圆的面积公式应用——已知周长求面积

圆的面积公式应用——已知周长求面积
圆的面积公式应用——已知周长求面积

圆的面积公式应用——已知周长求面积教学目标:

1.在解决问题的过程中,进一步巩固圆的面积公式。

2.结合具体事例,能灵活运用所学公式解决生活中的问题。

3.感受数学与生活的密切联系,培养学生综合运用知识的能力。。

教学重点:

正确并灵活的运用公式进行计算。

教学难点:

正确并灵活的运用公式解决生活中的问题

教学过程:

一、复习旧知,导入新课

前面我们学习了圆、圆的周长、圆的面积,如果圆的半径用r表示,周长怎样表示?(2πr)面积怎样表示?(πr2),这节课我们继续学习圆的面积,研究如何用圆的公式解决实际问题。

二、引导探究,解决问题

1.探究教材第52页“蒙古包占地”问题。

(1)多媒体出示问题。

一个底面是圆形的蒙古包,沿地面量得周长是25.12米。它的占

地面积是多少平方米?

(2)探究。

学生根据以前的经验可知:要先利用圆的周长公式求出蒙古包的半径或直径,才能计算占地面积。

师:我们在算蒙古包半径时用算术法和方程法都可以,哪种更简单?

生:列方程解,思路统一,便于理解。

师:请同学们在练习本上把过程写完整!

指名学生板演。

2.探究教材第52页“选台布”问题。

圆桌面的直径是120厘米。

(1)多媒体出示三块不同规格的台布:

110cm×110cm;120cm×120cm;140cm×140cm

(2)合作探究。(教师需引导学生知道"110cm×110cm"等表示的意义)

120)2=11304(平方厘米)生1:因为桌面面积:3.14×(

2

边长是110厘米的台布面积:110×110=12100(平方厘米)

12100>11304

所以边长是110厘米的台布能用,因为它的面积比圆桌面的面积大。

生2:边长是110厘米的台布不能用,边长是110厘米的台布最大只能遮盖直径是110厘米的圆桌面。

(教师引导学生知道,只比较面积的大小不行,还要看台布能不能盖全圆桌)

通过学生比较第2种和第3种台布,使学生知道边长是140厘米的台布不但比圆桌面的面积大,而且铺在上面周围都能垂下一部分,这样比较美观,台布不容易被掀起,所以选择边长是140厘米的台布更合适些。

三、联系实际,巩固提高

练一练第53页第1、2、3题。

四、全课总结,畅谈收获

通过今天的学习,谈谈大家的收获。

圆的面积和周长专项练习

圆的面积和周长专项练习 填空题: 1、圆是平面上的一种()图形,围成圆的()的长叫做圆的周长。在大大小小的圆中,它们的周长总是各自圆直径的()倍多一些,我们把这个固定的数叫做(),用字母()表示,它是一个 ()小数,在()和()之间,在计算时,一般只取它的近似值()。 2、一个圆的直径扩大2倍,它的半径扩大()倍,它的周长扩大 ()倍。 3、两个圆的半径的比是2:3,它们直径的比是(),周长的比是 ()。 4、一个圆形花坛的半径 2.25米,直径是()米,周长 ()米。 5、一个圆的直径扩大4倍,半径扩大()倍,周长扩大()倍。 6、画一个周长12.56厘米的圆,圆规两脚间的距离是()厘米。 7、在一张长6厘米,宽4厘米的长方形纸片上画一个最大的圆,这个圆的半径是 ()厘米;如果画一个最大的半圆,这个圆的半径是()厘米。 8、 ( )叫做圆的面积。把圆沿着它的半径r分成若干等份,剪开后可以拼成一个近似的(),这个图形的长相当于圆周长的(),用字母表示是();宽相当于圆的(),用字母表示是 ()。所以圆的面积S=( )×( ) = ( )。 9、一个圆的半径2厘米,它的周长是();面积是()。 10、一个圆的直径6米,半径(),周长(),面积 ()。 11、在长6分米,宽4分米的长方形中画一个最大的圆,圆的面积()。 12、两个圆周长的比是2:3,直径的比是();半径的比是 ();面积的比是()。

13、用12.56米的铁丝围成一个正方形,正方形面积是 (),如果把它围成一个圆,圆的面积是()。 14、圆的半径扩大5倍,直径扩大()倍;周长扩大()倍;面积扩大()倍。 15、小圆半径2厘米,大圆半径6厘米,小于半径是大圆半径的(),小于直径是大圆直径的(),小于周长是大圆周长的(),小于面积是大圆面积的(), 16、用圆规画一个周长50.24厘米的圆,圆规两脚之间的距离是()厘米,所画的圆的面积是()平方厘米。 17、圆的半径扩大3倍,直径扩大()倍,周长扩大()倍;面积扩大()倍。 18、一根铁丝正好围成一个直径2米的圆,这根铁丝长()米;如果改围成一个正方形,正方形的边长是()米,面积是()平方米。 19、小圆半径6厘米,大圆半径8厘米。大圆和小圆半径的比是 ();直径的比是();周长的比是 ();面积的比是()。 20、用一根长4米的绳子画一个最大的圆,这个圆的半径()米,周长 ()米,面积()平方米。 21、圆是平面内的一种()图形,它有()条对称轴。 22、圆规两脚间距离5厘米,画出圆的周长()厘米,面积()平方厘米。 23、在一张长40厘米宽30厘米的长方形纸上剪一个最大的圆,圆的半径()厘米,周长()厘米,面积()平方厘米。 24、一个圆的半径扩大4倍,它的周长扩大()倍;面积扩大 ()倍。 25、在同一个圆中,所有的()都相等;所有的()都相等。它俩之间的关系可以用()表示;也可以用 ()表示。 26、圆周率是圆的()和()比值。 27、一个圆的半径6分米,如果半径减少2分米,周长减少()分米。

