线性相关系数的计算

线性相关系数的计算
线性相关系数的计算

Spss电脑实验-第六节(3)线性相关系数的计算

https://www.360docs.net/doc/222216450.html,更新时间:2006-1-19 21:11:30 关注指数:7992

Ⅲ.线性相关系数的计算

1. 线性相关的概念

如果各统计指标是定量数据,要了解它们间的关系密切程度,可用线性相关分析。

例如:大家都知道的糖尿病病人,它靠胰岛素来治疗。现测量20 名糖尿病病人(以ID 来编号)血中的血糖值(y)、胰岛素值(x1)和生长激素值(x2)。我们即可分析 y、x1 和x2 间的两两/ 双变量间的线性关系。数据见下面的程序文件CorreRegre2.sps 的例*2。

2. 线性相关计算的所用命令

用SPSS Analyze 菜单中的子菜单Correlate,其中的Bivariate 对话框即可计算两两/ 双变量间的线性相关系数r 及其显著性。这是通常最常见、最常用的情况。

本例所用程序文件名为CorreRegre2.sps 中的例*2。(例*2 中还有用于偏相关系数与距离相关系数的计算命令,详后)。

----------------------------------------------------------------

*2. Prof. Zhang Weng-Tong: SPSS 11, P.273-277:.

DATA LIST FREE /ID y x1 x2.

BEGIN DATA.

1 12.21 15.20 9.51

2 14.54 16.70 11.43

3 12.27 11.90 7.53

4 12.04 14.00 12.17

5 7.88 19.80 2.33

6 11.10 16.20 13.52

7 10.43 17.00 10.07

8 13.32 10.30 18.89

9 19.59 5.90 13.14

10 9.05 18.70 9.63

11 6.44 25.10 5.10

12 9.49 16.40 4.53

13 10.16 22.00 2.16

14 8.38 23.10 4.26

15 8.49 23.20 3.42

16 7.71 25.00 7.34

17 11.38 16.80 12.75

18 10.82 11.20 10.88

19 12.49 13.70 11.06

20 9.21 24.40 9.16

END DATA.

CORRELATIONS /VARIABLES=y x1 x2 /PRINT=TWOTAIL NOSIG.

NONPAR CORR /VARIABLES=y x1 x2 /PRINT=SPEARMAN TWOTAIL NOSIG.

NONPAR CORR /VARIABLES=y x1 x2 /PRINT=KENDALL TWOTAIL NOSIG.

PARTIAL CORR /VARIABLES= y x2 BY x1

/SIGNIFICANCE=TWOTAIL.

PROXIMITIES y x1 x2

/VIEW=CASE

/MEASURE= CORRELATION

/STANDARDIZE= NONE.

PROXIMITIES y x1 x2

/VIEW=CASE

/MEASURE= EUCLID

/STANDARDIZE=NONE.

*--------------------------------------------------------------------------.

3. 线性相关系数的计算结果

SPSS 中的CORRELATION 命令,可计算各变量两两间的线性相关系数,单独地计算两两变量间相关系数的结果是:Y 与X1 间相关系数为-0.840, P=0.000;Y 与X2 间相关系数为0.638, P=0.002;X1 与X2 间相关系数为-0.663, P=0.001。

Correlations

Y X1 X2

Y Pearson Correlation 1.000 -0.840 0.638

Sig. (2-tailed) . 0.000 0.002

N 20 20 20

X1 Pearson Correlation -0.840 1.000 -0.663

Sig. (2-tailed) .000 . 0.001

N 20 20 20

X2 Pearson Correlation 0.638 -0.663 1.000

Sig. (2-tailed) 0.002 0.001 .

N 20 20 20

** Correlation is significant at the 0.01 level (2-tailed).

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

线性回归中的相关系数

线性回归中的相关系数 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

线性回归中的相关系数 山东胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当 x不全为零,y i i 也不全为零时,则两个变量的相关系数的计算公式是: r就叫做变量y与x的相关系数(简称相关系数). 说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关; (2)另外注意r的大小,如果[] r∈,,那么正相关很强;如果[] 0.751 r∈-- ,,那 10.75 么负相关很强;如果(] ,或[) r∈,,那么相关性一般;如果 0.300.75 r∈-- 0.750.30 [] r∈-,,那么相关性较弱. 0.250.25 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1测得某国10对父子身高(单位:英寸)如下:

(1)对变量y 与x 进行相关性检验; (2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,10 21 44794i i x ==∑,10 21 44929.22i i y ==∑,4475.6x y =, 2 4462.24x =, 2 4489y =,10 1 44836.4i i i x y ==∑, 所以10 i i x y nx y r -= ∑ 80.4 0.9882.04 ≈ ≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则10 1102 21 1010i i i i i x y xy b x x ==-= -∑∑44836.444756 0.46854479444622.4 -= ≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:

