第二章光催化氧化技术

第二章光催化氧化技术
第二章光催化氧化技术

第二章光催化氧化技术

第1节光催化概述

光催化(Phntocatalv}i} }是在光的照射下产生类似光合作用的光催化反应,产生出氧化能力极强的自山氢氧基和活性氧,具有很}},的光氧化还原功能,可氧化分解各种有机化合物

和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋白质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水和.二氧化碳,因而具有极强的杀菌、除臭、防霉、防r} ;自

洁、字泞除甲醛和净化空气功能。

光催化的特性为利用空气中的氧分子及水分子将所接触的有机物转换为二氧化碳和水,自身不起变化,却可以促进化学反应的物质,理论.r-有效期较长、维护费用低。同时,二氧化钦本身无毒无害。已广泛用于食品、民药、化妆品等各种领域。

光催化在光的照射下产生氧化能力极强的

氢氧自由基和活性氧,具有很强的光氧化还原

功能。可氧化分解各种有机化合物和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋臼质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水(HZO)和二氧化碳

}co}),因而具有极强的杀菌、除臭、防霉、防污自洁及净化空气的功能。

(川光催化基本原理光催化的原理是光催化剂纳米材料被太阳光、灯光(紫外线)

照射后,表面电子(e)被激励,同时生成带电的正孔(h+},正孔(h+)和空气中的氧

(o:)、水(HZo)发生反应,产生具有极强氧化作用的活性氧。有机物污染物、臭气、细

菌等被氧化分解,而电子(e)还原成空气中的氧。

光催化反应可分为下列几个步骤:

①反应物、氧气及水分子吸附于二氧化钦表而;②经光照射后。二氧化钦产生电子及空穴;③电子和空穴分别扩散到二氧化钦粒子表面;④电子、空穴和氧及水分子形成氢氧自由基;⑤氢氧自由基和反应物进行氧化反应;

光催化是利用特定波长光源的能量产生催化作用,使周围氧及水分子激发成极具活性的OH一及02一自由离子基,这些氧化力极强的自由基儿乎可分解所有对人体或环境有害的有机物质及部分无机物质

第2节光催化氧化技术在污水处理中的应用

}.光催化叙化技术的应用

光催化技术的研究始于20世纪70年代的后半期,用作催化的化学物有T1}} ,硫化锅、硫化亚铅、妮或钦系层状复合氧化物、二氧化铁等。用光照射催化剂时山于光生成空穴。氧化力强。大都采用不溶解的、稳定的半导体粉末二氧化钦,与水分解成氧和氢。从含乙醇的水溶液中生成氢,因水和氮合成氨,还原二氧化碳。含氨和.二氧化碳的水溶液合成氨基酸,氰基化离子或酪酸离子,变为纳米Tif}.}能处理多种有毒化合物。包括工业有毒溶剂、化学杀虫剂、木材光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使H}}被还原成Hg而沉积在TiO}表面;此法同样适川于铅。`Ti0:光催化可能降

解的尤机污染物还有氰化物,5}1}、I} }S , LV}和No:等有害气休也能被吸附在}'i。}表面,在光的作用下转化成无毒无害物质,井可回收贵金属。水污染有机物的分解研究儿乎都涉及到'}'i(}}光催化。

光催化是与常规热能催化相对应的催化技术,.光催化主要是有机盒属络合物和半导体。现在商用的光催化剂儿乎都是二氧化钦(Ti}} }可以说是半导体光催化。半甘体光催化的

一般机能是脱臭、抗菌、灭菌、防污、去除有害物等:.

所谓促进氧化法(Advanced o xidaki}}n Prnr.}:}}, }1}P}是在紫外线、放射线、超声波等的照射下使臭轼氧化、过氧化氢和金属离子共存下的臭氧氧化,在电解’F的臭氧氧化、高Exd一下的臭诚牡化等,由于热基基团具有强力的氧化力,是分解难分解有机物的技术。羚从

从闭足一种强城化剂。儿乎【11分解所有的有机物,但不能有选择性的分解F.如有碳酸离子或

谊碳酸离子参’j反应,则反应停止。促进氧化法对二恶英、邻苯二甲酸化介物或农药的分解

都是很有效的方法一囚为不能有选择性的分解去除污水中的有机物,影响r对某一处理物的反应。反之,有可能产生有害的副产物。为此,应了解促进氧化法的特性,合理地开发应用技术,使之与其他方法组合,以达到最佳的处理效果。

光催化技术是用光照射二氧化钦等半导体产生空穴和电子的氧化还原。对污染物进行处理,是利)}t}光能分解处理有机化学物质。光照射二氧化钦和太阳能电池相同,保持负电荷与

保持正电荷的电了产生空穴。这种电子的还原力很强.在空穴处具有很强的氧化力,由于水和溶解氧等的反应,产生(}H基和超氧化的活性氧(。一’)。这种。H基的能量构成有机物分子中的碳一碳或碳一氧、碳一氮、氧一氢等的结合能量相当于j2 } }ealrnnl。这些结合可简单

的阻止水和一氧化碳等的氧化分解。不使乒H有毒的化学剂,只用光照射就可以使有机物全部

分解,成为无害化物质。而且二氧化钦资源丰富,价格便宜,耐久性也好,用作光催化剂时自身不发生变化,可半永久使用。

止氧化钦光催化剂与臭氧都产生强的氧化力,几乎分解所有的有机物和二氧化碳。这种光催化作用,对水,冬‘溶解的各种有害的有机物,包括二恶英几乎可以全部分解。

光催化反应是表面反应,污染物与光催化剂表面接触,分解反应受到制约。因此,需要有比表而积大的光催化剂,使污染物易于与光催化剂表面接触,产生高活性。为此,采用超细微粒的光催化剂,一与含有有害物的水混合并悬浮于水中,经光照射使有机物分解的方法。但是,使用这种粉末的光催化剂制作较困难。水处理后的催化剂不易分离。

为厂克服这些缺点,采用溶胶一凝胶法。溶胶一凝胶法是以二氧化钦溶胶为基材,烧结成

涂层,烧结后的二氧化钦为透明的薄膜。可以在水处理中连续运行,不需要维护。为提高光催化剂性能,研究了一种透明的硅溶胶薄膜涂层,即用硅溶胶在光催化剂内壁的细孔内涂有二氧化钦透明薄膜,比表面积保持在300rr}}/go因硅溶胶透明,光可照射到内部,产生良好的光催化反应。因而可分解去除有害的有机物。