圆的面积计算

圆的面积计算 教学内容:新课标数学六年级上册P67、68例1,圆的面积计算公式推导,圆面积计算的运用。 教学目标: 1、通过动手操作、认真观察,让学生经历圆面积计算公式的推导过程,理解掌握圆面积公式,并能正确计算圆的面积。 2、学生能综合运用所学的知识解决有关的问题,培养学生的应用意识。 3、利用已有知识迁移,类推,使学生感受数学知识间的联系与区别。培养学生的观察、分析、质疑、概括的能力,发展学生的空间观念。 4、通过学生小组合作交流,互相学习,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。 教学重点:运用圆的面积计算公式解决实际问题。 教学难点:理解把圆转化为长方形推导出计算公式的过程。 教学准备:多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。 教学过程: 出示以下图形: 1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。 2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的?(电脑课件演示) 二、合作交流,探究新知。 1 出示圆: (1)让学生说出圆周长的概念,并指出来。 (2)想一想:圆的面积指什么?让学生动手摸一摸。 (揭示:圆所占平面的大小叫做圆的面积。)

(3)对比圆的周长和面积,让学生感受他们的区别。 同时引出课题——圆的面积。 2、推导圆面积的计算公式。 (1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢? (2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化? (3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。 ①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好? ②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点? ③当圆转化成近似长方形时,你们发现它们之间有什么联系? 课件演示:

2.8 圆的面积计算公式的应用

2.8 圆的面积计算公式的应用 1.我会填。 (1)半径是9cm的半圆,它的周长是( )cm,面积是( )cm2。 (2)一个圆形花坛的周长是18.84m,它的半径是( )m,这个花坛占地面积是( )m2。 2.判断。(对的画“√”,错的画“X”) (1)2πr和πr2所表示的意思相同。( ) (2)周长相等的两个圆,面积也相等。( ) (3)圆的面积比半径的平方的3倍多一些。( ) (4)圆规两脚尖间的距离是1厘米,画出的圆的面积和周长相等。( ); 3.填表。 半径(cm) 直径(cm) 周长(cm) 面积(cm/) 5 6 6.28 4. 5.在一个周长是80厘米的正方形木板上,锯下一个最大的圆,这个圆的面积是多少平方厘米? 6.一个底面是圆形的蒙古包,量得它的底面周长是25.12米,它的占地面积是多少平方米? 7.小明量得一棵树干的周长是1.256米,这棵树干的横截面面积是多少平方米? 8.用两根长度都是62.8cm的铜丝,分别围出一个圆和一个正方形,计算出它们的面积。

答案提示: 1.(1)46.26 127.17 (2)3 28.26 2.(1) ×(2)√(3)√(4) × 3.10 31.4 78.5;3 18.84 28.26;l 2 3.14 4.(1)3.14×[(10÷2) 2一(6÷2)2]=50.24(cm 2) (2)3.14×(8÷2) 2一8×8÷2=18.24(cm 2) 5.80÷4÷2=10(厘米) 3.14×10 2=314(平方厘米) 6.25.12÷3.14÷2=4(米) 3.14×4 2=50.24(平方米) 7.1.256÷3.14÷2=0.2(米) 3.14×0.22=0.1256(平方米) 8.圆:62.8÷3.14÷2=10(cm) 3.14×102=314(cm2) 正方形:62.8÷4=15.7(cm) 15.7×15.7=246.49(cm 2)

圆的面积计算练习题

一、填空 1.一个圆形桌面的直径是 2米,它的面积是()平方米。 2.已知圆的周长,求d=(),求r=()。 3.圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。 4.环形面积S=()。 5.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。 6.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。 7.圆的半径增加,圆的周长增加(),圆的面积增加()。 8.一个半圆的周长是分米,这个半圆的面积是()平方分米。 9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长长10厘米,这个长方形的面积是()平方厘米。 10.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。 11.大圆半径是小圆半径的3倍,大圆面积是平方厘米,则小圆面积为()平方厘米。 12.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是 ()平方厘米。 13.鼓楼中心岛是半径 10米的圆,它的占地面积是()平方米。 14.小华量得一根树干的周长是75.36厘米,这根树干的横截面大约是()平方厘米15.一只羊栓在一块草地中央的树桩上,树桩到羊颈的绳长是 3米。这只羊可以吃到()平方米地面的草。 16.一根 2米长的铁丝,围成一个半径是30厘米的圆,(接头处不计),还多()米,围成的面积是() 17.用一根 10.28米的绳子,围成一个半圆形,这个半圆的半径是(),面积是()

