光电效应以及普朗克常数的测量

光电效应以及普朗克常数的测量
光电效应以及普朗克常数的测量

实验二十九 光电效应及普朗克常数的测量

光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ??=-3410626069.6,它可以用光电效应法简单而又较准确地求出。

1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。 一、实验目的

1. 了解光电效应的规律,加深对光的量子性的理解。 2. 测量普朗克常数h 。

二、实验仪器

仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大

器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。

汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm

光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应范围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V )

图1 仪器结构示意图

1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈;

6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源

光电管电源:2档,-2~0V ,-2~+30V ,三位半数显,稳定度≤0.1%

微电流放大器:6档,10-8~10-13A ,分辨率10-13A ,三位半数显,稳定度≤0.2%。

三、实验原理

1、 光电效应

爱因斯坦认为光在传播时其能量是量子化的,其能量的量子称为光子,每个光子的能量正比于其频率,比例系数为普朗克常量,即E=h ν,当光子照射到金属表面上时,一次为金属中的电子全部吸收,而无需积累能量的时间。电子把这能量的一部分用来克服金属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程:

A m h +=

2

02

1υν (1) 式中,A 为金属的逸出功,

2

02

1υm 为光电子获得的初始动能,0υ为最大速度,m 为光电子的质量,ν为光的频率,h 为普朗克常数。

光电效应的实验原理如图3所示。入射光照射到光电管阴极K 上,产生的光电子在电场的作用下向阳极A 迁移构成光电流,改变外加电压U AK ,测量出光电流I 的大小,即可得出光电管的伏安特性曲线。

ν1 ν2

ν0

ν

图3 实验原理图

图4

同一频率,不同光强时光电管的伏安特性曲线

图5

不同频率时光电管的伏安特性曲线

图6

截止电压U 0与入射光频率ν的关系图

图2 测试仪面板图

光电效应的基本实验原理如下:

(1)对于某一频率,光电效应的I-U AK 关系如图4所示。从图中可见,对一定的频率,有一电压U 0,当U AK ≤U 0时,电流为零,也就是这个负电压产生的电势能完全抵消了由于吸收光子而从金属表面逸出的电子的动能。这个相对于阴极的负值的阳极电压U 0,被称为截止电压。

(2)当U AK ≥U 0 后,电势能不足以抵消逸出电子的动能,从而组件产生电流I 。I 迅速增加,然后趋于饱和,饱和光电流I M 的大小与入射光的强度P 成正比。

(3)对于不同频率的光,由于它们的光子能量不同,赋予逸出电子的动能不同。显然,频率越高的光子,其产生逸出电子的能量也越高,所以截止电压的值也越高,如图5所示。 (4)作截止电压U 0与频率ν 的关系图如图6所示。U 0与ν 成正比关系。显然,当入射光频率低于某极限值ν0(ν0随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。

(5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于ν0,在开始照

射后立即有光电子产生,所经过的时间至多为10-

9秒的数量级。

说明:实际中,反向电流并不为零。图4、图5中从零开始,是因为反向电流极小,仅为10-13~10-14数量级,所以在坐标上反映不出来。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零,此时有关系:

2001

2

eU m υ=

(2) 阳极电位高于截止电压后,随着阳极电位的升高,阳极对阴极发射的电子的收集作用越强,光电流随之上升;当阳极电压高到一定程度,已把阴极发射的光电子几乎全收集到阳极,再增加U AK 时I 不再变化,光电流出现饱和,饱和光电流I M 的大小与入射光的强度P 成正比。

光子的能量h ν0

将(2)式代入(1)式可得:

0eU h A ν=- (3)

此式表明截止电压U 0是频率ν的线性函数,直线斜率k =h /e ,只要用实验方法得出不同的频率对应的截止电压,求出直线斜率,就可算出普朗克常数h 。

爱因斯坦的光量子理论成功地解释了光电效应规律。 2、影响准确测量截止电压的因素

测量普朗克参数h 的关键是正确的测出截止电压U 0,但实际上由于光电管制作工艺等原因,给准确测定截止电压带来了一定的困难。暗电流、本底电流和反向电流是对测量产生影响的主要因素。

(1)在无光照时,也会产生电流,称之为暗电流。它是由阴极在常温下的热电子发射形成的热电流和封闭在暗盒里的光电管在外加电压下因管子阴极和阳极间绝缘电阻漏电而产生的漏电流两部分组成。

(2)本底电流是周围杂散光进入光电管所致。

(3)反向电流是由于制作光电管时阳极上往往溅有阴极材料,所以当光照射到阳极上和杂散光漫射到阳极上时,阳极上往往有光电子发射;此外,阴极发射的光电子也可能被阳极的表面反射。当阳极A 为负电势,阴极K 为正电势时,对阴极K 上发射的光电子而言起减速作用,而对阳极A 发射或反射的光电子而言却起了加速作用,使阳极A 发射岀的光电子也到达阴极K ,形成反向电流。