线性相关系数的计算

Spss电脑实验-第六节(3)线性相关系数的计算 https://www.360docs.net/doc/222216450.html,更新时间:2006-1-19 21:11:30 关注指数:7992 Ⅲ.线性相关系数的计算 1. 线性相关的概念 如果各统计指标是定量数据,要了解它们间的关系密切程度,可用线性相关分析。 例如:大家都知道的糖尿病病人,它靠胰岛素来治疗。现测量20 名糖尿病病人(以ID 来编号)血中的血糖值(y)、胰岛素值(x1)和生长激素值(x2)。我们即可分析 y、x1 和x2 间的两两/ 双变量间的线性关系。数据见下面的程序文件CorreRegre2.sps 的例*2。 2. 线性相关计算的所用命令 用SPSS Analyze 菜单中的子菜单Correlate,其中的Bivariate 对话框即可计算两两/ 双变量间的线性相关系数r 及其显著性。这是通常最常见、最常用的情况。 本例所用程序文件名为CorreRegre2.sps 中的例*2。(例*2 中还有用于偏相关系数与距离相关系数的计算命令,详后)。 ---------------------------------------------------------------- *2. Prof. Zhang Weng-Tong: SPSS 11, P.273-277:. DATA LIST FREE /ID y x1 x2. BEGIN DATA. 1 12.21 15.20 9.51 2 14.54 16.70 11.43 3 12.27 11.90 7.53 4 12.04 14.00 12.17 5 7.88 19.80 2.33 6 11.10 16.20 13.52 7 10.43 17.00 10.07 8 13.32 10.30 18.89 9 19.59 5.90 13.14 10 9.05 18.70 9.63 11 6.44 25.10 5.10 12 9.49 16.40 4.53 13 10.16 22.00 2.16 14 8.38 23.10 4.26 15 8.49 23.20 3.42 16 7.71 25.00 7.34 17 11.38 16.80 12.75 18 10.82 11.20 10.88 19 12.49 13.70 11.06 20 9.21 24.40 9.16 END DATA. CORRELATIONS /VARIABLES=y x1 x2 /PRINT=TWOTAIL NOSIG. NONPAR CORR /VARIABLES=y x1 x2 /PRINT=SPEARMAN TWOTAIL NOSIG.

第三章附录:相关系数r 的计算公式的推导

相 关 系 数 r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符 号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ= 12)1(-i i P P 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2 P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。 由于使(2P σ)′=0的A A 值只有一个,所以据公式(3)计算出的A A 使2 P σ为最小值。

以上分析清楚地说明:对于证券A和证券B,只要它们的系数r AB 适当小(r AB 的“上限”的 计算,本文以下将进行分析),由证券A和证券B构成的投资组合中,当投资于风险较大的证券B 的资金比例不超过按公式(3)计算的(1—A A ),会比将全部资金投资于风险较小的证券A的方 差(风险)还要小;只要投资于证券B的资金在(1—A A )的比例范围内,随着投资于证券B的资 金比例逐渐增大,投资组合的方差(风险)会逐渐减少;当投资于证券B的资金比例等于(1—A A )时,投资组合的方差(风险)最小。这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。按公式(3)计算出的证券A和证券B的投资比例构成的投资组合称为最小方差组合,它是证券A和证券B的各种投资组合中方差(亦即风险)最小的投资组合。

线性回归方程中的相关系数r教学教材

线性回归方程中的相 关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量, R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。 R = R接近于1表明Y与X1, X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1, X2 ,…,Xk之间的线性关系程度不密切

相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位 就一个reg来说y=a+bx+e a+bx的误差称为explained sum of square e的误差是不能解释的是residual sum of square 总误差就是TSS 所以TSS=RSS+ESS 判定系数也叫拟合优度、可决系数。表达式是

第三章:相关系数r 的计算公式的推导

设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ= 11 -n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1 122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 2 2 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22 2 2 2---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ =---∑1 )])([(