2.光催化在水处理中的应用

光催化氧化技术可去除生化处理无法降解的有机污染物,用作预处理,可降低生化处理负荷或有利于卜一级的处理;用于后处理,可使残余的污染物氧化成C1:和H},达到零

排放。

传统的水处理方法存在效率低、成本高、二次污染等问题,污水治理一直得不到好的解决。纳米技术的发展和应用很可能彻底解决这一难题。

研究表明。纳米Tip?:能处理多种有毒化合物。可以将水中的烃类、卤代烃、酸、表面活性剂、染料、含氮有机物、有机磷杀虫剂、木材防腐剂和燃料油等很快地完全氧化为ct}} , I-}.} (}等无害物质。此外,纳米TiO}在降解毛纺染料废水、有机澳(或磷)杀虫剂等方面也有一定效果。无机物在}`i0}表面也具有光化学活性。例如,废水,},的r}十具有较

的致痛作}.}_} ,在酸性条件下,rI'i:对C}} "具有明显的光催化还原作用。在。H值为2,5的体

系中。光照1h后,Cr}"‘被还原为}r}十。还原效率高达85o。迄今为止,已经发现有300 多种难降解的有机化合物可以在紫外线的照射下通过纳米Ti0:或zn}而迅速降解,特别是

当水中有机污染物浓度很高或用其他方法很难降解时,这种技术有着明显的优势。德国开发出了利用阳光和光催化剂对污水进行净化的装置。

虽然利用纳米光催化Tip:进行水处理目前还未得到广泛应用,但可以看出它未来的应

用前景必将非常厂一阔。

( 1 ) `}"i }:处理污水中的有害污染物使氯化的炭氢化合物用于金属脱脂和电子部件的清洗、:卜洗等。氯化的碳氢化合物中产生的三氯乙烯(trich}}raethyene,是地下水污

染的化合物。T}:E有毒性,在天然水和饮用水中是一个严重的问题。为使污染物分解,采用Ti,与阳光组合处理己有数年。特别是在室外采用阳光方法是有效的。对于含"}(: E的水中用污泥状的'}'i}}与固化的'}'iz的方法对分解的可行性也有人进行了研究。

(2)添加氧化剂的影响在水溶液中的Ti0:进行光催化时的问题之一是h十和e一的再

结合,为提高对T} }的分解效率,必须控制再结合的形成。但是,由于布气装置问题,未对光催化分解TCh,进行评价。因此。用氧代替氧化剂,投加}z。}代一,结果提高了

TC1};分解速度。用污泥状TiOp与用固化的'Ti}]}取得同样的效果。

总之,TCl~分解采用T}C}}+阳光是有效的。光催化的'TCE分解以一次性反应速度表示,依赖于阳光的强度,以晴天为佳二使用H'- }z `s }代一氧化剂可以控制“‘和e一再结合,提

i} T}:分解速度。Tiop }+ f }.}光的方法使TCF分解,不使用人工的Uv} ultraviolrt rah)光,可以节省电费.」

3.国内光催化应用简况

国内光催化氧化技术的研究应用也取得一系列成果。证实了'Tip:光催化氧化对城I }J污水和印染废水、含酚废水、有机磷农药等废水有降解净化效果。当前国内采用的光催化氧化技术大致有如’卜儿个方面;

(l)悬浮型光催化反应器以太阳能代替紫外光,处理染料废水。实验结果表明;在

晴天条件下,经过Zh太阳能辐射以后,阳离子蓝x}G RRL染料脱色率在80%一93%之间。

(2)阳极氧化法在}. } rn}i/i} }-I}5 }}溶液中氧化'}`i板和Ti网制取半导体薄膜光电极,对含酚废水进行降解实验,获得r中国专利。

(3) 'I'io}薄层光催化对降解含磷农药进行了试验,结果表明:0. } x 1} _} r}tol/L的

长效磷经37‘扣压汞灯照射0 min,可完全降解至P叫一,加人微量的Fey或H } }:可提高降解率。,

(4)旋转式光催化反应器对印染废水进行了降解试验,已进人中间试验阶段二

4.国外光催化应用现状

在当今世界性的环境朽染问题越来越受到各国政府重视的情况下,利用纳米材料进行环境治理已经成为各国高科技竞争中的一个热点。在纳米光催化方面口本、美国等国家均投人巨资开展研究与开发工作,并大力推动其产业化,目前已有多种产品出现,其中所使用的纳米光催化材料绝大多数都是"}"iO}

(l)日本日本对于纳米`}'i}:光催化的研究较早,现在己有多家[J本公司生产出了多

种纳米.光催化的实用产品,如表1 }}-所列。

(2)韩国韩国从!999年开始有光催化方面的专利出现,起初重点为纳米光催化材

料,近年开始涉及水处理和空气净化领域。目前韩囚纳米光催化商品规模仍较小,产品以

LG电子利用光催化生产空气净化式空调系统与}U}1t}}lU l}}n}e}}的海水净化装置址受好评。

(3)美国美国环保署(EPA是美国纳米光催化研发的主要支持单位,其重点着重

于水处理方面,包括地下水质的改善、废水处理以及河川污染等。河川污染除r针对因农药造成污染的研究外,对油污的研究(包含原油)也有相当不错的成果。

(4)英囚英国伦敦和安大略核子技术环境公司开发r一种新的常温光催化技术,

利用纳米二氧化认催化剂,能将.工业废液和被污染地下水中的多氯联苯类分解为CO:

和水。

英州皮尔金顿公司生产出了自洁净玻璃。在玻璃表面镀一层具有光催化作用的纳米二氧化钦薄膜。经紫外线照射后可有效降解附着在玻璃表面的有机污染物,同时具有亲水性,使玻璃长期保持自洁净效果。