由于上述原因,实测的光电光伏安特性曲线与理想曲线有区别。

I

暗电流

反向电流

实测曲线

理想曲线

o

U 0U 0

图5 光电流曲线分析

四、实验内容

1.分别测量高压汞灯波长为365.0、404.7、435.8、546.1、546.1nm 的单色光所对应电流小于0时的电压电流约15组对应点。

2.做出每种光所对应电流的伏安特性曲线,确定各自得截止电压,并计算普朗克常量。

五、实验步骤

1、 测试前准备

(1)将测试仪和汞灯电源接通,预热20分钟。

(2)把汞灯盒遮光盖盖上,将光电管暗盒的光阑选择圈调整到任意两个光阑的中间位置,以此遮住光电管。将汞灯暗盒光输出口对准光电管暗盒光输入口,调整光电管与汞灯距离为约40cm并保持不变。

(3)用专用连接线将光电管暗盒电压输入端与测试仪电压输出端(后面板上)连接起来(红—红,蓝—蓝)。

(4)调零:将“电流量程”选择开关置于所选档位,仪器在充分预热后,进行测试前调零。调零时,将“调零/测量”切换开关切换到“调零”档位,旋转“电流调零”旋钮使电流指示为“000.0”。调节好后,将“调零/测量”切换开关切换到“测量”档位。

(4)用高频匹配电缆将光电管暗盒电流输出端K与测试仪微电流输入端(后面板上)连接起来。

注意:在进行每一组实验前,必须按照上面的调零方法进行调零,否则会影响实验精度。

2、测普朗克常数h

(1)将电压选择按键置于-2V~0V档;将“电流量程”选择开关置于10-13A档,将测试仪电流输入电缆断开,调零后重新接上;旋转光阑选择圈的“Φ4”光阑及滤色片选择圈的“365”滤色片到“↓”下方,打开汞灯暗盒遮光盖开始实验。

(2)从低到高调节电压,用“零电流法”或“补偿法”测量该波长对应的U0,并将数据记于错误!未找到引用源。中。

(3)旋转滤色片选择圈,依次换404.7nm,435.8nm,546.1nm,577.0nm的滤色片,重复以上测量步骤。

3、测光电管的伏安特性曲线

将电压选择按键置于-2V—+30V档;选择合适的“电流量程”档位(建议选择10-11A 档);将测试仪电流输入电缆断开,调零后重新接上。旋转光阑选择圈的“Φ2”光阑及滤色片选择圈的“436”滤色片到“↓”下方,打开汞灯暗盒遮光盖开始实验。

a.从低到高调节电压,记录电流从零到非零点所对应的电压值作为第一组数据,以后电压每变化一定值记录一组数据到表中。

旋转光阑选择圈和滤色片选择圈,将“Φ4”光阑及“546”滤色片调到“↓”下方,,重复a测量步骤。

用表数据在坐标纸上作对应于以上两种波长及光强的伏安特性曲线。

4、整理仪器

六、注意事项

1.本实验不必要求暗室环境,但应避免背景光强的剧烈变化。

2.实验过程中注意随时盖上汞灯的遮光盖,严禁让汞灯光不经过滤光片直接入射光电管窗口。

3.实验结束时应盖上光电管暗箱和汞灯的遮光盖!

4.汞灯光源必须充分预热(20分钟以上)。

七、数据记录

表-1 365.0nm I-U AK 关系 孔径: mm 光电管在导轨上位置: cm )(V U AK

7(10)I A μ-?

)(V U AK

7(10)I A μ-?

表-2 404.7nm I-U AK 关系 孔径: mm 光电管在导轨上位置: cm

)(V U AK

7(10)I A μ-?

)(V U AK

7(10)I A μ-?

表-3 435.8nm I-U AK 关系 孔径: mm 光电管在导轨上位置: cm

)(V U AK

7(10)I A μ-?

)(V U AK

7(10)I A μ-?

表-4 546.1nm I-U AK 关系 孔径: mm 光电管在导轨上位置: cm

)(V U AK

7(10)I A μ-?

)(V U AK

7(10)I A μ-?

表-5 577.0nm I-U AK 关系 孔径: mm 光电管在导轨上位置: cm

)(V U AK

7(10)I A μ-?

)(V U AK

7(10)I A μ-?

表-6 U 0-v 关系 波长i λ(nm ) 365.0 404.7 435.8 546.1 577.0

频率i v (1410Hz ) 8.214 7.408 6.879 5.490 5.196

截止电压si U (V )

表 7 I —U AK 关系

L= mm Φ= mm

435.8nm 光阑2mm U AK (V )

I (×10-11A ) 546.1nm

光阑4mm U AK (V )

I (×10-11A )

八、数据处理

由于本仪器的特点,在测量各谱线的截止电压U 0时,可不用难于操作的“拐点法”,而用“零电流法”或“补偿法”。 零电流法是直接将各谱线照射下测得的电流为零时对应的电压U AK 的绝对值作为截止电压U 0。此法的前提是阳极反向电流、暗电流和本底电流都很小,用零电流法测得的截止电压与真实值相差很小。且各谱线的截止电压都相差ΔU 对U 0-ν 曲线的斜率无大的影响,因此对h 的测量不会产生大的影响。