皮尔逊相关系数

简单相关系数又称皮尔逊相关系数,它描述了两个定距变量间联系的紧密程度。样本的简单相关系数一般用r表示,计算公式为: 其中n 为样本量,分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的取值在-1与+1之间,若r>0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r<0,表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。r 的绝对值越大表明相关性越强,要注意的是这里并不存在因果关系。若r=0,表明两个变量间不是线性相关,但有可能是其他方式的相关(比如曲线方式) 利用样本相关系数推断总体中两个变量是否相关,可以用t 统计量对总体相关系数为0的原假设进行检验。若t 检验显著,则拒绝原假设,即两个变量是线性相关的;若t 检验不显著,则不能拒绝原假设,即两个变量不是线性相关的 皮尔逊相关系数又称“皮尔逊积矩相关系数”,对两个定距变量(例如,年龄和身高)的关系强度的测量,简写τ。这一测量也可用作对显著性的一种检验,其方法是检验解消假设:总体中的τ值为0。若样本τ实际上不等于0,则解消假设可加否定,从而我们可以满意地看到,这两个变量不是无关的,在统计显著性层次上它们是有关的。例如,若我们有一个较大的样本,并发现一个高的样本值τ(例如,90),那么我们不妨否定这一解消假设:这个样本是来自一个其真正的τ值为0的总体,因为假若真正的总体值是0,我们就不可能单纯碰巧取得一个如此高的样本。τ的变化从-1(全负关系),通过0(无关系或无关性),到+1(全正关系)。从直线关系和曲线关系之间的关系来说,τ是对直线关系的一种测量。对τ有两个主要的解释:(1)τ2=所解释的方差额。(2)τ测量围绕回归线散布的程度,也就是说,它告诉我们,我们用回归线可预测的准确程度有多大。 1、建立数据库 2、按analyze-----correlate------bivarizte顺序单击菜单项,展开一个对话框,在correlation coefficients中就有Pearson相关系数的选项 简单相关系数又称皮尔逊相关系数,它描述了两个定距变量间联系的紧密程度。样本的简单相关系数一般用r表示,计算公式为:其中n 为样本量,分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的取值在-1与+1之间,若r>0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r<0,表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。r 的绝对值越大表明相关性越强,要注意的是这里并不存在因果关系。若r=0,表明两个变量间不是线性相关,但有可能是其他方式的相关(比如曲线方式)。利用样本相关系数推断总体中两个变量是否相关,可以用t 统计量对总体相关系数为0的原假设进行检验。若t 检验显著,则拒绝原假设,即两个变量是线性相关的;若t 检验不显著,则不能拒绝原假设,即两个变量不是线性相关的。单尾检验及双尾检验的判断:假定鱼缸里只有2条金鱼,这时恰巧要检验雌雄,就用双尾检验,但若此时不检验,缓几天再检,当池子里的鱼有3或5条时检验,需用单尾检验法,方可检验完毕! 答案不错,终于明白了·就是说,两条金鱼的时候,他们是雌是雄都有可能,所以是不存在线性关系的,因此要用双尾检验;如果过几天有了小金鱼,说明这两条金鱼一

线性回归中的相关系数

线性回归中的相关系 数 Revised on November 25, 2020

线性回归中的相关系数 山东胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当 x不全 i 为零,y i也不全为零时,则两个变量的相关系数的计算公式是: r就叫做变量y与x的相关系数(简称相关系数). 说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关; (2)另外注意r的大小,如果[] r∈,,那么正相关很强;如果 0.751 [] ,或[) 0.300.75 r∈,,那么相关 r∈-- 0.750.30 r∈-- ,,那么负相关很强;如果(] 10.75 性一般;如果[] 0.250.25 r∈-,,那么相关性较弱. 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1测得某国10对父子身高(单位:英寸)如下: (1)对变量y与x进行相关性检验;

(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,102 144794i i x ==∑,10 2144929.22i i y ==∑,4475.6x y =,2 4462.24x =, 24489y =,10 144836.4i i i x y ==∑, 所以10i i x y nx y r -∑ 80.40.9882.04 =≈≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则 101 102211010i i i i i x y xy b x x ==-=-∑∑44836.4447560.46854479444622.4 -=≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:

相关系数计算公式

相关系数计算公式 相关系数计算公式 Statistical correlation coefficient Due to the statistical correlation coefficient used more frequently, so here is the use of a few articles introduce these coefficients. The correlation coefficient: a study of two things (in the data we call the degree of correlation between the variables). If there are two variables: X, Y, correlation coefficient obtained by the meaning can be understood as follows: (1), when the correlation coefficient is 0, X and Y two variable relationship. (2), when the value of X increases (decreases), Y value increases (decreases), the two variables are positive correlation, correlation coefficient between 0 and 1. (3), when the value of X increases (decreases), the value of Y decreases (increases), two variables are negatively correlated, the correlation coefficient between -1.00 and 0. The absolute value of the correlation coefficient is bigger, stronger correlations, the correlation coefficient is close to 1 or -1, the higher degree of correlation, the correlation coefficient is close to 0 and the correlation is weak. The related strength normally through the following range of judgment variables: The correlation coefficient 0.8-1.0 strong correlation 0.6-0.8 strong correlation

