日本电装共轨系统1管脚定义(简易版)

日本电装共轨系统1管脚定义(简易版)

电装报告

电装实习报告

目录 1.实习目的 (2) 2常用低压电器元件简介 (2) 2.1低压断路器 (2) 2.2交流接触器 (2) 2.3热继电器 (3) 2.4行程开关 (3) 2.5按钮 (4) 2.6时间继电器 (4) 2.7刀开关 (5) 3.实习项目内容 (5) 3.1电动机单向运行控制线路 (5) 3.2 自动往返控制线路 (6) 3.3 设计性题目 (8) 4.实习总结 (9) 参考文献 (9)

1.实习目的 使我们对电气元件及电工技术有一定的感性和理性认识,对电工技术等方面的专业知识做进一步的理解。同时,通过实习得实际生产知识和安装技能,掌握电动机单向运行控制线路、自动往返控制线路及其元件的工作原理等电工技术知识,培养学生理论联系实际的能力,提高分析问题和解决问题的能力,增强独立工作能力,培养学生团结合作,共同探讨,共同前进的精神。 2.常用低压电器元件简介 2.1低压断路器 (1)作用:接通或断开电源、过载保护、短路保护、欠压保护 (2)工作原理:主触点将电源与负载接通或断开。可以利用手柄装置使主触点处于“合”与“分”状态。 (3)符号:QF (4)型号规则:DZ47-60C10 图1 低压断路器 2.2交流接触器 (1)作用:远距离接通或断开大电流电路、欠压及失压保护 (2)工作原理: ①线圈通电,电磁机构产生磁场,当电磁吸力大于复位弹簧时,衔铁被吸合,触点系统动作。 ②线圈断电,电磁吸力消失,衔铁在复位弹簧作用下被释放,从而使触点系统复位。 ③线圈通电,但电源电压过小时,电磁吸力小于弹簧弹力时,衔铁被释放,使得触点系统复位。

(3)符号:KM (4)型号规则:CJT1-10 图2 接触器 2.3热继电器 (1)作用:过载保护、断相保护 (2)工作原理:因双金属片膨胀系数不同,引起双金属片向膨胀系数小的一侧弯曲,推动导板等动作机构使触点动作,即动合触点闭合,动断触点断开,达到自动切断电源和发出相应报警信号的目的。 (3)符号:FR (4)型号规则:GR3620 图3 热继电器 2.4行程开关 (1)作用:发出移行机构位置信号 (2)工作原理:移行机构撞击撞快,触点系统动作,从而发出位置信号,移行机构离开此位置后,行程开关触点系统复位。 (3)符号:SQ (4)型号规则:LX19-11

国三高压共轨发动机燃油系统

国三高压共轨发动机燃油系统主要部件介绍共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。这类电控系统可分为:蓄压式电控燃油喷射系统、液力增压式电控燃油喷射系统和高压共轨式电控燃油喷射系统。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a. 共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b. 可独立地柔性控制喷油正时,配合高的喷射压力 (120MPa~200MPa ),可同时控制NOx 和微粒 (PM )在较小的数值内,以满足排放要求。 c. 柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NOx ,又能保证优良的动力性和经济性。 d. 由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国ROBERT BOSCH 公司的CR 系统、日本电装公司的

ECD-U2 系统、意大利的FIAT 集团的unijet 系统、英国的DELPHI DIESEL SYSTEMS 公司的LDCR 系统等。 二、高压共轨燃油喷射系统主要部件介绍 高压共轨电控燃油喷射系统主要由电控单元、高压油泵、共轨管、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1 、高压油泵 高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。 bosch 公司采用由柴油机驱动的三缸径向柱塞泵来产生高达135Mpa 的压力。该高压油泵在每个压油单元中采用了多个压油凸轮,使其峰值扭矩降低为传统高压油泵的1/9 ,