补偿法是调节电压U AK 使电流为零后,保持U AK 不变,遮挡汞灯光源,此时测得的电流I 1为电压接近截止电压时的暗电流和本底电流。重新让汞灯照射光电管,调节电压U AK 使电流值至I 1,将此时对应的电压U AK 的绝对值作为截止电压U 0。此法可补偿暗电流和本底电流对测量结果的影响。

可用以下三种方法之一处理错误!未找到引用源。的实验数据,得出U 0—ν直线的斜率k 。

a.根据线性回归理论,U 0—ν直线的斜率k 的最佳拟合值为:

00

2

2

νννν

U U k ?-?=

-

其中:

∑==n

i i n 1

ν1ν

表示频率ν的平均值 ∑==n i i n 1

2

2

ν1ν

表示频率ν的平方的平均值

∑==n

i i U n U 1

001

表示截止电压U 0的平均值

∑=?=?n

i i i U n U 1

00ν1ν

表示频率ν与截止电压U 0的乘积的平均值

b.根据k =

000m n

νννm n

U U U ?-=?-,可用逐差法从错误!未找到引用源。相邻四组数据中求出两个K ,将其平均值作为所求斜率k 的数值。

c.可用错误!未找到引用源。数据在坐标纸上作U 0—ν直线,由图求出直线斜率k 。 求出直线斜率k 后,可用h =ek 求出普朗克常数,并与h 的公认值h 0比较求出相对误差

o

o h h h -=

E ,式中C e 1910602.1-?=,S J h o ??=-34

10626.6。 附录:光电效应伏安特性曲线的说明

光电效应具有如下的实验事实:

1、 截止电压与频率成线性关系,光子频率越高,截止电压越高。

2、 对同一频率的光,饱和光电流的大小与入射光强成正比,如实验原理中图4所示。

3、 对不同频率的光,饱和光电流的大小取决于入射光强与光电管阴极材料在该频率的光谱灵敏度。饱和光电流大小与频率无直接的必然联系。

对于光电管常用的阴极材料,365-577nm 的光谱灵敏度相差不大,做5条谱线的伏安特性曲线时,哪条谱线位置高,主要取决于该条谱线的入射光强度。

应该说明,实验原理中图5只是用于说明对于不同频率的光,截止电压不同。图5中频率高的光饱和光电流大,只是因为在用于举例的两条条谱线中,频率高的谱线光更强。假如是频率低的光更强,则频率低的光的饱和光电流当然会大于频率高的光的饱和光电流。 在光阑大小一致时,不同波长的光强度由汞灯光源在该波长处的相对强度及该波长滤光片的透过率共同决定。

图 1为光电效应用汞灯谱线典型的相对强度,表 1为滤色片的透过率。

图 1 汞灯谱线的相对强度

表 1 各滤光片的透过率

滤光片365nm 405nm 436nm 546nm 577/579nm

透过率35% 38% 53% 15% 20% 综合考虑汞灯谱线强度和滤色片透过率,光电管接收到的谱线强度依次是365nm,436nm,405nm,546nm,577nm。典型情况下各谱线的高低也依此排序。

需要说明的是,由于汞灯在生产中的差别或使用过程中发生条件改变,同一批次的各只汞灯,或同一只汞灯在使用一段时间后,光谱都可能不一样,可能导致不同频率伏安特性曲线的高低排序发生改变。

不论各条谱线高低如何排序,只要证明饱和光电流大小与光强成正比,就与光电效应的

基本实验事实符合,我们的实验正好证明了这点。

光电效应测普朗克常数-实验报告要点

光电效应测普朗克常数-实验报告要点

综合、设计性实验报告 年级***** 学号********** 姓名**** 时间********** 成绩_________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象, 爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能 量为 式中,为普朗克常数,它的公认值是=6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1) 式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初 速度,为被光线照射的金属材料的逸出功, 2 2 1 mv 为从金属逸出的光电子的

最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 0γγ=时,截止电压00=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的 γ -0U 曲线,并求出此曲线的 斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电 量。

光电效应以与普朗克常数的测量

实验二十九 光电效应及普朗克常数的测量 光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为 s J h ??=-3410626069.6,它可以用光电效应法简单而又较准确地求出。 1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。 一、实验目的 1. 了解光电效应的规律,加深对光的量子性的理解。 2. 测量普朗克常数h 。 二、实验仪器 仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大 器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。 汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm 光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V ) 光电管电源:2档,-2~0V ,-2~+30V ,三位半数显,稳定度≤0.1% 图1 仪器结构示意图 1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈; 6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源