线性回归中的相关系数

线性回归中的相关系数 Last updated on the afternoon of January 3, 2021

线性回归中的相关系数 山东胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当 x不全为零,y i i 也不全为零时,则两个变量的相关系数的计算公式是: r就叫做变量y与x的相关系数(简称相关系数). 说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关; (2)另外注意r的大小,如果[] r∈,,那么正相关很强;如果[] 0.751 r∈-- ,,那 10.75 么负相关很强;如果(] ,或[) r∈,,那么相关性一般;如果 0.300.75 r∈-- 0.750.30 [] r∈-,,那么相关性较弱. 0.250.25 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1测得某国10对父子身高(单位:英寸)如下:

(1)对变量y 与x 进行相关性检验; (2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,10 21 44794i i x ==∑,10 21 44929.22i i y ==∑,4475.6x y =, 2 4462.24x =, 2 4489y =,10 1 44836.4i i i x y ==∑, 所以10 i i x y nx y r -= ∑ 80.4 0.9882.04 ≈ ≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则10 1102 21 1010i i i i i x y xy b x x ==-= -∑∑44836.444756 0.46854479444622.4 -= ≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:

第三章:相关系数r 的计算公式的推导

第三章附录:相关系数r的计算公式的推导 -CAL-FENGHAI.-(YICAI)-Company One1

相关系数r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 22 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22222 ---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()])([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22 -+- … …………………………………(3) AB B A i i r n B B A A σσ =---∑1 )])([(

三种常用的不同变量之间相关系数的计算方法

三种常用的不同变量之间相关系数的计算方法 1.定类变量之间的相关系数. 定类变量之间的相关系数,只能以变量值的次数来计算,常用λ系数法, 其计算公式为: (3.2.12) 式中,为每一类x中y分布的众数次数;为变量y各分类次数的众数次数;n为总次数。一般来说,λ系数在0~1之间取值,值越大表明相关程度越高。 例如,性别与对吸烟的态度资料见表3—2。 表3—2 性别与对吸烟态度 态度y 性别x 男女合计(Fy) 容忍反对37 15 8 42 45 57 合计(Fx)52 50 102 从y的分布来看,对吸烟的态度众数是“反对”,众数次数为57,即=57。再从x的每 一个分组(男、女)中y的次数分布来看,男性中y的分布众数是“容忍”,次数为37(f1m);女性中y的分布众数是“反对”,次数为42(f2m);总次数为102(n)。于是, 从计算结果可知,性别与对吸烟态度的相关程度为0.49,属于中等相关。 2.定序变量之间的相关系数

定序变量之间的相关测量常用Gamma系数法和Spearman系数法。Gamma系数法计算公式为: (3.2.13) 式中,G为系数;Ns为同序对数目;Nd为异序对数目。 所谓序对是指表明高低位次的两两配对,如果一对个案在变量x,y的分类表现位次一致,则为同序对;如果位次相反,则为异序对。 G系数取值在—1--十1之间。G=1,表示完全正相关;G=-1,表示完全负相关;G=0,表示完全不相关;-1

线性回归中的相关系数

线性回归中的相关系数 山东 胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量就是否就是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法就是绘制散点图;另外一种方法就是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r 来衡量两个变量之间的线性相关的强弱,当i x 不全为零,y i 也不全为零时,则两个变量的相关系数的计算公式就是: ()() n n i i i i x x y y x y nx y r ---= = ∑∑r 就叫做变量y 与x 的相关系数(简称相关系数). 说明:(1)对于相关系数r ,首先值得注意的就是它的符号,当r 为正数时,表示变量x ,y 正相关;当r 为负数时,表示两个变量x ,y 负相关; (2)另外注意r 的大小,如果[]0.751r ∈,,那么正相关很强;如果[]10.75r ∈--,,那么负相关很强;如果(]0.750.30r ∈--, 或[)0.300.75r ∈,,那么相关性一般;如果[]0.250.25r ∈-,,那么相关性较弱. 下面我们就用相关系数法来分析身边的问题,确定两个变量就是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 (1)对变量y 与x 进行相关性检验; (2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,10 2 1 44794i i x ==∑,10 21 44929.22i i y ==∑,4475.6x y =,2 4462.24x =, 2 4489y =,10 1 44836.4i i i x y ==∑,

SPSS 3种相关系数的区别

3种相关系数的区别 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析 Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项: Pearson Kendall's tau-b Spearman:Spearman spearman(斯伯曼/斯皮尔曼)相关系数 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法” 斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究 Kendall's相关系数 肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。适用这种方法的数据资料一般是采用等级评定的