电装系统诊断仪培训教程

一汽锡柴国三电控发动机 诊断仪使用及电控车电气检查教程 (电装系统) 一汽解放汽车有限公司无锡柴油机分公司研发部 2006-8-21

主要内容: 1、电控系统诊断的一般原则 2、系统诊断方法 3、故障诊断仪的使用 4、电控发动机电气故障检查及处理 5、电控发动发动机点火前电气检查

一、电控系统诊断的一般原则 电控发动机的电子控制系统是一个精密而又复杂的系统,其故障的诊断也较为困难。而造成电控发动机不工作或工作不正常的原因可能是电子控制系统,也有可能是电子控制系统外其他部分的问题。故障检查的难易程度也不一样。如果我们能够遵循故障诊断的一些基本原则,就可能以较为简单的方法准确而迅速地找出故障所在。电控发动机故障诊断排除的基本原则可概括为以下几点。 (1)先外后内 在发动机出现故障时,先对电子控制系统以外的可能故障部位予以检查。这样可避免本来是一个与电子控制系统无关的故障,却对系统的传感器、电脑、执行器及线路等进行复杂且又费时费力的检查,即真正的故障可能是较容易查找到却未能找到。比较容易的方法是发动机发生故障时,首先观察系统的故障指示灯,如果指示灯没有显示故障,则基本可以作为机械故障来进行处理。如果指示灯亮,我们就可以通过闪码来知道故障位置,进而进行相应处理。 (2)先简后繁 实际上发动机故障绝大多数都是比较简单的故障,电气系统的故障也是如此。我们可以首先对电气系统进行初步的检查,比如检查电控系统线束的连接状况:传感器或执行器的电连接器是否良好;线束间的连接器是否松动或断开;电线是否有磨破或线间短路现象;电连接器的插头和插座有无腐蚀现象等,检查每个传感器和执行器有无明显的损伤。 直观检查未找出故障,需借助于仪器仪表或其他专用工具来进行检查时,也应对较容易检查的先予以检查。能检查的项目先进行检查。 (3)代码优先 电子控制系统一般都有故障自诊断功能,当电子控制系统出现某种故障时,故障自诊断系统就会立刻监测到故障并通过“检测发动机”警告灯向驾驶员报警,与此同时以代码的方式储存该故障的信息。这时我们应该按下发动机检查开关,这是发动机故障指示灯会按顺序闪出闪码,我们可根据对应的手册查出闪码指示的故障,从而解决故障。

博世、电装、瑞萨的先进驾驶辅助系统 (ADAS)

2015.2.15 No.1376 1.博世在自动驾驶方面的努力 2.电装:支持高级驾驶辅助系统的传感技术 3.瑞萨:通过单个芯片实现不碰撞车辆 概要 博世的车辆后方中程雷达传感器在检测到后方车辆 时会辅助变道 (图片提供:博世) 从停车位倒退离开时,由于驾驶员的视野被遮挡, 存在潜在危险,因此采用上述传感器进行辅助 (图片提供:博世)

本报告将介绍2015年1月14~16日举办第7届国际汽车电子技术博览会(日本)上,博世、电装、瑞萨电子这三家公司的先进驾驶辅助系统 (ADAS:Advanced Driver Assistance System) 相关演讲及展示内容。 三家公司都着眼于未来的自动驾驶,计划提高安全技术、驾驶辅助技术,并分阶段实施新技术的应用。 博世认为,自动驾驶起步于高速行驶与泊车辅助,因此将朝这2个领域发展。通过这2个领域展现自动驾驶所必需的关键技术“Surround Sensing”、“Safety and Security”以及“完善相关法规的必要性”,同时介绍了支持这些技术的“地图数据”以及“System Architecture (包括电动化)”。 电装主要围绕行驶环境识别 (周边环境传感器) 进行了演讲。今后将进一步利用提高识别精度的信号处理技术MUSIC (Multiple Signal Classification) 、以及扫描型LIDAR (Light Detection and Ranging)等技术。还介绍了通过准天顶卫星将本车定位精度提高至10cm级别等计划。 专业半导体制造商瑞萨电子介绍了安全驾驶及其他驾驶辅助系统的内容复杂化、识别对象范围扩大、识别及判断处理增加、功耗增加、以及对功能安全的要求日趋严格等趋势。瑞萨开发ADAS方面的SoC (System on a Chip:系统LSI) —R-Car车载芯片、通过实现驾驶辅助系统需求多合一的32位微控制器RH850、以及在上述情况下的低功耗解决方案。此外,瑞萨还致力于提供新的通信技术WAVE解决方案,以满足对“联网车辆”的要求。 相关报告: 自动驾驶:哪些技术掌握关键(2014年11月) 自动驾驶技术的发展蓝图:Telematics Japan 2014 (2014年11月) 2014年底特律ITS世界大会:CTO研讨会概况(2014年10月) 2014年底特律ITS世界大会:进一步进化的自动驾驶技术和辅助系统(2014 年10月) 博世以“博世在自动驾驶方面的努力”为题进行了演讲。 作为未来移动工具的趋势,博世列举了“自动化”、“联网”、“电动化”等。 博世描绘的未来移动工具