普朗克常数测量的实验

普朗克常数测量的实验 一、实验仪器 GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成) 光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、实验原理 1、普朗克常数的测定 根据爱因斯坦的光电效应方程: P s E hv W =- (1) (其中:P E 是电子的动能,hv 是光子的能量,v 是光的频率,s W 是逸出功, h 是普朗克常量。) s W 是材料本身的属性,所以对于同一种材料s W 是一样的。当光子的能量s hv W <时不能产 生光电子,即存在一个产生光电效应的截止频率0v (0/s v W h =) 实验中:将A 和K 间加上反向电压KA U (A 接负极),它对光电子运动起减速作用.随着反向电压KA U 的增加,到达阳极的光电子的数目相应减少,光电流减小。当KA s U U =时,光电流降为零,此时光电子的初动能全部用于克服反向电场的作用。即 s P eU E = (2) 这时的反向电压叫截止电压。入射光频率不同时,截止电压也不同。将(2)式代入(1)式, 得 0s h U v v e =-() (3) (其中0/s v W h =)式中h e 、都是常量,对同一光电管0v 也是常量,实验中测量不同频率下的s U ,做出s U v -曲线。在(3)式得到满足的条件下,这是一条直线。 若电子电荷e ,由斜率h k e = 可以求出普朗克常数h 。由直线上的截距可以求出溢出功s W ,由直线在v 轴上的截距可以求出截止频率0v 。如图(2)所示。

光电效应以及普朗克常数的测量

实验二十九 光电效应及普朗克常数的测量 光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ??=-3410626069.6,它可以用光电效应法简单而又较准确地求出。 1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。 一、实验目的 1. 了解光电效应的规律,加深对光的量子性的理解。 2. 测量普朗克常数h 。 二、实验仪器 仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大 器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。 汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm 光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应范围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V ) 图1 仪器结构示意图 1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈; 6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源

利用光电效应测普朗克常数实验步骤

1 利用光电效应测普朗克常数 注意事项 1.灯和机箱均要进行预热20分钟。 2.汞灯不宜频繁开关。 3.不要直接观看汞灯。 4.行测量时,各表头数值请在完全稳定后记录,如此可减小人为读数误差。 实验目的 1.了解光电效应的规律,加深对光的量子性的理解。2.测量普朗克常数。 实验原理 光电效应是指一定频率的光照射在金属表面上时,会有电子从金属表面溢出的现象。光电效应实验原理如右图所 示。图中A、K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率ν的光射到金属材料做的阴极K上,就有光 电子逸出金属。若在A、K两端加上电压U AK后,光电子将由K定向地运动到A,在回路中就形成光电流I。改变外加电 压U AK,测量出光电流I的大小,即可得出光电管的伏安特性曲线。 光电流随着加速电位差U AK的增加而增加,加速电位差加到一定量值后,光电流达到饱和值I h,饱和电流与光强 成正比,而与入射光的频率无关。当U AK =U A -U K变成负值时,光电流迅速减小。实验指出,有一个截止电压U0存在, 当电压达到这个值时,光电流为零,截止电压U0同入射光的频率成正比,如右图所示。 由爱因斯坦光电效应方程:hν=mV2/2+A和eU0= mV2/2,可以得到hν=eU0+A,只要用实验的方法得到不同的频率对 应的截止电压,求出斜率,就可以算出普朗克常数 实验步骤 (一)测试前准备 1、将测试仪及汞灯电源接通,预热20分钟。把汞灯及光电管遮光盖盖上,将汞灯光输出口对准光电管光输入口,调整光电管与汞灯距离为30cm(实验中不能移动该位置)。 2、测试前调零:在未连接光电流输入与光电流输出的情况下,将“电流量程”选择开关打在10-13档,旋转“电流调零”旋钮,使电流指示为000。(注意:调零后“电流调零”旋钮不能再改变,只改变“电压调节”旋钮). ’.

大物实验报告光电效应测量普朗克常量和金属逸出功

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705 姓名童凌炜学号200767025 实验台号 实验时间2009 年04 月24 日,第九周,星期五第5-6 节 实验名称光电效应测量普朗克常量和金属逸出功 教师评语 实验目的与要求: 1.通过测量不同频率光照下光电效应的截止电压来计算普朗克常量 2.获得阴极材料的红限频率和逸出功 主要仪器设备: 1.光电效应实验仪(GGQ-50 高压汞灯,GDh-I型光电管电流测量仪) 2.滤光片组(通光中心波长分别为365.0nm, 404.7nm, 435.8nm, 546.1nm, 577.0nm) 3.圆孔光阑Φ=5mm, Φ’=10mm 4.微电流仪 实验原理和内容: 1.理想光电效应 光电效应实验装置如右上图所示,阴极K收到频率为v的单 色光照射时,将有光电子由K逸出到达阳极A,形成回路 电流I,可以由检流计G所检测到。通过V来监控KA两 端的电压变化,结合G所得到的电流值,可以得到U与光电 流I之间的关系,如右下图所示。 根据爱因斯坦的解释,单色光光子的能量为E=hv,金属中的电 子吸收了光子而获得了能量,其中除去与晶格的相互作用和克