线性回归中的相关系数

线性回归中的相关系数 Prepared on 24 November 2020

线性回归中的相关系数 山东 胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r 来衡量两个变量之间的线性相关的强弱,当i x 不全为零,y i 也不全为零时,则两个变量的相关系数的计算公式是: ()() n n i i i i x x y y x y nx y r ---==∑∑r 就叫做变量y 与x 的相关系数(简称相关系数). 说明:(1)对于相关系数r ,首先值得注意的是它的符号,当r 为正数时,表示变量x ,y 正相关;当r 为负数时,表示两个变量x ,y 负相关; (2)另外注意r 的大小,如果[]0.751r ∈,,那么正相关很强;如果[]10.75r ∈--, ,那么负相关很强;如果(]0.750.30r ∈--, 或[)0.300.75r ∈,,那么相关性一般;如果[]0.250.25r ∈-,,那么相关性较弱. 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1 测得某国10对父子身高(单位:英寸)如下: (1)对变量y 与x 进行相关性检验;

(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,102 144794i i x ==∑,102144929.22i i y ==∑,4475.6x y =,2 4462.24x =, 24489y =,10 144836.4i i i x y ==∑, 所以10i i x y nx y r -=∑ 44836.4104475.6(4479444622.4)(44929.2244890)-?=-- 80.40.9882.04 =≈≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则101 10 2211010i i i i i x y xy b x x ==-=-∑∑44836.4447560.46854479444622.4 -=≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表: 其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 是否具有相关关系; (2)如果y 与x 是相关关系,求回归直线方程. 解:(1)由已知表格中的数据,利用计算器进行计算得

第三章附录:相关系数r 的计算公式的推导

相关系数r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ=11-n 2 )(∑-A A i 2B σ=11-n )(B B i -∑2 2P σ= 11-n 2 )1 (∑∑ - i i P n P =2 )](1 )[(11i B i A i B i A B A A A n B A A A n +- +-∑∑ =2 )]()[(11 B A A A B A A A n B A i B i A +-+-∑ =2 )]()([1 1 B B A A A A n i B i A -+--∑ = )])((2)()([1 1 2 222B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2A × 22 1 ) (B i A n A A +--∑× 1 )] )([(21 ) (2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22222---? ++∑n B B A A A A A i i B A B B A A σ σ 对照公式(1)得: = 1 )(2 --∑ n A A i × 1 )(2 --∑ n B B i × r AB ∴ r AB = ∑∑∑-? ---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ=---∑1 )])([(

相关系数与P值的一些基本概念

相关系数与P值的一些基本概念 注:在期末论文写作过程中,关于相关系数与假设检验结果的表达方式,出现了一些概念问题。这篇文档的容是对一些相关资料进行整理后的结果,供感兴趣的同学参考。如果需要更确切的定义,请进一步参阅统计分析类的教材。 1.相关系数 常用Pearson’s correlation coefficient,计算公式与传统概念上的相同,即: 常用符号r表示。-1≤r≤1 如果用于评估数据点与拟合曲线间的关联程度,则一般用相关系数的平方值表示,常用符号为2R,1 02≤ ≤ R 典型示例如下图。2R相差不大,但显然数据规律完全不同。因此,一般需要结合拟合曲线图表给出2R,才有参考价值。

相关系数另一方面的应用是用来评估两组数据之间相互关联的程度,简单来说,就是判断一下两参量之间是否“相关”,有3种可能的情况,如下面的图所示。 (1)r>0,正相关。x增大,y倾向于增大; (2)r<0,负相关。x增大,y倾向于减小; (3)r=0,不相关。x增大,y变化无倾向性; 此时的相关系数一般用r表示。下图给出了不同r取值的例子。 显然,如果只是用来判断两参量之间的“关联”性质,r=-0.70与r=0.70应该是相同的。所以也可用(常见)r的绝对值表达。用文字表述“关联”程度时,可参考下面的取值围建

议: 需要注意的是,这种相关系数的计算方法给出的r值,实际上反映的是“线性相关”的程度,如果两者虽然相关,但不是线性的,很可能给出不是很靠得住的结果,观察下面的例子。 左下角图中,两参量显然相关,但“线性”程度不够,所以Pearson’s correlation coefficient只有0.88。 另外一种相关系数的计算方法,Spearman correlation coefficient,用来评估两参量之间的“单调相关性”。如上面左下角图中的Spearman相关系数=1。Spearman correlation coefficient计算公式为: 其中,n为样本数,

相关文档
最新文档