中国重汽杭发发动机装载日本电装高压共轨燃油喷射系统

共轨压力传感器650r/min 44Mpa 1.72V 237r/min 103Mpa 2.7V 用万用表交流档可量NE传感器频率,NE传感器输出为交流喷冲信号,也可用试灯测试。小灯炮5W,观察灯炮是否闪亮,闪亮即为信号正常 G传感器为有源传感器 输入:5V 信号:0.7----3.8V 目标压力比实际压力大0.5Kpa,如果太大油路故障 如果共轨压力传感器损坏:电脑默认最低48兆帕,最高80兆帕;电脑默认这么多。肯定损失动力。 共轨压力超过140,就会自动泄压,降到30。

如果把压力传感器拔掉,就不会出现这种问题。 650转压力40 如果有空调可到50 24V马达250转 喷油器漏油,汽车无法起动,可拔掉共轨压力传感器,汽车就可以启动,用电脑可以查看喷油器的补偿值,如果补偿值的大于或者小于5V,就表示喷油器损坏。 进气压力传感器,100千帕,110-120千帕,原地加油门。 上坡可以达到达到达200千帕。 如果坏掉,自动生成信号:0.7-1.1V 128号线是进气压力的电源。 如果这条线搭铁,就自动切掉电源。 如果其中有一个有源传感器电源搭铁,其它的有源传感器都没电。

查信号最好剪断再量,搭铁了量不到。 进气温度传感器,零度以下,会自动预热。 平常50-70度,经过增压可达到170度。 经过中冷到55度,如果进气温度10-20度,传感器损坏,一直这么多度的话,发动机喷油加浓,油耗高。 冷却水温传感器,正常85-95度 水温低,增加油耗,把节温器拆了,也增加油耗。 排气制动起作用的前提条件 1、发动机转速1000以上 2、不能在空档位置 3、不能踩离合器 4、不能加油门 (这个跟潍柴不一样的地方,就是潍柴可以在空档位置,停着车也可以试,杭发的就不行了。) 燃油温度传感器 四个回油管的地方,最高达到80度,正常40-60;80度表明某地方有问题。 机油压力传感器 ECU接收不到机油压力传感器信号,过几分钟会熄火

共轨式电控喷油系统

★柴油机共轨式电控燃油喷射技术产生的背景: 随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。我国从80年代起相应制订了有关的标准,将环境保护作为大事来抓。与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。 柴油机高速运转时,柴油喷射过程的时间只有千分之几秒。实验证明,喷射过程中,高压油管各处的压力是随时间和位置的不同而变化的。柴油的可压缩性质和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。油管内的压力波动有时还会在喷射时之后,使高压油管内的压力再次上升,达到令喷油器针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,并使油耗增加。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低速区域容易产生上述现象。严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。为了解决柴油机燃油压力变化所造成的缺陷,现代柴油机采用了一种称之为“共轨”的电喷技术。 ★什么是共轨技术? 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。