服金属表面的束缚(金属的逸出功A )外, 剩余的便是逸出光电子的动能, 显然仅仅损失了逸出功的光电子具有最大动能: A hv mv M -=2 2 1。 实验中所加的光电管电压U 起到协助光电流I 形成的作用, 当不加电压U 时, 到达阳极的光电子很少, 光电流十分微弱; 当加上正向电压时, 便有更多的光电子到达阳极, 使得I 增大, 而所有的光电子都被吸引到阳极形成电流时, I 到达最大值, 此时再增大U 也不会改变I , 成为饱 和光电流I M , 饱和光电流在光频率一定时, 与光照强度成正比。 如果在光电管两极加反向电压便可以组织光电子到达阳极形成光电流, 当反向电压增大到光电流等于零时, 可知光电子的动能在电场的反向作用下消耗殆尽, 有以下关系式:a M eU mv =2 2 1 , 其中U a 成为截止电压。 结合以上最大动能的表达式可知, e A v e h U a -=, 如左图做出其对应的图像, 可知直线的斜率为 e h k =, 截距为e A U =0。 图中斜线与x 轴的交点对应的频率v0 称为阴极材料的红限频率, 照射光小于这个频率时, 无法产生光电效应(入射光光子能量小于电子的逸出功)。 显然, 通过测量多组v 和Ua , 便可以通过计算函数表达式而得到A 、h 、v0。 2. 实验中相关影响因素的修正 1, 暗电流修正 暗电流指没有光照时, 由于金属表面的隧道效应、 光电管漏电、 热噪声等原因造成的由K 向A 逸出电子形成的电流。 由于暗电流对截止电压的影响不大, 实验中可以使用无光照测量电流的方法测出暗电流值, 在后期处理中将其剔除。 2, 阳极电流修正 由于KA 两级距离很近, 光照时阳极的材料同样可以发生一定程度的光电效应而发射光电子, 当光电管加的是反向电压时, 就会使阳极光电子到达阴极形成阳极电流。 在U-I 曲线上阳极电流的影响就是使在负向电压区的阴极电流出现负值下沉, 由于阳极光电子数目有限且相比阴 极较少, 故阳极电流很快达到饱和, 可见实验中截止电压对应的实际情况是总体电流趋于反向稳定时的电压值。

大学物理实验 光电效应测量普朗克常量

实验题目:光电效应测普朗克常量 实验目的: 了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分 则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电 效应,逸出的电子称为光电子。 光电效应实验原理如图1所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后, 光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。 当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv 2 2 1 (1) 每一光子的能量为hv ,光电子吸收了光子的能量hν之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能。由能量守恒定律可知:A mv hv 2 2 1 (2) 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v 时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v 0,ν0称为红限。 由式(1)和(2)可得:A U e hv 0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分 别做光源时,就有:A U e hv 11,A U e hv 22,…………,A U e hv n n ,

普朗克常量的测定

利用光电效应测定普朗克常量 一:实验目的 1. 通过实验加深对光的量子性的了解。 2. 通过光电效应实验,验证爱因斯坦方程,并测定普朗克常量。 二:实验仪器 智能光电效应仪由汞灯及电源,滤色片,光阑,光电管、智能实验仪构成。实验仪有手动和自动两种工作模式,具有数据自动采集,存储,实时显示采集数据,动态显示采集曲线(连接计算机),及采集完成后查询数据的功能。 三:实验原理 当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。所产生的电子,称为光电子。光电效应是光的经典电磁理论所不能解释的。1905年爱因斯坦依照普朗克的量子假设,提出了光子的概念。他认为光是一种微粒—光子;频率为v 的光子具有能量ε=hv ,h 为普朗克常量。根据这一理论,当金属中的电子吸收一个频率为v 的光子时,便获得这光子的全部能量hv ,如果这能量大于电子摆脱金属表面的约束所需要的脱出功W ,电子就会从金属中逸出。按照能量守恒原理有: + = 2 21m m hv υW (1) 上式称为爱因斯坦方程,其中m 和m υ是光电子的质量和最大速度,1/2m 2 m υ是光电子 逸出表面后所具有的最大动能。它说明光子能量hv 小于W 时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率v 0=W/h ,称为光电效应的极限频率(又称红限)。不同的金属材料有不同的脱出功,因而υ0也是不同的。 我们在实验中将采用“减速电势法”进行测量并求出普朗克常量h 。实验原理如图 图1 图2 1所示。当单色光入射到光电管的阴极K 上时,如有光电子逸出,则当阳极A 加正电势,K 加负电势时,光电子就被加速;而当 K 加正电势,A 加负电势时,光电子就被减速。当A 、K 之间所加电压(U )足够大时,光电流达到饱和值I m ,当U ≤-U 0,并满足方程 eU 0=22 1m mv (2) 时,光电流将为零,此时的U 0称为截止电压。光电流与所加电压的关系如图2所示。 将式(2)代入式(1)可得 eU 0=hv -W 即 U 0=e W v e h - (3) 它表示U 0与v 间存在线性关系,其斜率等于h /e ,因而可以从对U 0与v 的数据分析中求出普朗克常量h 。 实际实验时测不出U 0,测得的是U 0与导线和阴极间的正向接触电势差U c 之差U 0ˊ,即测得的U 0ˊ是 U 0ˊ=U 0-U c 图1 图2