光催化氧化技术在化工废水处理中应用论文

光催化氧化技术在化工废水处理中的应用 【摘要】光催化氧化技术适用范围广,处理效果好,处理成本低,反应条件易控,无二次污染,尤其适用于含难降解有机污染物的化工废水的处理。本文就主要对光催化氧化技术的原理、特点、催化剂类型及其在化工废水处理中的应用进行综述,以供参考。 【关键字】光催化,氧化技术,化工,废水处理 为治理废水污染,保护水环境,人们经过长期努力,已经建立了许多净化处理废水的技术方法,并已广泛应用于实际的废水处理工程中,这些技术方法通常可以分为物理法、化学法、物化法、生化法等。常用的技术方法各有自身的优点,同时也不同程度地存在着某些不足之处。例如,有的技术方法对难降解污染物净化不彻底、处理速度慢,而有的可能造成二次污染,有的设备投资大、处理费用高等。随着国家推进削减主要污染物排放总量工作的开展以及逐步提高污染物排放标准,现有的技术方法难以满足更高的要求,因此有必要探索更加经济有效、便于推广应用的新技术。 光催化氧化技术原理 光催化氧化技术利用光激发氧化将o2、h2o2等氧化剂与光辐射相结合。所用光主要为紫外光,包括uv-h2o2、uv-o2等工艺,可以用于处理污水中chcl3、ccl4、多氯联苯等难降解物质。另外,在有紫外光的feton体系中,紫外光与铁离子之间存在着协同效应,使h2o2分解产生羟基自由基的速率大大加快,促进有机物的氧化去除。所谓光化学反应,就是只有在光的作用下才能进行的化学反

应。该反应中分子吸收光能被激发到高能态,然后电子激发态分子进行化学反应。光催化氧化还原以n型半导体为催化剂,如tio2、zno、fe2o3、sno2、wo3等。tio2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以tio2作为光催化剂。光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基oh-,生成强氧化性的羟基自由基oh将污染物氧化。当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。如半导体tio2的禁带宽度为312 ev,当光子波长小于385 nm 时,电子就发生跃迁,产生光致电子和空穴( tio2 + hν→e-+ h+)。对半导体光催化反应的机理,不同的研究者对同一现象也提出了不同的解释。氘同位素试验和电子顺磁共振( esr)研究均已证明,水溶液中光催化氧化反应主要是通过羟基自由基(·oh)反应进行的,·oh 是一种氧化性很强的活性物质。水溶液中的oh- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理如下(以tio2为例): tio2 + hν→h++ e- h++ e-→热量 h2o→oh-+h+ h++oh-→oh

光催化氧化技术在水处理中的应用

光催化氧化技术及其在水处理中的应用 摘要:介绍了光催化氧化的机理及光催化氧化反应的主要影响因素,就TiO2固定化制备、改性、光催化氧化在工业废水以及饮用水处理中的应用进行了阐述。 关键词:光催化氧化Ti02光催化剂水处理 1 引言 光催化氧化法是近二十年才出现的水处理技术,1972年,Fu—jishima和Honda报道了在光电池中光辐射Ti02可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。1976年,Carey等在光催化降解水中污染物方面进行了开拓性的工作。光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点[1],在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。 2 光催化氧化原理 光催化氧化还原以n型半导体为催化剂,如TiO2、ZnO、Fe2O3、SnO2、WO3等。TiO2由于化学性质和光化学性质均十分稳定,且无毒价廉,货源充分,所以光催化氧化还原去除污染物通常以TiO2作为光催化剂。光催化剂氧化还原机理主要是催化剂受光照射,吸收光能,发生电子跃迁,生成“电子—空穴”对,对吸附于表面的污染物,直接进行氧化还原,或氧化表面吸附的羟基OH-,生成强氧化性的羟基自由基(OH)将污染物氧化[2]。当用光照射半导体光催化剂时,如果光子的能量高于半导体的禁带宽度,则半导体的价带电子从价带跃迁到导带,产生光致电子和空穴。水溶液中的OH- 、水分子及有机物均可以充当光致空穴的俘获剂,具体的反应机理[3]如下(以TiO2为例): TiO2 + hν→h+ + eh++ e- →热量 H2O →OH- + H+ h+ + OH-→OH h+ + H2O + O2- →·OH + H+ + O2- h+ + H2O →·OH + H+ e- + O2 →O2- O2- + H+ →HO2· 2 HO2·→O2 + H2O2 H2O2 + O2- →OH + OH- + O2 H2O2 + hν→2 OH Mn+(金属离子) + ne+ →M 3 光催化氧化反应的主要影响因素 3.1催化剂性质及用量 可用于光催化氧化的催化剂大多是金属氧化物或硫化物等半导体材料,如TiO2、ZnO、CeO2、CdS、ZnS等.在众多光催化剂中,Ti02是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐

光催化氧化技术在化工废水处理中的应用(新编版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 光催化氧化技术在化工废水处理 中的应用(新编版)

光催化氧化技术在化工废水处理中的应用 (新编版) 导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 伴随着环境的污染,人们越来越重视自己的生存环境,其中光催化技术的应用已经成为了在化工废水处理中非常重要的一部分,本文针对光催化技术在化工废水处理中的应用的相关问题进行了详细的分析和探索,供相关的废水处理人员参考。 1、光催化过程中的基本特征 光催化技术早在上个世纪60年代就有相应的研究,由于在光催化技术中存在节能效应较为明显,需要的设备较为简单,而且操作也较为方便,近些年来受到了我国很多广大用户的欢迎。针对光催化技术而言,其基本的特征是采用一种特殊的材料作为传递技术,采用特殊的溶剂,在该溶液中,容积会有足够的压力,通常是由水提供的压力,通过相应的反渗透膜,从而将其分离,由于该项技术违背了自然渗透的基本原理,因此我们成为反渗透的作用,目前光催化的发方法基本上都是通过反渗透的犯法进行分离,从而达到提取,纯化和浓缩等的