电装共轨维修案列

电装denso高压共轨维修案例 案例1 故障症状:起动机和发动机均有正常起动转速,但不着火;或者有时经过多次长时间的起动方可着火。无故障码。 故障分析排除: 1、检查油路。 无故障码一般首先考虑是机械故障,启动困难我们首先想到的应该是油路,如果燃油管路进空气,会造成启动困难。共轨系统,油路排空气相对困难一些,因为手油泵排空能力很小,需要很长的时间,而且费力,往往操作人员有时感觉到空气排除干净了,实际还是没有彻底排干净,根据我们实际遇到情况来看,这样的事例不在少数。我们可以试着松开油泵回油螺栓来排空气,必要时可松开高压油管,利用起动机带动发动机空转来排空气,这样会快得多,但此时要注意燃油不要弄湿各线束插头。如果确定是没有空气,那么就要考虑是不是燃油管路有堵塞的情况,最好从油箱、进油管、油水分离器、输油泵、柴油滤清、高压油泵、高压油管、喷油器、回油管一路细细检查,有堵塞情况排除堵塞;还有一种情况,如果进油软管或回油软管内径太细太长导致进回油进回油不畅,比较严重的也会使发动机启动困难或无法起动。此时,需要更换符合要求的进回油管,内径最好12毫米以上。 如果确认依然没有堵塞的话,那么再检查整个油路是否有泄漏。比如6DL1国III机横腔与喷油器之间比较容易泄露。油路有泄露会导致轨压难以建立,从而无法着车,可以检查泄露情况,尤其喷油器横腔,确认是安装问题还是磨损问题造成的再进行相关处理。如果前面的情况都正常的话,油路的问题基本可以排除,除非油品过于低劣。 2、检查电路 首先检查ECU是否有电,没有电肯定启动不了。还有一个比较重要的问题是,电装系统的油泵有两个PCV阀,这两个阀如果位置插反了,也启动不了,而且不报故障码,那么我们首先辨认一下插线上的记号,有标记的靠飞轮壳面。如果标记已经脱落,就将两个插头换一下再试试看,能启动的话说明就是PCV阀插反造成的。 3、检查油泵安装角度 如果依然无法排除的话,那么就考虑是否供油时间有问题,检查油泵的安装角度或检查飞轮是否原配飞轮。 案例2 故障症状:起动机和发动机均有正常起动转速,但不着火。 故障分析排除:从机械方面检查均正常,用诊断仪诊断发现有“水温传感器”、“轨压传感器”、“油门踏板”等一些故障显示,清除故障码后,发动机顺利起动。这种情况估计是维修或操作人员对电控系统的接插件进行了带电插拔的操作,这样系统会产生故障码储存在ECU中,系统起保护作用会限制一些功能甚至无法起动。 案例3 故障症状:起动机和发动机均有正常起动转速,但不着火,用诊断仪检测会有NE(转速)传感器和G (凸轮轴)传感器同时故障的显示。 故障分析排除:这种情况一般出现得不多。NE(转速)传感器和G (凸轮轴)传感器只要有一个是好的,基本还能启动,同时故障肯定无法启动。 (二)、发动机功率不足。 案例1 故障症状:高速上不去,排气管冒黑烟或篮烟。 此时车在低速状态下一般无明显症状,高速时油门踩到底发动机转速达不到最高转速,如果是堵塞且严重的情况下,高速时排气管产生大量蓝色或黑色浓烟。车载故障灯低速时不亮,高速时会开始闪,用诊断仪检测有“进气压力传感器电压过低”的故障显示,检查传感器和线束均正常。根据低速无码而高速有码,我们觉得线束、传感器的故障能够可能性不大。后来再经过仔细检查发现进气管内有一个橡皮塞,取出后,再试,故障排除。 案例2

电控高压共轨柴油发动机原理及特点

电控高压共轨柴油发动机原理及特点

前言 电控柴油发动机进入海气已有十个年头了,我们的汽车维修工还没有正确认识它。目前进入我国燃油喷射系统技术有博世、电装、德尔福等几家柴油机用电控技术来控制供油,并非想象中的那么神秘,它的发动机工作原理是一样的。我们常见电控柴油发动机均采用电控共轨或单体泵技术,其主要差异在于发动机的燃油喷射系统,发动机的外形差异不是很大,电控部分的实现、更加有利于整正性能的优化,减少排放、经济性、动力性、以及整车的舒适性等。 第一章电控发动机与普通发动机的差异 一、技术原理上的差异性。 1、高压共轨与四气门技术结合。 电控发动机目前一般采用高压共轨、四气门和涡轮增压中冷技术相结合,四气门结构(二进、二排)不仅可以提高充气效率,更由于喷油嘴可以居中布置,使多孔油未均匀分布,可为燃油和空气良好混合创造条件,同时可以在四气门缸盖上将进气道设计成两个独立的具有圆形状的结构以实现可变涡流。这些因素的协调配合,可大大提高混合气的形成质量(品质),有效降低碳烟颗粒(HC)碳氢和(NOX)氮氧化物排放,并提高热效率。 2、高压喷油和电控喷射技术。 高压喷射和电控喷射技术的有效采用,可使燃油充分雾化,各缸的燃油和空气混合达到最佳,从而降低排放,提高整车性能。 二、部件构成上的差异。 电控高压共轨技术是指在高压油泵、共轨管、压力传感器和

