆孔,他得出当椭圆孔短轴尺寸趋于零(理想尖裂纹)时,应变能的改变为 式中,A=2at,为裂纹的单侧自由表面的面积。 裂纹形成两个新自由表面,使表面能增加,设为表面能密度,则两个自由表面总表面能为 因此,一个带有贯穿裂纹的薄平板相对于无裂纹初始状态的总势能为 由势能极值原理可知,总势能为极大值的条件为 符合上式条件,裂纹处于不稳定平衡状态。

第一章 工程材料的力学性能

第一章金属材料的力学性能 学习目的和要求: 学习目的在于了解工程材料力学性能的物理意义,熟悉金属主要的力学性能指标,以便在设计机械时,根据零件的技术要求选用材料,或在编制金属加工工艺时参考。 学完本章后,要求在掌握概念的基础上,熟悉有关术语、符号意义及应用场合,并了解测定方法。 学习重点: 1、掌握强度、塑性、韧性、硬度的概念、物理意义及应 用; 2、掌握布氏硬度和洛氏硬度的优缺点及应用场合。 学习难点: 1、疲劳强度和断裂韧性的概念及应用。 §1-1 材料的强度与塑性 材料的力学(机械)性能,是指材料受不同外力时所表现出来的特性,这种特性是机器安全运转的保证。所以机械性能是设计机械时强度计算和选用材料的基本依据,是评价材料质量和工艺强化水平的重要参数。常用的机械性能指标,都是在特定条件下用规定的测试方法获得的,因为与实用工作状况不尽相同,所以选用数据时应考虑安全系数。 一、弹性与刚度 1、弹性:材料在外力作用下产生变形,当外力去掉 后能恢复其原来形状的性能。

2、弹性极限(σe ):材料承受最大弹性变形时的应力。 3、刚度:材料在外力作用下抵抗弹性变形的能力。指标 为弹性模量 4、弹性模量(E ):应力与应变的比值,物理意义是产 生单位弹性变形时所需应力的大小,表征材料产生弹性变形的难易程度。弹性模量是材料最稳定的性能之一,其大小主要取决于材料的本性,随温度升高而逐渐降低,材料的强化手段(如热处理、冷热加工、合金化等)对弹性模量影响很小。提高金属制品的刚度,可以通过更换金属材料、改变截面形状、增加横截面面积。 为什么弹簧还要进行热处理?弹簧进行热 处理的目的是什么? 二、强度 韧性材料拉伸曲线 脆性材料拉伸曲线

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

断裂力学的发展与研究现状 - glearningtjueducn

万方数据

万方数据

万方数据

万方数据

断裂力学的发展与研究现状 作者:康颖安, KANG Ying-an 作者单位:湖南工程学院,机械工程系,湖南,湘潭,411101 刊名: 湖南工程学院学报(自然科学版) 英文刊名:JOURNAL OF HUNAN INSTITUTE OF ENGINEERING(NATURAL SCIENCE EDITION) 年,卷(期):2006,16(1) 被引用次数:1次 参考文献(10条) 1.范天佑断裂理论基础 2003 2.陈会军;李永东;唐立强多孔材料中裂纹尖端的渐近场[期刊论文]-哈尔滨工程大学学报 2000(03) 3.张淳源粘弹性断裂力学 1994 4.张俊彦;张淳源裂纹扩展条件及其温度场研究 1996(01) 5.Rice J R;Rosengren G F Plane strain deformation near a crack tip in a powerlaw hardening material 1968 6.Hutchinson J W Singular behavior at the end of a tensile crack in a hardening material 1968 7.黄克智弹塑性断裂力学的一个重要进展 1993(01) 8.Wells A A Applications of fracture mechanics at/and beyond general yielding 1963 9.Irwin G R Analysis of stress and strains near the end of a crack traversing a plate 1957 10.沈成康断裂力学 1996 引证文献(1条) 1.单丙娟浅谈断裂力学的发展与研究现状[期刊论文]-内蒙古石油化工 2007(7) 本文链接:https://www.360docs.net/doc/216454657.html,/Periodical_hngcxyxb-zr200601011.aspx