光催化有机合成

Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO 2 Huqun Wang a ,Junping Yan a ,Wenfu Chang b ,Zhimin Zhang a,* a School of Chemistry and Chemical Engineering,Shanxi University,Wucheng Road,Taiyuan 030006,PR China b Institute of Molecular Science,Shanxi University Taiyuan 030006,PR China a r t i c l e i n f o Article history: Received 9September 2008 Received in revised form 15December 2008Accepted 17December 2008 Available online 25December 2008Keywords:Reduction Aromatic amines N-doped TiO 2 Potassium iodide a b s t r a c t A novel ef?cient method for the catalytic reduction of aromatic nitro compounds to the corresponding amines was reported.Aromatic nitro compounds were chemoselectively reduced to the corresponding amines by using N-doped TiO 2and potassium iodide as photocatalysts in the presence of methanol.The novel method is highly ef?cient with very short reaction time (<20min),excellent yields (>90%)and wide functional group tolerance such as carbonyl,halogen,amino,hydroxyl and carboxylic acid groups.And N-doped TiO 2was prepared by a modi?ed sol-gel method using urea as nitrogen source and had higher photocatalytic activity comparing with pure TiO 2.The catalysts were characterized by XRD,XPS,TEM and UV–Vis DRS. ó2009Published by Elsevier B.V. 1.Introduction Aromatic amines are widely used key intermediates in the industrial synthesis of dyes,pharmaceuticals and agrochemicals [1].A variety of methods for the direct reduction of aromatic nitro compounds to the corresponding amines has been well docu-mented [2–4].However,development of new methodology espe-cially the environmentally benign process still attracts the great interests in the chemistry community [5–8].In comparison to the commonly used methods which involve hydrogenation,elec-tron transfer and hydride reduction,photocatalytic reduction emerges as cost-effective,highly selective,rapid and environmen-tally friendly.Li and co-workers ?rst reported a photoinduced reduction of nitro compounds to the corresponding amines using TiO 2semiconductor as a catalyst [9].Ferry and co-workers further investigated the mechanism of photocatalytic reduction of nitro aromatics at the surface of titanium dioxide slurries in the pres-ence of the sacri?cial electron donor methanol or isopropanol [10].Heterogeneous photocatalysis has been rapidly becoming an exciting and growing area of research due to its direct application for synthetic chemistry,such as Photo–Kolbe oxidation [11],reduc-tion [12],amino acid [13],Diels–Alder [14]and Friedel–Crafts alkylation [15]reactions.However,so far these reactions are still hardly applied to the industrial ?eld.Research in our laboratory has focused in the late few years on new active-TiO 2based reduc- ing systems.The reaction for synthesis of amines from nitro com-pounds was catalyzed by irradiating N-doped TiO 2(N-TiO 2)and potassium iodide in solution of methanol (Scheme 1).The proce-dure of synthesis of aromatic amines was much simpler and more ef?cient than those in any other literature.In addition,the photo-catalyst could be reused and remained suf?cient catalytic activity.2.Experimental 2.1.Catalyst preparation and characterization All reagents were analytical reagent grade and were used with-out any further puri?cation.A solution of tetrabutyltitanate (8.5mL)in absolute ethanol (30mL)was mixed with glacial acetic acid (1.5mL)as constraining reagent to prevent the precipitation of oxides and stabilize the solution and an ethanol solution of dis-tilled water and urea (EtOH:H 2O:CH 4ON 2=3:48:1)was added to above solution under vigorous stirring.The pH of solution was ad-justed about three by nitric acid.After 3h,the gel so obtained had been left ageing overnight at room temperature to ensure the com-pletion of the hydrolysis,subsequently evaporation of the solvent,drying at 100°C for 8h and ?nally calcination at 450°C for 4h.The anatase crystal phase was determined from the X-ray diffraction (XRD)patterns obtained by using an X-ray diffractometer (Model D/Max 2550V)with a Cu target Ka-ray (k =1.544178?).The mor-phology of the N-TiO 2powders was examined by using a Hitachi-600-2transmission electron microscope (TEM)and UV–Vis diffuse re?ectance spectrophotometer (Cary 300,Varian,US)was employed to determine the optical properties of N-TiO 2and pure 1566-7367/$-see front matter ó2009Published by Elsevier B.V.doi:10.1016/j.catcom.2008.12.045 *Corresponding author.Tel.:+863517010588;fax:+863517011688.E-mail address:mqz1003@https://www.360docs.net/doc/2217272658.html, (Z.Zhang).Catalysis Communications 10(2009) 989–994 Contents lists available at ScienceDirect Catalysis Communications journal homepage:www.elsev i e r.c o m /l o c a t e /c a t c o m

光催化氧化技术在水处理领域的应用及存在的问题

光催化氧化技术在水处理领域的应用及存在的问题 摘要:本文主要介绍光催化氧化反应机理、及其在处理染料废水、农药废水、含油废水、造纸废水、含表面活性剂废水等方面的应用, 并对其目前存在的问题进行了简单的阐述。 关键词:光催化氧化氧化技术 1前言 随着科技的高速发展和人类文明的进步,各种环境污染越来越严重,其中水污染尤为引起全球范围内的广泛重视。目前许多国家的地表水和地下水均受到不同程度的污染,水污染物主要来自工业、农业以及生活污水。当前水处理中常采用的方法是物化法和生化法,具有工艺成熟,易于大规模工业化应用的优点。然而,这些方法只是将污染物从一相转移到另一相,或是将污染物分离、浓缩,并没有使污染物得到破坏而实现无害化。这不可避免地带来废料和二次污染, 而且适用范围有限, 成本也比较高。近年来, 有关污染物治理研究方面已逐步转向化学转化法, 即通过化学反应使污染物受到破坏而实现无害化。因此, 开发能将各种化学污染物降解至无害化的实用技术( 尤其是污水处理和空气净化) 成为各国科研工作者 的重要研究内容。 光催化氧化技术( Photocatalytic Oxidation )是一种高级氧化技术( advanced oxidation process,AOP) 。光催化剂在光照的条件下能够产生强氧化性的自由基, 该自由基能彻底降解几乎所有的有机物,并最终生成H2O、CO2 等无机小分子,加上光催化反应还具有反应条件温和, 反应设备简单, 二次污染小,操作易于控制, 催化材料易得, 运行成本低, 可望用太阳光为反应光源等优点, 因而近年来受到广泛关注。 1972 年, Fujishima 等在《Nature 》上发表了“Electrochemical potolysis of water at asemiconductor electrode”一文, 揭开了光催化氧化技术的序幕。1976 年, Cr aey [ 4] 等发现, 在TiO2 光催化剂存在的条件下, 多氯联苯、卤代烷烃等可发生有效的光催化降解. 这一研究成果使人们认识到半导体催化剂对有机污染物具有矿化功能, 同时也为治理环境 污染提供了一种新方法, 立即成为半导体光催化研究中 最为活跃的领域。近30 年来, 光催化氧化技术在有机污染物处理方面得到了广泛的研究,几乎所有在水中可能存在的有机污染物都可被光催化氧化法降解并矿化。将光催化工艺与混凝、生物处理等常规水处理工艺结合起来可达到优势互补的效果。近年来, 人们围绕光催化剂活性的提高以及降低反应成本等方面进行了大量的研究, 相关文献每年都有150 篇 以上。 2光催化氧化反应的机理 Sch iavello等认为, 光触媒表面的光催化反应基 本包括4个步骤: (1)光激发催化剂表面形成电子- 电洞对; (2)电子- 电洞对必须能有效地分离; (3)电子- 电洞对在催化剂表面与被吸附物质发生氧化还原反应; ( 4) 光催化剂表面产物的脱附与再吸附。