ECU(电脑控制)组成的闭环系统中,将喷射压力的产生和喷射过程彼此分开的一种技术。由高压油泵把高压燃油输送到共轨管,通过对共轨管内的油压进行闭环控制,喷油压力独立可调。 三、高压共轨系统的特点。 高压共轨系统改变了传统的喷油系统的组成结构,最大的特点就是将燃油压力产生和燃油喷射分离,以此对轨管内的油压实现精确控制。 1、可靠性:对轻型车来说系统零部件成熟且有长期使用考核验证,中型比较成熟。 2、继承性:结构简单,安装方便。 3、灵活性:高压共轨油压独立于发动机转速控制,整车控制功能强。 4、喷油压力:共轨管压力1600bar、普通压力180kgf/cm2。 5、多次喷油:可以实现多次喷射,目前最好的共轨系统可以进行6次喷射,共轨系统的灵活性好。 6、升级潜力:多次喷油特别是后喷能力使得共轨系统特别方便与后处理系统配合。 7、匹配适合性:结构移植方便,适应范围广,与柴油机均能很好匹配。 8、时间控制:时间控制系统抛弃了传统喷油系统的泵、管、嘴、系统,用高速电磁阀直接控制高压燃油的通与断,喷油量由电磁阀开启和切断的时间来确定,时间控制系统结构简单,将喷油量和喷油正时的控制合二为一,控制的自由度更大,同时能较大地

柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展 陈然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机高压共轨电控喷射系统介绍

柴油机高压共轨电控喷射系统介绍 一、共轨技术 在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒,实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象,由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。为了解决柴油机这个燃油压力变化的缺陷,现代柴油机采用了一种称"共轨"的技术。 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a、共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b、可独立地柔性控制喷油正时,配合高的喷射压力(120Mpa~200MPa),可同时控制NOx和微粒(PM)在较小的数值内,以满足排放要求。 c、柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NO x,又能保证优良的动力性和经济性。 d、由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国BOSCH公司的CR系统、日本电装公司的ECD-U2系统、意大利的FIAT集团的unijet系统、英国的DELPHI DIESEL SYSTEMS公司的LDCR 系统等。 二、高压共轨电控燃油喷射系统及基本单元 高压共轨电控燃油喷射系统主要由电控单元、高压油泵、蓄压器(共轨管)、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨(蓄压器),高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1、高压油泵 高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。

高压共轨燃油系统介绍.

高压共轨燃油系统介绍 2005-8-15 10:45:55来源: 编辑: 一、高压共轨燃油系统概况 共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。这类电控系统可分为:蓄压式电控燃油喷射系统、液力增压式电控燃油喷射系统和高压共轨式电控燃油喷射系统。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a. 共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b. 可独立地柔性控制喷油正时,配合高的喷射压力(120MPa~200MPa ),可同时控制NOx 和微粒(PM )在较小的数值内,以满足排放要求。 c. 柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NOx ,又能保证优良的动力性和经济性。 d. 由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国ROBERT BOSCH 公司的CR 系统、日本电装公司的ECD-U2 系统、意大利的FIAT 集团的unijet 系统、英国的DELPHI DIESEL SYSTEMS 公司的LDCR 系统等。 二、高压共轨燃油喷射系统主要部件介绍 图1 为高压共轨电控燃油喷射系统的基本组成图。它主要由电控单元、高压油泵、共轨管、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map 图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1 、高压油泵