圆的面积公式应用

六年级《圆的面积》教学设计 刘集镇中心小学:李志 【设计理念】 《新课程标准》指出数学课堂老师应想法设法激发学生的学习积极性,为学生充分提供从事数学活动的机会,帮助学生在自主探索与合作交流的过程中,掌握和理解基本的数学知识和技能、数学思想和方法,获得广泛的数学活动和经验。本节课我力求以学生的知识经验为基础,让学生自己动手操作,在充分探索的过程中感悟出圆的面积公式,从而培养学生的逻辑推理能力、动手操作能力及小组协作能力。 【教学背景】 在教学本课内容以前,学生们会求直线围成的平面图形的面积,而对于圆这个曲边图形却是初次接触,虽然前面已学过平面图形面积运用过转化思想,如将平行四边形转化成长方形,将三角形转化成平行四边形等。而圆的面积对于学生来说运用转化的思想倒很容易想到,但由于是曲边图形的问题使得学生不知该如何转化成他们所熟悉的直线图形成为了本课的难点。 为了真正从学生已有的知识和经验出发,发现学生学习的困难,先进行课前了解,掌握实情,找出对学生学习新课造成困难的障碍,对已学过而遗忘的知识要及时进行巩固温习。 【数学思想】 本课数学的核心思想虽然用的是“转化”的方法,但最重要的是“以直代曲”的思想。 【教学方式】 本课采取的教学方式主要有创设情境、动手操作、小组合作、引导归纳、总结。 【教学手段】 实物演示、电脑课件。 【教学内容】九年制义务教育(人教科标版)六年级数学上册第67-68页《圆的面积》。【教学目标】 知识与技能:理解圆的面积的意义,掌握圆面积的计算公式推导过程,能正确计算圆的面积。过程与方法:培养学生运用已学知识解决新问题的能力,进一步体会“转化”的思想方法,感悟极限、转化、以直代曲等数学思想方法。 情感态度价值观:培养学生善于思考勤于动脑的思想品质,体会学习数学的乐趣,树立学好数学的信心。 【教学重点】圆的面积计算公式的推导,能熟练地应用公式解决实际问题。 【教学难点】理解圆的面积公式的推导过程,理解极限思想(化曲为直)。 【教学过程】 一、创设情境,理解圆的面积。 1、回忆:什么平面图形的面积? 2、课件出示:长方形、正方形、平行四边形、三角形、梯形、圆形的图片。说说这些图形的面积计算公式。 3、引出质疑:那圆的面积是什么呢? 请同学们摸一摸自己准备的圆形纸片的面积,用自己的话说说什么是圆的面积。 出示结语:圆所占平面的大小叫做圆的面积。 4、揭示课题:这节课我们一起来研究怎样计算圆的面积。 (板书课题:圆的面积) 二、动手操作,探究面积公式。 1.明确研究问题。 (1)明确策略

园的面积公式一

一、复习旧知,导入新课 1、还记得这些平面图形的面积计算公式吗? 2、平行四边形的面积公式推导过程还记得吗? 我们是通过剪拼的方法把它转化成长方形的。 小结:把圆转化成哪一个我们学过的平面图形,从而得到它的面积公式,这是今天我们要学习的内容。板书:圆的面积 【设计意图】在复习引导中让学生回想一下什么叫面积,理解平面图形的面积,然后让学生回忆长方形的面积是怎样计算的,为学习圆的面积公式作铺垫,同时回忆平行四边形、三角形和梯形等图形的面积计算公式的推导过程。通过直观的演示,激发学生积极主动地学习。引导学生复习长方形的面积计算公式,渗透了要求圆的面积也需从转化的思想放手。 二、教学实施 (一)、定义: 1、请你摸一摸哪里是圆的面积? 2、师:圆所占平面的大小就是圆的面积。 (二)、渗透极限思想: 师:圆与以前我们研究的平面图形有什么不同? 不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。 师:如何化曲为直呢? 引导学生操作: 师:(拿出一个圆片)我们怎么剪?圆的大小是由什么决定的?(直径、半径) 生:(圆的大小由直径或半径决定。)沿直径或半径剪。 师剪第一刀,再问:第二刀怎么剪? 师:我们要把圆通过剪成多份并用拼的方法转化成学过的规则图形,为了计算上的方便,我们把圆平均分成多份。 将一个圆分别平均分成2份、4分、8分、16份,分别罗列排好。请学生观察四组图。 师:随着等分份数的不断增加,你有什么发现吗? A:随着等分份数的不断增加,曲线越来越直。 B:随着等分份数的不断增加,每一小份越来越接近三角形。 【设计意图】让学生经历圆面积公式的推导过程,理解和掌握圆面积的计算公式是本节课的重点;由于圆与以前学习的直线图形性质有很大不同,对“曲线图形”转化为直线图形学生是第一次接触,对学生已有知识和经验都是一种挑战,因此,“化圆为方”的转化方法和极限思想的感受是本节课的难点。 (三)拼摆推导面积公式。 1、拼摆 师:把圆转化成什么图形?我们来试一试。 学生操作,演示学生的作品。 师:转化后的图形面积与圆的面积有什么关系?面积不变。 课件出示:把圆等分成不同等份时的图形的趋势。 2、推导面积公式