光催化氧化的原理

1 光催化氧化的原理 TiO2 光催化氧化处理废水、废气的原理 目前所研究的催化剂多为过渡金属半导体化合物, 如TiO2、ZnO2、CdS 和WO3等。由于TiO2具有化学稳定性好、耐光腐蚀等优点, 使其成为研究最为广泛的催化剂。 1976 年Garey 等首先应用二氧化钛光催化降解水中的氯代联苯并取得成 催化降解功。三十多年来, TiO2光催化氧化技术迅速发展, 研究者已利用TiO 2 了水和空气中几千种不同的有毒化合物, 其中包括许多难解有机化合物, 如有机氯化物、农药、氯酚类、染料类以及近年来倍受人们关注的环境荷尔蒙类物质。因此, 可以说TiO2光催化技术是国内外的研究前沿和开发热点。TiO2是一种多晶形的化合物, 目前研究最多的是锐钛矿型TiO2。它是一种N 型半导体材料, 它的光催化活性高, 反应速率快, 对有机物的降解无选择性且能使之完全矿化。它的能带结构一般由填满电子的低能价带和空的高能导带构成, 它们之间由禁带分开, 其禁带宽度为3.2eV, 根据λg(nm)=l240 /Eg(eV)可知, 其激发波长为387.5nm。当吸收了波长小于或等于387.5nm 的光子后, 价带电子被激发, 越过禁带进入导带, 形成带负电的高活性电子e- , 同时在价带上产生带正电的空穴h+。在电场的作用下, 电子与空穴发生分离, 迁移到粒子表现的不同位置。热力学理论表明, 电子具有还原性, 空穴具有氧化性。吸附在TiO2表面的氧俘获电子形成O2- , 分布在表面的h+可以将吸附在TiO2表面OH- 和H2O 分子氧化成·OH 自由基, 而·OH 自由基的氧化能力是水体中存在的氧化剂中最强的, 能氧化大多数的有机污染物及部分无机污染物, 并将其最终降解为CO2、H2O 等无害物质。由于·OH 自由基对反应物几乎无选择性, 因而在光催化氧化中起着决定性的作用。 3 存在问题 利用光催化氧化来降解废水、废气存在一个普通的问题, 即光的利用率低, 量子效率低(<4%)、反应速率慢的缺点, 致使光催化还无法在实际工程中发挥应有的作用。目前对半导体材料的改性应从以下方面着手: 提高光催化剂的光谱响应范围, 如金属离子掺杂法, 表面光敏化来提高催化剂的活性和扩大激发波长范围; 抑制光子和空穴的复合, 如贵金属沉

光催化氧化除臭设备简介及说明书

光催化氧化除臭设备 光催化氧化是在外界可见光的作用下发生催化作用,光催化氧化反应是以半导体及空气为催化剂,以光为能量,将有机物降解为CO2和H2O。本公司采用的半导体是目前反应效率最高的纳米TiO2光催化剂,经蜂窝陶瓷载附特殊处理后使用,达到理想效果。在光催化氧化反应中,通过紫外光照射在纳米TiO2光催化剂上产生电子空穴对,与表面吸附的水份(H2O)和氧气(O2)反应生成氧化性很活波的羟基自由基(OH-)和超氧离子自由基(O2-、0-)。能够把各种废臭气体如醛类、苯类、氨类、氮氧化物、硫化物及其它VOC类有机物、无机物在光催化氧化的作用下还原成二氧化碳(CO2)、水(H2O)以及其它无毒无害物质,同时具有除臭、消毒、杀菌的功效,由于在光催化氧化反应过程中无任何添加剂,所以不会产生二次污染。 该设备核心中的纳米光催化触媒材料(GC-100)是一种吸收光能后,能在其表面产生催化反应的物质,当特定纳米波长的紫外光照射光催化触媒材料(GC-100)时,其表面发生光催化氧化还原反应。光催化触媒材料(GC-100)吸收光子后在其表面产生电子(E—)和空穴(H+),将吸收的光能转化成化学能,即具有光催化作用。当光催化触媒材料(GC-100)与空气中的水接触时,表面就吸附H2O、O2、OH—,H2O、 OH—被空穴(H+)所氧化,O2被电子(E—)还原,反应式如下: H2O+ H+ OH. + H+ O2+ E— O2—OH—基团的氧化能力较强,使有机物氧化,最终分解为水和CO2。下面为典型污染物的被该装备氧化机理。脂肪族氧化机理:

该装备中激发的特定波长紫外光激发光催化触媒材料(GC-100)所生成的OH. 具有强氧化作用,将脂肪族氧化为醇,进一步氧化为醛、酸,最后脱羧生成二氧化碳,整个过程可描述如下: R–CH2 CH3R–CH2 CH2 OH RCH2 CHORCH2 COOHR–CH3 +CO2RCH2 OHRCHOR–COOH每降解一个碳原子,生成一个CO2,重复循环,直到脂肪族完全转化为CO2为止。芳香族氧化机理: 该装备中激发的特定波长紫外光激发催化触媒材料(GC-100)所生成的OH. 和H+使苯环羟基化,生成羟基环已二烯自由基,进而开环生成已二烯二醛,再按脂肪族氧化途径降解,生成CO2和水。无机气体氧化机理:H2S+O2 2S+SH2O 4NH3+3O2 2N2+6H2O 综上所述,利用光催化触媒材料(GC-100)的光化作用,可以使接触光催化剂的水份、臭气、细菌、污物等有机成份都被分解,从而具有除臭、抗菌、防污、防雾的功能。 设备可以作为光解氧化除臭设备、低温等离子体废气净化设备的末端配套设备,也可以作为低浓度废气的直接处理设备,在应用于废气净化领域时,每1000m3 /h废气配置紫外线灯1支;在空气净化领域,每4000m3/h废气配置紫外线灯1支.