断裂力学材料

?断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 ?本课程将简要介绍断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J积分以及断裂问题的有限元方法等内容。 ?当机械结构带有裂纹时,判断机械结构发生断裂的时机,不能用屈服判据,而应该寻求新的断裂判据。 ?现代断裂力学(fracture mechanics)这门学科,就在这种背景下诞生了。从上世纪五十年代中期以来,断裂力学发展很快,目前线性理论部分已比较成熟,在工程方面,已广泛应用于宇航、航空、海洋、兵器、机械、化工和地质等许多领域。断裂力学的关键问题(一) 1.多小的裂纹或缺陷是允许存在的,即此小裂纹或缺陷不会在预定的服役期间发展成断裂时的大裂纹? 2.多大的裂纹就可能发生断裂,即用什么判据判断断裂发生的时机? 3.从允许存在的小裂纹扩展到断裂时的大裂纹需要多长时间,即机械结构的寿命如何估算?以及影响裂纹扩展率的因素。 4.在既能保证安全,又能避免不必要的停产损失,探伤检查周期应如何安排? 5.万一检查时发现了裂纹,该如何处理? 断裂力学的关键问题(二) 1.什么材料比较不容易萌生裂纹? 2.什么材料可以容许比较长的裂纹存在而不发断裂? 3.什么材料抵抗裂纹扩展的性能较好? 4.怎样冶炼、加工和热处理可以得到最佳效果? 前五个问题可以用断裂力学的方法来解决;后面四个问题则属于材料或金属学的领域。因此,断裂是与力学、材料和工程应用有关的问题。应综合力学、材料学和工程应用等方面着手研究。 解决断裂问题的思路 为解决上面所提的工程问题和材料问题,对于含裂纹的受力机械零件或构件,必须先找到一个能表征裂纹端点区应力应变场强度(intensity)的参量,就象应力可以作为裂纹不存在时的表征参量一样。 解决断裂问题的思路—科学假说(续) 因为断裂的发生绝大多数都是由裂纹引起的,而断裂尤其是脆性断裂,一般就是裂纹的失稳扩展。裂纹的失稳扩展,通常由裂纹端点开始。因此,发生断裂的时机必然与裂端区应力应变场的强度有关。 对于不含裂纹的物体,当某处的应力水平超过屈服应力,就要发生塑性变形;而对于含裂纹的物体,当某裂端表征应力应变场强度的参量达到临界值时,就要发生断裂。 这个发生断裂的临界值很可能是材料常数,它既可表征材料抵抗断裂的性能,亦可用来衡量材料质量的优劣。 影响断裂的两大因素 载荷大小和裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。 断裂力学研究内容

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

断裂力学和断裂韧性

断裂力学与断裂韧性 3.1 概述 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧! 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ], 就被认为是安全的了。而[σ],对塑性材料[σ]=σ s /n,对脆性材料[σ]=σ b /n, 其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。 3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度

金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。图中纵坐标表示原子间结合力,纵轴上方 为吸引力下方为斥力,当两原子间 距为a即点阵常数时,原子处于平 衡位置,原子间的作用力为零。如 金属受拉伸离开平衡位置,位移越 大需克服的引力越大,引力和位移 的关系如以正弦函数关系表示,当 位移达到X m 时吸力最大以σ c 表示, 拉力超过此值以后,引力逐渐减小, 在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏, 达到完全分离的程度。可见理论断裂强度即相当于克服最大引力σ c 。该力和位移的关系为 图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。分离后形成两个新表面,表面能为。 可得出。 若以=,=代入,可算出。 3.2.2 格里菲斯(Griffith)断裂理论 金属的实际断裂强度要比理论计算的断裂强度低得多,粗略言之,至少 低一个数量级,即 。 陶瓷、玻璃的实际断裂强度则更低。