光电效应和普朗克常量的测定-实验报告

光电效应和普朗克常量的测定 创建人:系统管理员总分:100 实验目的 了解光电效应的基本规律,学会用光电效应法测普朗克常量;测定并画出光电管的光电特性曲线。 实验仪器 水银灯、滤光片、遮光片、光电管、光电效应参数测试仪。 实验原理 光电效应: 当光照射在物体上时,光子的能量一部分以热的形式被物体吸收,另一部分则转换为物体中一些电子的能量,是部分电子逃逸出物体表面。这种现象称为光电效应。爱因斯坦曾凭借其对光电效应的研究获得诺贝尔奖。在光电效应现象中,光展示其粒子性。 光电效应装置: S 为真空光电管。内有电极板,A 、K 极板分别为阳极和阴极。G 为检流计(或灵敏电流表)。 无光照时,光电管内部断路,G中没有电流通过。U 为电压表,测量光电管端电压。 由于光电管相当于阻值很大的“电阻”,与其相比之下检流计的内阻基本忽略。故检流计采用

“内接法”。 用一波长较短(光子能量较大)的单色光束照射阴极板,会逸出光电子。在电源产生的加速电场作用下向 A 级定向移动,形成光电流。显然,如按照图中连接方式,U越大时,光电流I 势必越大。于是,我们可以作出光电管的伏安特性曲线,U=I 曲线关系大致如下图: 随着U 的增大,I 逐渐增加到饱和电流值IH。 另一方面,随着U 的反向增大,当增大到一个遏制电位差Ua时,I 恰好为零。此时电子的动能在到达 A 板时恰好耗尽。 光电子在从阴极逸出时具有初动能1mv2,当U=Ua时,此初动能恰好等于其克服电场力 2 所做的功。即:1mv2=e|U a | 根据爱因斯坦的假设,每粒光子有能量= hv。式中h 为普朗克常量,v为入射光波频率。 物体表面的电子吸收了这个能量后,一部分消耗在克服物体固有的逸出功 A 上,另一部分

光电效应测普朗克常数 实验报告要点

综合、设计性实验报告 年级 ***** 学号********** 姓名 **** 时间********** 成绩 _________ 一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了 “光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中,为普朗克常数,它的公认值是= 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了着名的光电方程: (1) 式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,

为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位 U 被称为光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最低频率 是 h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而0γ也不同。 由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频率 0γγ=时, 截止电压0 0=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的γ -0U 曲线,并求出此曲线的斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电量。 U 0-v 直线 2、光电效应的伏安特性曲线 下图是利用光电管进行光电效应实验的原理图。频率为 、强度为 的光线照射到 光电管阴极上,即有光电子从阴极逸出。如在阴极K 和阳极A 之间加正向电压AK U ,它

光电效应法测普朗克常量_实验报告

实验题目:光电效应法测普朗克常量 实验目的:1.了解光电效应的基本规律; 2.用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理:当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。 光电效应实验原理如图8.2.1-1所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子。每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv += 2 2 1 (2) 式(2)称为爱因斯坦光电效应方程。

由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。 因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。 实验中,单色光可由水银灯光源经过单色仪选择谱线产生。 表8.2.1-1 可见光区汞灯强谱线 为了获得准确的遏止电位差值,本实验用的光电管应该具备下列条件:

光电效应以及普朗克常数的测量

实验二十九 光电效应及普朗克常数的测量 光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ??=-3410626069.6,它可以用光电效应法简单而又较准确地求出。 1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。 一、实验目的 1. 了解光电效应的规律,加深对光的量子性的理解。 2. 测量普朗克常数h 。 二、实验仪器 仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大 器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。 汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm 光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应范围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V ) 光电管电源:2档,-2~0V ,-2~+30V ,三位半数显,稳定度≤0.1% 图1 仪器结构示意图 1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈; 6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源

光电效应测量普朗克常量实验报告

竭诚为您提供优质文档/双击可除光电效应测量普朗克常量实验报告 篇一:光电效应测普朗克常量实验报告 三、实验原理1.光电效应 当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。所产生的电子,称为光电子。光电效应是光的经典电磁理论所不能解释的。当金属中的电子吸收一个频率为v的光子时,便获得这光子的全部能量hv,如果这能量大于电子摆脱金属表面的约束所需要的脱出功w,电子就会从金属中逸出。按照能量守恒原理有: (1) 上式称为爱因斯坦方程,其中m和?m是光电子的质量和最大速度,是光电子逸出表面 后所具有的最大动能。它说明光子能量hv小于w时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率v0=w/h,称为光电效应的极限频率(又称红限)。不同的金属材料有不同的脱出功,因而υ0也

是不同的。由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位 被称为光电效应的截止电压。 显然,有 代入(1)式,即有 (3) 由上式可知,若光电子能量 ,则不能产生光电子。产生光电效应的最低频率是 (2) ,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子ν的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 是入射光频率ν的线性函数,如图2,当入射光的频率 时,