光催化氧化设备的保养及使用规范

光催化氧化设备的保养及使用规范 UV光氧催化设备保养使用规范安全、操作、维护保养注意事项 1、用户应定期检查、保养设备。 2、每隔2个月或视用户现状而定,定期清理粉(灰)尘一次,打开设备电源箱对高压模块表面清洁粉尘,然后安装复原。 3、没个2个月或视用户现状而定,定期更换二氧化钛催化板一次。 4、在进行维护保养时,严禁带电操作;设备检修前必须断电检修,并在电控柜前挂示牌“维修中请勿送电”。 5、设备的日常维护应由接受过培训并能胜任的维保人员进行日常维护保养。 6、设备的检修应由设备厂商专业的技术人员或授权的专业技术人员进行检修。 8、应专人进行产品的维护保养,维护保养按本公司按本工地说明书进行; 9、光氧净化器里面的UV紫外线灯管开启时,不要直视,若要观察灯管使用情况请购买相关防护眼镜; 10、要确保传输的过程顺利。进入光解废气净化器的管段应该光滑,并且要有一段直管,确保废气进入设备的时候能够形成稳定的恒流,使用的传输管道好是用金属软管连接,以确保产生小的震动效果。 11、应该在风机的前段装设风量控制装置,采用风机变频器或者空气控制阀来调节风量,因为想让光氧废气净化器的处理优势发挥到

大,进入设备的风量应该是稳定的,而且风量要平稳过渡,如果风量时大时小,不仅废气处理效果不佳,而且对除臭设备也会造成一定的影响。 12、要确保留出设备的检修以及维护空间。设备应该在顶部装设防雨措施,设备长时间的运转肯定会有损坏,如果不留出检修的空间,到时候就得把设备全部拆开,而这个工作量还是比较大的。 13、净化器通过法兰与排风风管连接,所有连接应密封、防止漏风。 14、净化器可室内、外安装,净化器室外安装请在机器上方安装防雨装置以增加机器的使用寿命。 15、净化器电源应接地,净化器水平安装于风管及排风风机之间。另外接220V单相三线电源至净化器。 16、要做好放电接地。因为UV光氧净化器也属于高压设备,所以应该在运行维护或者设备检修时都做好防点击事故措施。 17、净化器前端应该有水喷淋降解有机废气中的大型颗粒,以保证净化器内部洁净度和使用年限,延长维护时间。

第二章光催化氧化技术

第二章光催化氧化技术 第1节光催化概述 光催化(Phntocatalv}i} }是在光的照射下产生类似光合作用的光催化反应,产生出氧化能力极强的自山氢氧基和活性氧,具有很}},的光氧化还原功能,可氧化分解各种有机化合物 和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋白质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水和.二氧化碳,因而具有极强的杀菌、除臭、防霉、防r} ;自 洁、字泞除甲醛和净化空气功能。 光催化的特性为利用空气中的氧分子及水分子将所接触的有机物转换为二氧化碳和水,自身不起变化,却可以促进化学反应的物质,理论.r-有效期较长、维护费用低。同时,二氧化钦本身无毒无害。已广泛用于食品、民药、化妆品等各种领域。 光催化在光的照射下产生氧化能力极强的 氢氧自由基和活性氧,具有很强的光氧化还原 功能。可氧化分解各种有机化合物和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋臼质,可杀灭细菌和分解有机污染物,把有机污染物分解成无污染的水(HZO)和二氧化碳 }co}),因而具有极强的杀菌、除臭、防霉、防污自洁及净化空气的功能。 (川光催化基本原理光催化的原理是光催化剂纳米材料被太阳光、灯光(紫外线) 照射后,表面电子(e)被激励,同时生成带电的正孔(h+},正孔(h+)和空气中的氧 (o:)、水(HZo)发生反应,产生具有极强氧化作用的活性氧。有机物污染物、臭气、细 菌等被氧化分解,而电子(e)还原成空气中的氧。 光催化反应可分为下列几个步骤: ①反应物、氧气及水分子吸附于二氧化钦表而;②经光照射后。二氧化钦产生电子及空穴;③电子和空穴分别扩散到二氧化钦粒子表面;④电子、空穴和氧及水分子形成氢氧自由基;⑤氢氧自由基和反应物进行氧化反应; 光催化是利用特定波长光源的能量产生催化作用,使周围氧及水分子激发成极具活性的OH一及02一自由离子基,这些氧化力极强的自由基儿乎可分解所有对人体或环境有害的有机物质及部分无机物质 第2节光催化氧化技术在污水处理中的应用 }.光催化叙化技术的应用 光催化技术的研究始于20世纪70年代的后半期,用作催化的化学物有T1}} ,硫化锅、硫化亚铅、妮或钦系层状复合氧化物、二氧化铁等。用光照射催化剂时山于光生成空穴。氧化力强。大都采用不溶解的、稳定的半导体粉末二氧化钦,与水分解成氧和氢。从含乙醇的水溶液中生成氢,因水和氮合成氨,还原二氧化碳。含氨和.二氧化碳的水溶液合成氨基酸,氰基化离子或酪酸离子,变为纳米Tif}.}能处理多种有毒化合物。包括工业有毒溶剂、化学杀虫剂、木材光催化技术也被用于无机污染物的处理。利用光催化法在柠檬酸根离子存在下,可以使H}}被还原成Hg而沉积在TiO}表面;此法同样适川于铅。`Ti0:光催化可能降 解的尤机污染物还有氰化物,5}1}、I} }S , LV}和No:等有害气休也能被吸附在}'i。}表面,在光的作用下转化成无毒无害物质,井可回收贵金属。水污染有机物的分解研究儿乎都涉及到'}'i(}}光催化。 光催化是与常规热能催化相对应的催化技术,.光催化主要是有机盒属络合物和半导体。现在商用的光催化剂儿乎都是二氧化钦(Ti}} }可以说是半导体光催化。半甘体光催化的 一般机能是脱臭、抗菌、灭菌、防污、去除有害物等:.