圆的面积公式03

《圆的面积》教学设计 正定回民小学吴彦霞 教材分析: 本课是学生学习了其它平面图形的面积后教学的,是小学平面几何的最后阶段,教材通过直观的组合图形面积的计算,让学生操作、观察、比较推导出圆的面积计算公式来解决生活中的实际问题。 学情分析: 学生已经掌握长方形、正方形、三角形、梯形的面积计算公式,并有了将一个图形转化成另一个面积相等的图形的转化思想,在此基础上将圆转化成长方形学生是乐于接受的。 教学目标: 知识与技能: 让学生经历操作、观察、讨论、归纳等数学活动的过程,探索并掌握圆的面积计算公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。 过程与方法: 让学生进一步体会“转化”的数学思想方法,感情极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思维。 情感态度价值观: 让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。 教学重点:让学生经历圆面积公式的推导过程,理解和掌握圆面积的计算

公式。 教学难点:“化圆为方”的转化方法和极限思想的感受。 教学准备:平均分成16份的学具、课件。 教学策略: 1、本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。 2、教学本课时,重点引导学生参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动。 教学过程: 一、复习导入,激发探索欲望 1.复习圆的周长计算方方法,圆周长的一半计算方法。 2.复习圆的面积,学生自己总结圆的面积是什么? 3.复习已学的平面图形的计算方法。 4.我们先来回忆一下平行四边形的面积计算公式是怎样推导出来? 我们遇到没学过的图形可以转化成学过的图形来计算,那能否把圆也转化成学过的图形来计算呢? 【设计意图:复习铺垫,让学生能很快联系所学过的知识,很快就能进入新课的学习。】 二、新课探究

圆的面积计算公式的推导(吴琼)

九年义务教育第十一册第94页 圆的面积计算公式的推导 江油市世纪奥桥小学吴琼 设计意图: 拓展学生的思路,培养学生的创新能力,多角度来推导圆的面积计算公式。教学目标: (一)知识与技能 1.知道圆面积的含义。 2.理解和掌握圆面积的计算公式。 (二)过程与方法 1. 通过公式推导培养操作、观察、比较、分析、判断、推理、归纳概括能力,发展空间观念。 2.培养学生迁移类推能力。 (三)情感态度价值观 1.通过对圆面积公式的推导,认识到事物在一定条件下可以互相转化,渗透转化和极限的思想和方法。 2.运用转化思考方法解决实际问题, 探究过程: 1.回忆学过的图形面积公式的推导过程。 2.推导圆面积的计算公式。 (1)教师指导转化。

将已分成16等份的圆用剪刀把每一份剪开,用这些近似等腰三角形的小纸片依次横着拼起来,并用固体胶粘在纸上,看能拼成什么图形? (2)学生动手操作。 按照老师的示范,请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。) 谁能向大家汇报一下,你把圆拼成了一个什么图形?(生答:拼成了一个近似的平行四边形。请把你拼好的图形放在实物投影上展示给大家看。) (3)课件演示过程。 把圆分成16等份,这些小纸片可以拼成一个近似的平行四边形;把圆分成32等份,可以拼成一个近似的长方形;如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。) (4)推导面积公式。 拼成的长方形与圆有什么联系?同位讨论。 学生汇报讨论结果。生答师继续演示课件。 生:拼成的长方形的面积与圆的面积相等。 师:这个长方形的长和宽与圆的周长和半径有什么关系? 生:长方形的长相当于圆周长的一半,宽相当于半径。 因为长方形的面积=长×宽 所以圆的面积=周长的一半×半径 S=πr×r S=πr2 [设计意图:动手操作是学生学习数学的重要方式,让学生经历公式的推导过程,

圆的面积(23)

《圆的面积》教学设计 【教学内容】 义务教育课程标准实验教科书第十一册P69~71例1、例2。 【教学目标】 1、认知目标 使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。 2、过程与方法目标 经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。 3、情感目标 引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强 学生的合作交流意识和能力,培养学生学习数学的兴趣。 【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。 【教学难点】:理解圆的面积计算公式的推导。 【教学准备】:相应课件;圆的面积演示教具 【教学过程】 一、情境导入 出示场景?——《马儿的困惑》 师:同学们,你们知道马儿吃草的大小是一个什么图形呀? 生:是一个圆形。 师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢? 生:圆的面积。 师:今天我们就一起来学习圆的面积。(板书课题:圆的面积) [设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。] 二、探究合作,推导圆面积公式 1、渗透“转化”的数学思想和方法。 师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗? 我们先来回忆一下平行四边形的面积是怎样推导出来? 生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。 生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。 师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别

第5课时--圆的面积公式应用——已知周长求面积圆的面积公式应用——已知周长求面积

圆的面积公式应用——已知周长求面积教学目标: 1.在解决问题的过程中,进一步巩固圆的面积公式。 2.结合具体事例,能灵活运用所学公式解决生活中的问题。 3.感受数学与生活的密切联系,培养学生综合运用知识的能力。。 教学重点: 正确并灵活的运用公式进行计算。 教学难点: 正确并灵活的运用公式解决生活中的问题 教学过程: 一、复习旧知,导入新课 前面我们学习了圆、圆的周长、圆的面积,如果圆的半径用r表示,周长怎样表示?(2πr)面积怎样表示?(πr2),这节课我们继续学习圆的面积,研究如何用圆的公式解决实际问题。 二、引导探究,解决问题 1.探究教材第52页“蒙古包占地”问题。 (1)多媒体出示问题。 一个底面是圆形的蒙古包,沿地面量得周长是25.12米。它的占地面积是多少平方米?