断裂力学论文

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

三 、玻璃断裂力学及玻璃结构

第三章玻璃、断裂力学及玻璃结构 第一节玻璃 玻璃是一种均质的材料,一种固化的液体,分子完全任意排列。由于它是各种化学键的组合,因此没有化学公式。玻璃没有熔点,当它被加热时,会逐渐从固体状态转变为具有塑性的黏质状态,最后成为一种液体状态。与其他那些因测量方向不同而表现出不同特性的晶体相比,玻璃表现了各向同性,即它的性能不是由方向决定的。当前用于建筑的玻璃是钠钙硅酸盐玻璃。生产过程中,原材料要被加热到很高的温度,使其在冷却前变成黏性状态,再冷却成形。 3.1.1玻璃的力学性能 常温下玻璃有许多优异的力学性能:高的抗压强度、好的弹性、高的硬度,莫氏硬度在5~6之间,用一般的金属刻化玻璃很难留下痕迹,切割玻璃要用硬度极高的金刚石。抗压强度比抗拉强度高数倍。常用玻璃与常用建筑材料的强度比较如下: 3.1.2玻璃没有屈服强度。 玻璃的应力应变拉伸曲线与钢和塑料是不同的,钢和塑料的拉伸应力在没有超过比例极限以前,应力与应变呈线性直线关系,超过弹性极限并小于强度极限,应变增加很快,而应力几乎没有增加,超过屈服极限以后,应力随应变非线性增加,直至钢材断裂。玻璃是典型

的脆性材料,其应力应变关系呈线性关系直至破坏,没有屈服极限,与其它建筑材料不同的是:玻璃在它的应力峰值区,不能产生屈服而重新分布,一旦强度超过则立即发生破坏。应力与变形曲线见下图。 图3-1 应力与变形拉伸曲线 3.1.3玻璃的理论断裂强度远大于实际强度。 玻璃的理论断裂强度就是玻璃材料断裂强度在理论上可能达到的最高值,计算玻璃理论断裂强度应该从原子间结合力入手,因为只有克服了原子间的结合力,玻璃才有可能发生断裂。Kelly在1973年的研究表明理想的玻璃理论断裂强度一般处于材料弹性模量的1/10~1/20之间,大约为0.7×104 MPa,远大于实际强度,在实际材料中,只有少量的经过精心制作极细的玻璃纤维的断裂强度,能够达到或者接近这一理论的计算结果。断裂强度的理论值和建筑玻璃的实际值之间存在的悬殊的差异,是因为玻璃在制造过程中不可避免的在表面产生很多肉眼看不见的裂纹,深度约5μm,宽度只有0.01到0.02μm,每mm2面积有几百条,又称格里菲思裂纹,见图3-2、图3-3。至使断裂强度的理论值远大于实际值。1913年Inglis提出应力集中

ABAQUS中的断裂力学及裂纹分析总结

ABAQUS中的断裂力学及裂纹分析总结(转自simwe) (1) 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 (2) 另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数. 裂尖及奇异性定义: 在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。 这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况. 网格划分: 裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上

断裂与损伤力学发展与理论

1.断裂与损伤力学的发展过程以及要解决的问题。 2.材料疲劳损伤机理以及断裂力学基本分析方法。 3.新材料复合材料的损伤以及断裂破坏基础理论。 1、 断裂与损伤力学的发展过程以及要解决的问题 1.1 断裂力学的发展简史及要解决的问题 断裂力学理论最早是在1920年提出。当时Griffith 为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,其内容是:结构体系内裂纹扩展,体系内总能量降低,降低的能量用于裂纹增加新自由表面的表面能,裂纹扩展的临界条件是裂纹扩展力(即应变能释放率)等于扩展阻力(裂纹扩展,要增加自由表面能而引起的阻力)。很好地解释了玻璃的低应力脆断现象。计算了当裂纹存在时,板状构件中应变能的变化进而得出了一个十分重要的结果:=a c δ常数。 其中,c δ是裂纹扩展的临界应力;a 为裂纹半长度。他成功的解释了玻璃等脆性材料的开裂现象但是应用于金属材料时却并不成功。 1944年泽纳(Zener)和霍洛蒙(Hollmon)又首先把Griffith 理论用于金属材料的脆性断裂。不久欧文(Irwin)指出,Griffith 的能量平衡应该是体系内储存的应变能与表面能、塑性变形所做的功之间的能量平衡,并且还指出,对于延性大的材料,表面能与塑性功相比一般是很小的。同时把G 定义为“能量释放率”或“裂纹驱动力”,即裂纹扩展过程中增加单位长度时系统所提供的能量,或裂纹扩展单位面积系统能量的下降率。 1949年Orowam E 在分析了金属构件的断裂现象后对Griffith 的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多以至于可以不考虑表面能的影响,其提出的公式为 =a c δ=2/1)/2(λEU 常数 该公式虽然有所进步,但仍未超出经典的Griffith 公式范围,而且同表面能

相关文档
最新文档