废气处理方法

废气处理方法 废气处理一般分为无机废气与有机废气的处理,无机废气一般是采用喷淋法与水洗法,有机废气常用的方法是冷凝法、吸附法、吸收法、催化燃烧等。 无机废气 无机废气主要包括:硫氧化物、氮氧化物、碳氧化物、卤素及其化合物等。二氧化硫废气治理方法: 1、氨法脱硫(氨-酸法、氨-亚硫酸法、氨-硫铵法) 2、钠碱法脱硫(亚硫酸钠、亚硫酸钠循环法、钠盐-酸分解法) 3、石灰/石灰石法脱硫(石灰/石灰石直接喷射法、荷电干式喷射法、流化态燃烧法、石灰-石膏法、石灰亚硫酸钙法、喷雾干燥法) 4、双碱法脱硫(钠碱双碱法、碱性硫酸铝-石膏法、CAL法) 5、金属氧化物吸收法脱硫(氧化镁法、氧化锌法、氧化锰法) 6、活性炭吸附法脱硫 氮氧化物废气治理方法: 1、催化还原法(选择性催化还原法、非选择性催化还原法) 2、液体吸收法(稀硝酸吸收法、氨-碱溶液两级吸收法、碱-亚硫酸桉吸收法、硫代硫酸钠、硝酸氧化-碱液吸收法、尿素还原法、尿素溶液吸收法) 3、固体吸附法(分子筛吸附法、活性炭吸附法) 4、化学抑制法 5、SO 2和NO X 废气“双脱”技术(干式双脱技术、CuO双脱法、NO X SO双脱 技术、吸收剂直喷双脱技术、非均相催化双脱技术、湿式双脱技术) 硫化氢治理方法: 1、干法脱硫(克劳斯法、活性炭吸附法、氧化铁法、氧化锌法) 2、湿法脱硫(液体吸收法、弱碱溶液的化学吸收法、碱性盐溶液的化学吸收法、有机溶液的物理吸收法、环丁砜溶液的物理化学吸收法) 3、吸收氧化法(氧化铁悬浮液的吸收法、有机催化剂的吸收氧化法) 含氟废气治理方法: 1、稀释法、 2、吸收法(湿法)、

3、吸附法(干法) 氯气的治理方法 1、酸碱中和法 2、硫酸亚铁或氯化亚铁吸收法 3、四氯化碳吸收法 4、水吸收法 5、吸附法 氯化氢废气治理方法: 1、水吸收法 2、碱液吸收法 3、联合吸收法 4、冷凝法 含铅废气治理方法: 1、物理除尘法 2、化学吸收法(稀醋酸溶液吸收法、氢氧化钠溶液吸收法)、 3、掩盖法 含汞废气治理方法: 1、冷凝法 2、液体吸收法(高锰酸钾溶液吸收法、次氯酸钠溶液吸收法、热浓硫酸吸收法、硫酸-软锰矿溶液吸收法、过硫酸铵-文氏管吸收法、碘络合吸收法) 3、固体吸附法(充氯活性炭吸附法、多硫化钠-焦炭吸附法、吸收剂表面浸渍金属的吸附法、HgS催化吸附法) 4、联合净化法(冷凝-吸附法、冲击洗涤-焦炭层吸附法、液体吸收-充氯活性炭吸附法) 5、气相反应法(碘升华法、硫化净化法) 恶臭治理方法: 1、吸收法 2、吸附法 3、燃烧法(直接燃烧法、催化燃烧脱臭法)

光催化氧化技术在化工废水处理中的应用(2021)

光催化氧化技术在化工废水处理中的应用(2021) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0092

光催化氧化技术在化工废水处理中的应用 (2021) 伴随着环境的污染,人们越来越重视自己的生存环境,其中光催化技术的应用已经成为了在化工废水处理中非常重要的一部分,本文针对光催化技术在化工废水处理中的应用的相关问题进行了详细的分析和探索,供相关的废水处理人员参考。 1、光催化过程中的基本特征 光催化技术早在上个世纪60年代就有相应的研究,由于在光催化技术中存在节能效应较为明显,需要的设备较为简单,而且操作也较为方便,近些年来受到了我国很多广大用户的欢迎。针对光催化技术而言,其基本的特征是采用一种特殊的材料作为传递技术,采用特殊的溶剂,在该溶液中,容积会有足够的压力,通常是由水提供的压力,通过相应的反渗透膜,从而将其分离,由于该项技术

违背了自然渗透的基本原理,因此我们成为反渗透的作用,目前光催化的发方法基本上都是通过反渗透的犯法进行分离,从而达到提取,纯化和浓缩等的作用,针对反渗透装置而言,在不同的工厂,由于需要的参数存在一定的差异,因此在方案的确定上存在一定的差异。 2、光催化技术在化工废水中的具体应用 光催化反应时在氧化还原反应的基础形成的,在整个化学反应过程中,纳米材料的TO在整个反应的体系中起到了非常重要的作用。在此过程中发生非常复杂化学反应: 图1纳米TiO:光催化降解污染物的反应示意图 利用TiO光电化学悬浮电池的光生电流响应可对此进行研究。添加少许H0,反应不及时,使得反应不能发生,没有光生阳极电流,仅有光生阴极电流填加过量的HO,将发生如下反应: H,Oz+OH·—+Hs0+H0, HO+0H’一H2O+O 2.1光催化能够在污水净化中的应用