(2)探究。 学生根据以前的经验可知:要先利用圆的周长公式求出蒙古包的半径或直径,才能计算占地面积。 师:我们在算蒙古包半径时用算术法和方程法都可以,哪种更简单? 生:列方程解,思路统一,便于理解。 师:请同学们在练习本上把过程写完整! 指名学生板演。 2.探究教材第52页“选台布”问题。 圆桌面的直径是120厘米。 (1)多媒体出示三块不同规格的台布: 110cm×110cm;120cm×120cm;140cm×140cm (2)合作探究。(教师需引导学生知道"110cm×110cm"等表示的意义) 120)2=11304(平方厘米) 生1:因为桌面面积:3.14×( 2 边长是110厘米的台布面积:110×110=12100(平方厘米) 12100>11304 所以边长是110厘米的台布能用,因为它的面积比圆桌面的面积大。 生2:边长是110厘米的台布不能用,边长是110厘米的台布最大只能遮盖直径是110厘米的圆桌面。 (教师引导学生知道,只比较面积的大小不行,还要看台布能不能盖全圆桌) 通过学生比较第2种和第3种台布,使学生知道边长是140厘米的台布不但比圆桌面的面积大,而且铺在上面周围都能垂下一部分,这样比较美观,台布不容易被掀起,所以选择边长是140厘米的台布更合适些。

圆的面积计算练习题(1)

圆的面积计算练习题 一、填空 1?一个圆形桌面的直径是2米,它的面积是()平方米。 2. 已知圆的周长,求d=(),求r=()。 3. 圆的半径扩大2倍,直径就扩大( )倍,周长就扩大()倍,面积就扩大( ) 倍。 4. 环形面积S=()。 5?用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这 个圆的面积是()平方厘米。 6?大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。 7.圆的半径增加-,圆的周长增加(),圆的面积增加()。 8?—个半圆的周长是20.56分米,这个半圆的面积是()平方分米。 9?将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长长10厘米,这个长方形的面积是()平方厘米。 10. 在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。 11. 大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为()平方厘米。 12. 大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是 平方厘米。 13. 鼓楼中心岛是半径10米的圆,它的占地面积是()平方米。 14. 小华量得一根树干的周长是75.36厘米,这根树干的横截面大约是()平方厘米 15. 一只羊栓在一块草地中央的树桩上, 树桩到羊颈的绳长是3米。这只羊可以吃到( ) 平方米地面的草。 16. 一根2米长的铁丝,围成一个半径是30厘米

的圆,(接头处不计),还多()米, 围成的面积是() 17. 用一根10.28米的绳子,围成一个半圆形,这个半圆的半径是(),面积是( ) 18. 从一个长8分米,宽5分米的长方形木板上锯下一个最大的圆,这个圆的面积是 () 19. 大圆的半径等于小圆的直径,大圆的面积是小圆面积的() 20. 一个圆的周长扩大3倍,面积就扩大()倍。

圆的面积公式

长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC

=[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长 α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a+b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3

冀教版-数学-六年级上册-《圆的面积公式应用——已知周长求面积》备课教案

圆的面积公式应用——已知周长求面积 教学目标: 1.在解决问题的过程中,进一步巩固圆的面积公式。 2.结合具体事例,能灵活运用所学公式解决生活中的问题。 3.感受数学与生活的密切联系,培养学生综合运用知识的能力。。 教学重点: 正确并灵活的运用公式进行计算。 教学难点: 正确并灵活的运用公式解决生活中的问题 教学过程: 一、复习旧知,导入新课 前面我们学习了圆、圆的周长、圆的面积,如果圆的半径用r表示,周长怎样表示?(2πr)面积怎样表示?(πr2),这节课我们继续学习圆的面积,研究如何用圆的公式解决实际问题。 二、引导探究,解决问题 1.探究教材第52页“蒙古包占地”问题。 (1)多媒体出示问题。 一个底面是圆形的蒙古包,沿地面量得周长是25.12米。它的占地面积是多少平方米? (2)探究。 学生根据以前的经验可知:要先利用圆的周长公式求出蒙古包的半径或直径,才能计算占地面积。 师:我们在算蒙古包半径时用算术法和方程法都可以,哪种更简单? 生:列方程解,思路统一,便于理解。