柴油机高压共轨系统

高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 结构及原理 高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油蓄积 起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控 制喷油器上的电磁阀实现喷射的开始和终止。 其主要特点可以概括如下: 共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构; 而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得 多。 通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状况 以及经济性和排放性的要求对共轨腔内的油压进行灵活调节,尤其优 化了发动机的低速性能。 通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。 高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油增压后送入共轨腔内,再由电磁阀控制各缸喷油器在相应时刻喷油。 预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内发生预混合或者部分燃烧,缩短主喷射的着火延迟期。这样缸内压力升高率和峰值压力都会下降,发动机工作比较缓和,同时缸内温度降低使得NOx排放减小。预喷射还可以降低失火的可能性,改善高压共轨系统的冷起动性能。 主喷射初期降低喷射速率,也可以减少着火延迟期内喷入气缸内的油量。提高主喷射中期的喷射速率,可以缩短喷射时间从而缩短缓燃期。 主要生产商 目前世界上主要有三大公司在研发和生产柴油机高压共轨系统,日本电装、德国博世和美国德尔福。共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 由于其强大的技术潜力,今天各制造商已经把目光定在了共轨系统第3代——压电式(piezo)共轨系统,压电执行器代替了电磁阀,于是得到了更加精确的喷射控制。没有了回油管,在结构上更简单。压力从200~2000帕弹性调节。最小喷射量可控制在0.5mm3,减小了烟度和NOX的排放。 应用背景 日趋严重的能源危机,成为全世界内燃机行业关注的焦点,也使柴油机越来越受到用户青睐。与汽油机相比柴油机有很多优势:能减少20%~25%的CO2废气排放,车速较低时的加速性能更有优势,平均燃油消耗低25%~30%,能提供更多的驾驶乐趣。因此,有人大胆对全球汽车产量中柴油机的发展趋势进行了预测,并按区域划分世界汽车产量中的柴油机比例。但是,与汽油机相比,柴油机的排放控制又是一个难点。为满足排放标准,柴油机先进的燃油喷射系统———高压共轨技术成为业内人士关注的焦点。前些年,高压共轨技术是外资一统天下,现在这种局面被打破了。 排放标准的提升必然推动发动机技术的发展 发展前景

电装工艺及材料标准

航天电装工艺及材料标准应和国际先进标准接轨 ——研究美国IPC系列标准的启示 航天电装工艺,特别是表面贴装技术(SMT),是电装行业中的先进制造技术,目前航天系统有些单位仍采用落后的设计标准、工艺标准,宣贯落后工艺,使用落后的生产设备生产SMT 电子产品,多次发生一些低层次的质量问题,如:印制板可焊性差、焊接后翘曲、虚焊、组装件清洗不净、抗恶劣环境性能差等问题,便所谓的"常见病,多发病"难以防治。研究美国IPC标准后,深刻体会到这类标准的先进性、完整性、实用性、可操作性。该标准系统化、通用化、模块化(组合化)是防治上述各种质量问题,提高电子产品质量的有效 武器。 1.航天系统表面贴装技术各类标准发展现状 当前,微电子技术的快速发展,大规模集成电路的集成度成倍增加; 同时也改变了芯片的封装结构,如球栅阵列封装(BGA),芯片级尺寸封装(CSP),己广泛用于航天电子产品中,某所采用的CSP器件,尺寸为9×gmm2,球间距为0.4mm,共有441个焊球(21×2l)。由 于高密度组装器件的使用,使航天电子产品以惊人的速度,向短,小,轻,薄,高运算速度,多功能的万向发展。电子组装技术从通孔插装技术(THT),快速发展到表面贴装技术(SMT),同时也提高了产品的可靠性,抗干扰性,以及抗恶劣环境等性能。 众所周知,因SMT的快速发展,促使世界电子制造业迈进了一个新纪元,并日益成为全球一体化的产业。全球化的产业自然需要全球化的通用标准,以保证在世界范围内任何地万设计和制造出的产品质量相当。因此无论是军品或是民品,设计和制造的标准通用化、系 统化,行业标准与国际接轨已成为电子制造行业努力的目标之一,同时也是军用电子产品保证质量,民用电子产品提高市场竞争力的重要手段,目前长江三角洲、珠江三角洲等地区的大型生产企业,在接收生产订单前,是否采用IPC标准已成为考核的主要内容。 近几年,国内外推广绿色制造大环境,电子产品的清洗己经禁止使用消耗臭氧层的化合物,如氯氟烃化合物(CFC),三氯乙烷(TCA)等,电子产品申限制使用铅(Pb),汞(Hg),镐(Cd)六价铬(Cr6+)聚合漠化联苯(PBB),聚合漠化联苯乙醚(PBDE)等有毒、有害物质,目前必须选用新的材料替代。 在电子装联工作中,随着工艺材料的改变,如清洗剂、焊料、电镀材料、有机增强材料等更换,导致工艺方法、工艺设备、工艺技术参数等改变。如果不及时制修订新标准,在设计、制造、调试、检验等全过程,将出现无据可查,无章可循,无法可依的局面,势必造成 低层次的质量问题不断发生,延误生产周期,增加制造成本,并给企业带来严重的经济损失。 目前,航天标准化研究所己很重视这些标准的制修订工作,为航天各种型号顺利完成做出了很多的贡献。但有些标准,制修订的周期太长,己满足不了当前电于装联快速发展的要求,如标准的可行性、完整性、先进性、实用性、可操作性和国际上同类标准相比,均有很大的差距。主要表现以下几万面: a)标准的配套性不够,缺少SMT焊盘图形的设计规范,因而使设计无规范可循,按设计人员本人的理解因人而异,难以符合安装和焊接的要求。 b)目前印制板验收标准主要是针对通孔安装元器件而制定的,不能满足表面贴装元器件的安装和焊接的要求,如SMT印制板的翘曲度不能大于0.75%,比THT要求高一倍以上,对印制板的热膨胀系数(CTE),玻态转化温度(TD,均比THT要求高。再如,对印制板可焊接验收,只对制造验收有规定,有些单位因储存环境等不符合标准,使用时不抽查,产生大量的虚焊质量问题。 c)对工艺材料,如焊膏、焊料助焊剂、清洗剂、三防涂料等没有选用、验收指南,材料的采购渠道、工艺方法、验收要求等很不规范,带来不少质量隐患。 d)因航天系统有些基础标准的制修订周期长,标准的系统化差,现行的电装工艺标准也是以THT为主,缺少对先进的表面安装器件(如QFP,BGA,CSP等)设计和组装工艺实施等有关标准。有的单位因BGA焊盘设计及组装工艺不符合标准,造成了批量报废的重大损失。 e)缺少对表面安装元器件的安装、焊接质量问题及过程控制的标准和规范。 f)近来无铅焊接已在全球推广。在此大环境下,航天系统也免不了受到冲击和影响,如不少单位,从国外采购的元器件,大都采用无铅镀层,工艺人员仍采用有铅工艺,设备,标准,避行有铅、无铅器件混合组装,导致重复出现焊接质量问题。因此需要开展无铅焊接超前性的工艺研究,制定无铅焊接的通用标准。