光催化氧化除臭设备简介及说明书教学提纲

光催化氧化除臭设备简介及说明书

光催化氧化除臭设备 光催化氧化是在外界可见光的作用下发生催化作用,光催化氧化反应是以半导体及空气为催化剂,以光为能量,将有机物降解为CO2和H2O。本公司采用的半导体是目前反应效率最高的纳米TiO2光催化剂,经蜂窝陶瓷载附特殊处理后使用,达到理想效果。在光催化氧化反应中,通过紫外光照射在纳米TiO2光催化剂上产生电子空穴对,与表面吸附的水份(H2O)和氧气(O2)反应生成氧化性很活波的羟基自由基(OH-)和超氧离子自由基(O2-、0-)。能够把各种废臭气体如醛类、苯类、氨类、氮氧化物、硫化物及其它VOC类有机物、无机物在光催化氧化的作用下还原成二氧化碳(CO2)、水(H2O)以及其它无毒无害物质,同时具有除臭、消毒、杀菌的功效,由于在光催化氧化反应过程中无任何添加剂,所以不会产生二次污染。 该设备核心中的纳米光催化触媒材料(GC-100)是一种吸收光能后,能在其表面产生催化反应的物质,当特定纳米波长的紫外光照射光催化触媒材料(GC-100)时,其表面发生光催化氧化还原反应。光催化触媒材料(GC-100)吸收光子后在其表面产生电子(E—)和空穴(H+),将吸收的光能转化成化学能,即具有光催化作用。当光催化触媒材料(GC-100)与空气中的水接触时,表面就吸附H2O、O2、OH—,H2O、 OH—被空穴(H+)所氧化,O2被电子(E—)还原,反应式如下: H2O+ H+ OH. + H+ O2+ E— O2—OH—基团的氧化能力较强,使有机物氧化,最终分解为水和CO2。下面为典型污染物的被该装备氧化机理。脂肪族氧化机理:

该装备中激发的特定波长紫外光激发光催化触媒材料(GC-100)所生成的OH. 具有强氧化作用,将脂肪族氧化为醇,进一步氧化为醛、酸,最后脱羧生成二氧化碳,整个过程可描述如下: R–CH2 CH3R–CH2 CH2 OH RCH2 CHORCH2 COOHR–CH3 +CO2RCH2 OHRCHOR–COOH每降解一个碳原子,生成一个CO2,重复循环,直到脂肪族完全转化为CO2为止。芳香族氧化机理: 该装备中激发的特定波长紫外光激发催化触媒材料(GC-100)所生成的OH. 和H+使苯环羟基化,生成羟基环已二烯自由基,进而开环生成已二烯二醛,再按脂肪族氧化途径降解,生成CO2和水。无机气体氧化机理:H2S+O2 2S+SH2O 4NH3+3O2 2N2+6H2O 综上所述,利用光催化触媒材料(GC-100)的光化作用,可以使接触光催化剂的水份、臭气、细菌、污物等有机成份都被分解,从而具有除臭、抗菌、防污、防雾的功能。 设备可以作为光解氧化除臭设备、低温等离子体废气净化设备的末端配套设备,也可以作为低浓度废气的直接处理设备,在应用于废气净化领域时,每1000m3 /h废气配置紫外线灯1支;在空气净化领域,每4000m3/h废气配置紫外线灯1支.

光催化反应器的设计

光催化反应器的设计 摘要 光化学反应过程由于具有选择性好且可在常温常压下进行等特点而在许多领域有着良好的应用前景。其中光催化技术作为一种真正环境友好的绿色技术,既可以在能源领域应用,将低密度的太阳能转化为可储存的高密度的洁净能源氢能;也可在环境领域应用,利用光能降解和矿化环境中的有机和无机污染物。光催化反应器作为光催化技术的核心设备,在光催化技术的应用中具有十分重要的地位。本文介绍了光催化反应的相关内容,并以FCC汽油光催化脱硫工艺为例,对实际情况作合理简化,建立了光催化反应器的数学模型。 关键词:光催化、反应器、数学模型。 1、前言 1.1 光化学反应工程 光化学反应是指在外界光源的照射下所发生的化学反应过程。[1]光化学反应器作为光化学生产中的关键设备,其性能优劣对于光化学反应过程的应用有十分重要的作用。因此,从工程应用的角度出发,研究光化学反应器的特性、模拟、设计、放大等问题已引起重视,并逐渐发展成化学反应工程学的一个新的分支—光化学反应工程。 与一般反应器相比,光化学反应器的设计与开发有很大的差异。光源的种类,光子的传播、吸收、发射及光化学反应器的几何形状,与光源间的相互位置等均会对光化学反应过程产生直接影响。[2] 1.2 光化学反应器类型 与普通的化学反应器一样,光化学反应器也可以按不同的方法分类。如按操作方式的不同可分为连续式和间歇式;按反应器内包括的流体的相数不同可分为均相和非均相;按反应器内流体流动状况可分为全混流、部分返混、活塞流等。然而,对于光化学反应器,除了操作方式、流动状况等会对其性能造成影响,更能反映光化学反应器特征并直接影响光化学反应器性能的则是光源种类、反应器几何形状及反应器与光源间的相互位置。[3]这些因素的不同组合就构成了不同类型的光化学反应器。光化学反应器可以有许多变化方式,大体可分为均相和非均相两大类。[4] 光化学反应器的选型包括光源、透光材料、反应器几何形状的确定等几个方面。光化学反应过程一般均需要紫外或近紫外光,当反应需要紫外光时,只能选择石英为透光材料。如反应可在近紫外光照射下进行,则可选用硼硅玻璃。[5] 1.3光催化反应器 1.3.1 光催化反应器的研究现状 最早出现的光催化反应器是为在实验室中进行研究而设计的,其结构简单,操作方便。反应器主体为一敞开的容器,并置于磁力搅拌机上,反应液在荧光或紫外灯的照射下反应,灯与液面的距离可调,现在仍有许多研究者用这种反应器来评价催化剂的活性或进行污染物降解规律的研究。[6] 目前应用较为广泛的光催化反应器是一种间歇式分批反应器它的特点是采用纳米TiO 2粉体形成的悬浆体系。但悬浆体系最大的问题是TiO 难以回收,要将催化剂粉末颗粒从流 2 动相中分离出来,一般需经过滤、离心、混凝、絮凝等方法,因而反应器只能为间歇式分批反应器,即每处理一批就要进行一次分离,使处理过程过于复杂,还增加了经济成本。因此,将催化剂固定在载体上,制成负载型光催化反应器已成为主要的研究方向。将TiO 负载后 2 可将其作为固定相,待处理废水或气体作为流动相,一般不存在后处理问题,可实现连续化处理,便于设计出各种实用化、商品化、工业化的光化学反应器。[7]

相关文档
最新文档