2、光电效应及普朗克常数的测定

光电效应及普朗克常数的测定预习提纲 1、实验任务 (1)用光电效应仪测普朗克常数;(必做) (2)光强对普朗克常数测定影响的研究。(选做) 2、实验原理 (1)截止电压与截止频率? (2)如何确定不同频率下的截止电压? (3)光电子的能量随光强变化吗? (4)光电流的大小随光强变化吗? (5)如何从光电管的U-I特性图上利用“拐点法”确定“截止电压”? (6)如何利用“线性函数”图像求出普朗克常数? 3、操作规范 (1)汞灯开启直至实验结束、数据签字后方能关闭; (2)操作时,室内人员请勿讲话和走动,以免影响实验数据; (3)仪器不用时,将镜头盖盖上,关掉电源开关。 4、数据处理表格设计 表格设计: 不同频率下的伏安特性曲线 (数据仅仅供参考,每位同学的仪器数据都不同) 光阑孔直径Φ= 10.00×10-3m;距离: L=27.13×10-2 m ; 电压值量程:-3.14—+3.14 V;电流值放大倍率×10-5A 数据处理:(两种方法选一种) (1)利用坐标纸: 根据实验数据在坐标纸上画出每个频率下的伏安特性曲线,并找出相应的

截止电压、作出截止电压——频率图,找出斜率K,再根据公式h=eK 求出普朗克常数。 (2)利用电脑: 将实验数据输入在Excel表格中,点击“图表向导”作出每个频率下的伏安特性曲线图形,确定截止电压;再利用截止电压——频率数据作出截止电压——频率图,鼠标指向图线,按鼠标“右键”,点击“添加趋势线”,在“类型”中选则“线性(L)”,在“选项”中选“显示公式(E)”,在显示图形上,可直接确定斜率的大小,根据公式h=eK 求出普朗克常数。 (3)不确定度的处理方法 在Excel中选:4个空格→fx→统计→Linest(双击) →分别在表格最上的1、2两行中,填入原始数据(截止电压、频率);在3、4两行中,分别填入true、true→(Ctrl+Shift+Enter),则第一列第一行为斜率拟合值,第一列第二行为斜 光阑孔直径Φ=10.00×10-3m;距离: L=27.13×10-2 m;

实验讲义-光电效应和普朗克常数的测量

实验--光电效应和普朗克常数的测量 1887年德国物理学家H.R.赫兹发现电火花间隙受到紫外线照射时会产生更强的电火花。赫兹的论文《紫外光对放电的影响》发表在1887 年《物理学年鉴》上。论文详细描述了他的发现。赫兹的论文发表后,立即引起了广泛的反响,许多物理学家纷纷对此现象进行了研究,用紫外光或波长更短的X 光照射一些金属,都观察到金属表面有电子逸出的现象,称之为光电效应。 对光电效应现象的研究,使人们进一步认识到光的波粒二象性的本质,促进了光量子理论的建立和近代物理学的发展,现在光电效应以及根据光电效应制成的各种光电器件已被广泛地应用于工农业生产、科研和国防等各领域。 【实验目的】 ① 通过实验加深对光的量子性的认识; ② 验证爱因斯坦方程,并测量普朗克常数以及阴极材料的“红限”频率。 【实验原理】 一、光电效应及其实验规律 当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应,所产生的电子称为光电子。 研究光电效应的实验装置如图4.3.1所示,入射光照射到阴极K 时,由光电效应产生的光电子以某一初动能飞出,光电子受电场力的作用向阳极A 迁移而构成光电流。一定频率的光照射阴极K 所得到的光电流I 和两极间的电压U 的实验曲线如图4.3.2所示。随着光电管两端电压的增大,光电流趋于一个饱和值m I ,当U ≤S U 时,光电流为零,S U 称为反向遏止电压。 总结所有的实验结果,光电效应的实验规律可归纳为: (1) 对于一种阴极材料,当照射光的频率确定时,饱和光电流m I 的大小与入射光的强度 成正比。 k A G V 入射光 光电管 图4.3.1光电效应实验装置示意图 0 U S U 图4.3.2 U ——I 特性曲线

光电效应和普朗克常数的测定

光电效应和普朗克常数的测定 一、实验内容: 1.通过实验加深对光的量子性了解; 2.通过光电效应实验,测定普朗克常数; 3.测量光电管的伏安特性曲线。 二、实验仪器: 汞灯、干涉滤光片(365nm,405nm,436nm,546nm,577nm)、光电管、光电效应测试仪,示波器 三、实验原理: 1.光电效应 图1所示的是研究光电效应的一种简单的实验装置。在光电管的阴极K和阳极A之间加上直流电压U,当用单色光照射阴极K时,阴极上就会有光电子逸出,即为光电效应。 图1 光电效应实验装置