师:请同学们在练习本上把过程写完整! 指名学生板演。 2.探究教材第52页“选台布”问题。 圆桌面的直径是120厘米。 (1)多媒体出示三块不同规格的台布: 110cm×110cm;120cm×120cm;140cm×140cm (2)合作探究。(教师需引导学生知道"110cm×110cm"等表示的意义) 生1:因为桌面面积:3.14×(2120 )2=11304(平方厘米) 边长是110厘米的台布面积:110×110=12100(平方厘米) 12100>11304 所以边长是110厘米的台布能用,因为它的面积比圆桌面的面积大。 生2:边长是110厘米的台布不能用,边长是110厘米的台布最大只能遮盖直径是110厘米的圆桌面。 (教师引导学生知道,只比较面积的大小不行,还要看台布能不能盖全圆桌) 通过学生比较第2种和第3种台布,使学生知道边长是140厘米的台布不但比圆桌面的面积大,而且铺在上面周围都能垂下一部分,这样比较美观,台布不容易被掀起,所以选择边长是140厘米的台布更合适些。 三、联系实际,巩固提高 练一练第53页第1、2、3题。 四、全课总结,畅谈收获 通过今天的学习,谈谈大家的收获。

六年级数学圆的面积与周长练习题

六年级数学圆的面积与 周长练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

圆的练习题 一、选择题 1、圆周率π的值()。 A 等于 B 大于 C 小于 2、一个圆的半径2米,那么它的周长和面积相比,()。 A 面积大 B 周长大 C 同样大 D 无法比较 3、把一张圆形纸片沿半径平均分成若干份,拼成一个近似长方形,其周长()。 A 等于圆周长 B 大于圆周长 C 小于圆周长 D 无法比较 4、圆的直径扩大2倍,它的面积扩大()。 A 2倍 B 4倍 C 6倍 D 无法确定 5、圆中最长的线段是圆的()。 A 周长 B 直径 C 半径 D 无法确定 6、周长相等的两个圆的面积()。 A 相等 B 不相等 C 无法比较 7、一个正方形和一个圆的周长相等,它们的面积相比()。 A 正方形大 B 圆大 C 相等 D 无法比较 8、画圆时,()决定圆的位置,()决定圆的大小。 A 圆规 B 半径 C 圆心 D 无法确定 9、周长相等的长方形、正方形和圆,()面积最大。 A 长方形 B 正方形 C 圆 D 无法确定 10、小圆半径4厘米,大圆半径6厘米,大、小圆直径的比是(); 大、小圆周长的比是();大、小圆面积的比是()。 A 2:3 B 3:2 C 4:9 D 9:4 11、一个圆的半径扩大a倍,直径扩大()倍,周长扩大()倍,面积扩大()倍。

A 2 B a C 2a D ∏ E 2∏ F a2 15、圆的大小与下面哪个条件无关。() A 半径 B 直径 C 周长 D 圆心的位置 16、下面的图形只有两条对称轴的是() A 长方形 B 正方形 C 等边三角形 D 圆 17、在一个长5厘米、宽3厘米的长方形中画一个最大的圆,它的半径是()。 A 5厘米 B 3厘米 C 厘米 D 厘米 18、一个直径1厘米的圆与一个边长1厘米的正方形相比,它们的面积()。 A 圆的面积大 B 正方形的面积大 C 一样大 D 无法比较 二、判断题: 1、圆的半径有无数条。…………………………………………………………() 2、圆的直径是半径的2倍。……………………………………………………() 3、圆有无数条对称轴。………………………………………………………() 4、圆的半径都相等。…………………………………………………………() 5、直径4厘米的圆与半径2厘米的圆一样大。………………………………() 6、半径2分米的圆的周长和面积一样大。…………………………………() 7、直径总比半径长。............................................. () 8、圆心决定圆的位置,半径决定圆的大小。 ........................ () 9、一个圆的面积和一个正方形的面积相等,它们的周长也一定相等. ..... () 10、半圆的周长就是这个圆周长的一半。……………………………………() 11、两端都在圆上的线段,直径是最长的一条。....................... () 12、圆的周长是这个圆的直径的倍。............................ () 13、小圆的圆周率比大圆的圆周率小。............................... ( ) 14、圆的半径扩大3倍,它的直径就扩大6倍。....................... ( ) 15、圆周率等于。…………………………………………………………() 16、半径2厘米的圆,它的周长是厘米。……………………………()

圆的面积计算公式

《圆的面积计算公式》课堂实录 教学目标: 知识与技能:掌握圆的面积计算公式,并能正确计算圆的面积。 过程与方法:在合作交流、动手操作中提高同学们推理归纳能力, 发展空间观念。 情感态度与价值观:在学习新知中体验数学与生活的联系,提高 学习数学的兴趣。 教学重点、难点:圆的面积计算公式的推导。 教学准备:多媒体课件、正方形纸片、正六边形纸片、剪刀。 教学过程: 一、体验“圆出于方” 师:今天老师给大家带来几个平面图形,看大家认不认识(课件依次展示正方形、正六边形、正十二边形、正二十四边形……,当课件展示到正二十四边形时同学们都回答是圆, 这时教师把正二十四边形放大,让同学们观察到它确实是一个 多边形,再依次展示其它正多边形。大家不难发现正多边形的 边数越多它就越接近圆形。) 师:如果正多边形有无数条边,它就变成了一个什么图形 生:圆。 师:(课件出示圆形)其实圆形就是一个有无数条边的正多边形,也就是我们常说的“圆出于方”。大家想一下我们都了解过圆的哪些知识

生:周长、半径、直径…… 师:有哪位同学能说一下圆周长的计算公式: 生:C=2πr、C=πd. 师:很正确,我们了解了圆的这么多知识,大家还想研究一下圆的哪些知识 生:圆的面积。 师:你知识什么是圆的面积吗 生:圆所占平面的大小叫圆的面积。 师:你回答的可真不错,下面我们就一起来研究一下圆的面积。(通过本环节,让同学们感受圆出于方的变化过程、复习圆周长的计算公式、认识圆的面积,都为下面圆的面积公式的推导做好准备。)二、动手操作、合作探究圆的面积计算公式。 1.推导正方形的面积计算公式。 师:刚才我们已经知道圆就是一个有无数条边的正多边形,我们研究圆的面积就从最简单的正多边形开始研究。(课件出示正方形)拿出学具袋中的正方形,要求它的面积需要知道什么 生:边长。 师:下面我们小组合作,抛开以前求正方形面积的方法,利用我们学过的知识和学具袋中的工具看看能不能再探究出一种求正方形面积的方法。 (小组合作时教师可适当引导,最后汇报总结。)

六年级圆的面积和周长练习

六年级圆的面积周长练习题 班次姓名 填空题: 1、圆是平面上的一种()图形,围成圆的()的长叫做圆的周长。在大大小小的圆中,它们的周长总是各自圆直径的()倍多一些,我们把这个固定的数叫做(),用字母()表示,它是一个()小数,在()和()之间,在计算时,一般只取它的近似值()。 2、一个圆的直径扩大2倍,它的半径扩大()倍,它的周长扩大()倍。 3、两个圆的半径的比是2:3,它们直径的比是(),周长的比是()。 4、一个圆形花坛的半径2.25米,直径是()米,周长()米。 5、一个圆的直径扩大4倍,半径扩大()倍,周长扩大()倍。 6、画一个周长12.56厘米的圆,圆规两脚间的距离是()厘米。 7、在一张长6厘米,宽4厘米的长方形纸片上画一个最大的圆,这个圆的半径是()厘米;如果画一个最大的半圆,这个圆的半径是()厘米。 8、()叫做圆的面积。把圆沿着它的半径r分成若干等份,剪开后可以拼成一个近似的(),这个图形的长相当于圆周长的(),用字母表示是();宽相当于圆的(),用字母表示是()。所以圆的面积S=( )×( ) =( )。 9、一个圆的半径2厘米,它的周长是();面积是()。 10、一个圆的直径6米,半径(),周长(),面积()。 11、在长6分米,宽4分米的长方形中画一个最大的圆,圆的面积()。 12、两个圆周长的比是2:3,直径的比是();半径的比是();面积的比是()。 13、用12.56米的铁丝围成一个正方形,正方形面积是(),如果把它围成一个圆,圆的面积是()。 14、圆的半径扩大5倍,直径扩大()倍;周长扩大()倍;面积扩大()倍。 15、小圆半径2厘米,大圆半径6厘米,小于半径是大圆半径的(),小于直径是大圆直径的(),小于周长是大圆周长的(),小于面积是大圆面积的(), 16、用圆规画一个周长50.24厘米的圆,圆规两脚之间的距离是()厘米,所画的圆的面积是()平方厘米。 17、圆的半径扩大3倍,直径扩大()倍,周长扩大()倍;面积扩大()倍。 18、一根铁丝正好围成一个直径2米的圆,这根铁丝长()米;如果改围成一个正方形,正方形的边长是()米,面积是()平方米。 19、小圆半径6厘米,大圆半径8厘米。大圆和小圆半径的比是();直径的比是();周长的比是();面积的比是()。 20、用一根长4米的绳子画一个最大的圆,这个圆的半径()米,周长()米,面积()平方米。 判断题:1、圆的半径有无数条。…………………………………………………………() 2、圆的直径是半径的2倍。……………………………………………………() 3、圆有无数条对称轴。………………………………………………………() 4、圆的半径都相等。…………………………………………………………() 5、直径4厘米的圆与半径2厘米的圆一样大。………………………………() 6、半径2分米的圆的周长和面积一样大。…………………………………() 7、直径总比半径长。.............................................() 8、圆心决定圆的位置,半径决定圆的大小。 ........................() 9、一个圆的面积和一个正方形的面积相等,它们的周长也一定相等. .....() 10、半圆的周长就是这个圆周长的一半。……………………………………() 11、两端都在圆上的线段,直径是最长的一条。.......................() 12、圆的周长是这个圆的直径的3.14倍。............................() 13、小圆的圆周率比大圆的圆周率小。...............................( ) 14、把一张圆形纸片对折若干次,所有折痕相交于圆心。...............( ) 15、圆的半径扩大3倍,它的直径就扩大6倍。.......................( ) 16、圆周率等于3.14。…………………………………………………………() 17、半径2厘米的圆,它的周长是6.28厘米。……………………………() 18、圆的直径都相等。…………………………………………………………() 19、经过一点可以画无数个圆。………………………………………………() 20、直径4厘米的圆的周长和面积一样大。…………………………………()列式计算: 1、小红沿直径6.4米的圆形花圃边走一周,需要走多少米? 2、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米? 3、在一块半径20米的圆形花坛周围围一圈篱笆。篱笆长多少米?