图2 截止电压与入射光频率的关系图 爱因斯坦方程: W mv h m += 2 21υ (1) 其中m 和v m 是光电子的质量和最大速度,W 为金属的逸出功,2 2 1m mv 是光电子逸出表面后所具有的最大动能。 截至电压与最大动能的关系: 2 2 10eU m mv = (2) 光电子的最大出动能与入射光光强无关。 当入射光频率υ逐渐增大时,截至电压U 0将随之线性增加。由(1)式和(2)式可知 e W e h U - =υ0 (3) 对于每一种金属,只有当入射光频率υ大于一定的红限频率υ0时,才会产生光电效应。 光电效应是瞬时发生的。实验发现,只要入射光频率0υυ>,无论光多么弱,从光照射阴极到光电子逸出这段时间不超过10-9 s 。 2.普朗克常数测定 根据(3)式可知,测量不同频率的光截止电压,寻求频率v 与截止电压U 0的线性关系 h/e ,见图2,从而求得普朗克常数h 。 四、实验步骤: 1.测量准备 (1)将测试仪及汞灯电源打开,预热20分钟。——汞灯及光电管的暗箱用遮光罩罩住 (2)调整光电管与汞灯的距离,约为40厘米。并保持不变。 (3)用专用电缆将光电管暗箱电压输入端与测试仪电压输出端连接起来。 (4)将“电流量程”选择开关置于所选档位(截止电压测试为10-13 ,伏安特性测试为10-10 )。 (5)调零:将光电管暗箱电流输出端k 与测试仪微电流输入端断开,调节电压,使电

光电效应法测普朗克常量 实验报告

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 实验题目:光电效应法测普朗克常量 实验目的:1.了解光电效应的基本规律; 2.用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理:当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。 光电效应实验原理如图8.2.1-1所示。 1.光电流与入射光强度的关系 光电流随加速电位差U的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H,饱和电流与光强成正比,而与入射光的频率无关。当U= U A-U K变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a存在,当电位差达到这个值时,光电流为零。 2.光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A极运动。当U=U a时,光电子不再能达到A极,光电流为零。所以电子的初动

能等于它克服电场力作用的功。即 a eU mv =2 2 1 (1) 根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子。每一光子的能量为hv =ε,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。由能量守恒定律可知 A mv hv +=2 2 1 (2) 式(2)称为爱因斯坦光电效应方程。 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),h A v = 0,ν0称为红限。 爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得:A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有 A U e hv +=11 A U e hv +=22 ………… A U e hv n n += 任意联立其中两个方程就可得到 j i j i v v U U e h --= )( (3) 由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。

利用光电效应测普朗克常数实验步骤

利用光电效应测普朗克常数 注意事项 1.灯和机箱均要进行预热20分钟。 2.汞灯不宜频繁开关。 3.不要直接观看汞灯。 4.行测量时,各表头数值请在完全稳定后记录,如此可减小人为读数误差。 实验目的 1.了解光电效应的规律,加深对光的量子性的理解。2.测量普朗克常数。 实验原理 光电效应是指一定频率的光照射在金属表面上时,会有电子从金属表面溢出的现象。光电效应实验原理如右图所示。图中A 、K 组成抽成真空的光电管,A 为阳极,K 为阴极。当一定频率ν的光射到金属材料做的阴极K 上,就有光电子逸出金属。若在A 、K 两端加上电压U AK 后,光电子将由K 定向地运动到A ,在回路中就形成光电流I 。改变外加电压U AK ,测量出光电流I 的大小,即可得出光电管的伏安特性曲线。 光电流随着加速电位差U AK 的增加而增加,加速电位差加到一定量值后,光电流达到饱和值I h ,饱和电流与光强成正比,而与入射光的频率无关。当U AK =U A -U K 变成负值时,光电流迅速减小。实验指出,有一个截止电压U 0存在,当电压达到这个值时,光电流为零,截止电压U 0同入射光的频率成正比,如右图所示。 由爱因斯坦光电效应方程:hν=mV 2 /2+A 和eU 0= mV 2 /2,可以得到hν=eU 0+A ,只要用实验的方法得到不同的频率对应的截止电压,求出斜率,就可以算出普朗克常数 实验步骤 (一)测试前准备 1、将测试仪及汞灯电源接通,预热20分钟。把汞灯及光电管遮光盖盖上,将汞灯光输出口对准光电管光输入口,调整光电管与汞灯距离为30cm (实验中不能移动该位置)。 2、测试前调零:在未连接光电流输入与光电流输出的情况下,将“电流量程”选择开关打在10-13 档,旋转“电流调零”旋钮,使电流指示为000。(注 意:调零后“电流调零”旋钮不能再改变,只改变“电压调节”旋钮). 3、用专用连接线将光电管电压输入端与测试仪电压输出端(后面板上)连接起来(红-红,黑-黑). 4、用高频匹配电缆将光电管暗箱电流输出端与测试仪的微电流输入端连接.

(整理)光电效应测普朗克常数实验报告.

光电效应测普朗克常数实验报告 【实验目的】 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 【仪器用具】 高压汞灯及电源、滤色片(五个)、光阑(两个)、光电管、微电流放大器、光电管 【实验原理】 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象, 爱因斯坦提出了“光量子”的概念,认为对于频率为 的光波,每个光子的能量 为 式中, 为普朗克常数,它的公认值是 =6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1) 式中, 为入射光的频率,m 为电子的质量,v 为光电子逸出金属表面的初速度, 为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最 大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位 0U 被称为 光电效应的截止电压。 显然,有

(2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最低频率是 h W =0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出。图中的直线的斜率e h k =是一 个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的γ-0U 曲线,并求出此曲线的 斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电量。

相关文档
最新文档