小学一年级数学圆的面积

圆的面积 一年级数学教案 设计:教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课。 教学目的:1通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。 2能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。 教学重点:理解和掌握圆面积的计算公式的推导过程 教学难点:圆面积计算公式的推导 教学过程: ●一、创设情境,提出问题 (课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题) 生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少? ●二、引导探究,构建模型 A:启发猜想

师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)B:分组实验,发现模型 学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积? 请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。 三、应用知识,拓展思维 1师:要求圆的面积必须知道什么? 2 运用公式计算面积 A完成羊吃草的面积 B完成课后"做一做" C一个圆的直径是10厘米,它的面积是多少平方厘米? D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单) 测量物直径(厘米)半径(厘米)面积(平方厘米) 3应用知识解决身边的实际问题(知识应用)

在圆的面积公式S

(1) 在圆的面积公式S=πr 2中,常量是----------,变量是---------。 (2) 某村的耕地面积是108m 2,这个村人均占有耕地面积ym 2随这个村的人数x 人和变 化而变化,其中常量是--------,变量是----------。 (3) 下列变量之间的系中,是函数关系的是( ) A.人的体重与年龄 B,正方形的周长与边长 C.长方形的面积与长 D.y=±x 中,y 与x (4)李教师讲完“变量与函数”这节知识后,让同学们说出实际生活中有函 数关系的 实例,并指出其中的常量与变量,自变量及函数。 甲生说:“如果设路程为s (千米),速度为v (千米/时),时间为t (时),当路程s 为 一定值时,s 为常量,v,t 为变量,v,是自变量,t 是v 的函数。” 乙生说:“甲生所举实例中,t 是自变量,v 是t 的函数。” 丙生说:“四生所举实例中,当v 为一定值量,v 为常量,s ,t 是变量,t 为自变量,s 是t 的函数。” 你认为哪位同学的说法正确?( ) (5)函数1 1+x 中,自变量x 的取值范围是( ) (6)函数y= 2-x 中,自变量x 的取傎范围是( ) (7)函数y=31 -x 中,自变量x 的取傎范围是( ) (8) 函数y=2x 2-3x-1中,自变量x 的取傎范围是( ) (9)如图,等腰△ABC 的周长为10,腰长为x ,底边长为y ,则y 与x 的函数关系 式及自变量的取值范围是? A A.y=10-2x(x>0) B.y=10-2x(0

(完整)六年级数学圆的面积与周长练习题

圆的练习题 一、选择题 1、圆周率π的值()。 A 等于3.14 B 大于3.14 C 小于3.14 2、一个圆的半径2米,那么它的周长和面积相比,()。 A 面积大 B 周长大 C 同样大 D 无法比较 3、把一张圆形纸片沿半径平均分成若干份,拼成一个近似长方形,其周长()。 A 等于圆周长 B 大于圆周长 C 小于圆周长 D 无法比较 4、圆的直径扩大2倍,它的面积扩大()。 A 2倍 B 4倍 C 6倍 D 无法确定 5、圆中最长的线段是圆的()。 A 周长 B 直径 C 半径 D 无法确定 6、周长相等的两个圆的面积()。 A 相等 B 不相等 C 无法比较 7、一个正方形和一个圆的周长相等,它们的面积相比()。 A 正方形大 B 圆大 C 相等 D 无法比较 8、画圆时,()决定圆的位置,()决定圆的大小。 A 圆规 B 半径 C 圆心 D 无法确定 9、周长相等的长方形、正方形和圆,()面积最大。 A 长方形 B 正方形 C 圆 D 无法确定 10、小圆半径4厘米,大圆半径6厘米,大、小圆直径的比是(); 大、小圆周长的比是();大、小圆面积的比是()。 A 2:3 B 3:2 C 4:9 D 9:4 11、一个圆的半径扩大a倍,直径扩大()倍,周长扩大()倍,面积扩大()倍。 A 2 B a C 2a D ∏ E 2∏ F a2 15、圆的大小与下面哪个条件无关。() A 半径 B 直径 C 周长 D 圆心的位置 16、下面的图形只有两条对称轴的是() A 长方形 B 正方形 C 等边三角形 D 圆 17、在一个长5厘米、宽3厘米的长方形中画一个最大的圆,它的半径是()。 A 5厘米 B 3厘米 C 2.5厘米 D 1.5厘米 18、一个直径1厘米的圆与一个边长1厘米的正方形相比,它们的面积()。 A 圆的面积大 B 正方形的面积大 C 一样大 D 无法比较 二、判断题: 1、圆的半径有无数条。…………………………………………………………() 2、圆的直径是半径的2倍。……………………………………………………() 3、圆有无数条对称轴。………………………………………………………() 4、圆的半径都相等。…………………………………………………………() 5、直径4厘米的圆与半径2厘米的圆一样大。………………………………() 6、半径2分米的圆的周长和面积一样大。…………………………………() 7、直径总比半径长。............................................. () 8、圆心决定圆的位置,半径决定圆的大小。 ........................ () 9、一个圆的面积和一个正方形的面积相等,它们的周长也一定相等. ..... () 10、半圆的周长就是这个圆周长的一半。……………………………………() 11、两端都在圆上的线段,直径是最长的一条。....................... () 12、圆的周长是这个圆的直径的3.14倍。............................ ()

相关文档
最新文档