DENSO系统各传感器标准值

DENSO系统各传感器标准值 电装发动机传感器正常时电阻、电压值 ⒈电阻的测量(万用表电阻档、测量时关闭ECU 电源) ⑴NE 传感器(40 对41):120~125Ω ⑵PCV1,PCV2 电磁阀(阀上二插脚):3.2Ω ⑶喷油器(电磁阀二插脚):0.9~1.1Ω ⑷出水温度(155 对55),进气温度(32 对55),回油温度(162 对55)三个 传感器的阻值相同: -30 -10 0 30 50 80 100 ℃ 25.4 9.1 5.7 1.6 0.8 0.3 0.18 KΩ ⒉电压的测量(万用表直流电压档) ⑴G 传感器(120 对131 脚):发动机工作时0.9V ⑵共轨压力传感器121 对134):650rpm 44 Mpa 1.72V,2370rpm 103 Mpa 2.70V ⑶加速踏板(重汽威廉姆斯):APP1(21 对135):开度0%:0.75V,100%: 3.84V APP2(22 对136):开度0%:0.375V 100%:1.92V ⑷加速踏板(徐重康希斯):APP1(21 对135):开度0%:0.85V 100%: APP2(22 对136):开度0%:0.85V 100%:4.15V ⑸PTO 电位器(加速踏板徐重上车油门):(23 对55):开度0%:0.85V,100%: 4.15V ⑹PTO 电位器(重汽用)(23 对55):开度0%:0.5V,100%:4.5V ⑺电子式机油压力传感器(24 对54):0 kpa:0.5V,500 kpa:2V,1000kpa: 4.5V

⑻进气压力传感器(128 对54):66 kpa:0.5V,333 kpa:4.5V 发动机传感器故障时(信号线开路、对电源短路、对地短路)的电压值 ⒈出水温度(155 对55),进气温度(32 对55),回油温度(162 对55)三个 传感器故障时的电压值相同:Sensor AD Open 信号线开路:4.88V,Vcc Short 对电源短路:4.88V,GND Short 对地短路:0.02V ⒉加速踏板(21 对135),(22 对136)和PTO 电位器(或称汽车吊上车油门):Sensor AD Open 信号线开路:0.18V,Vcc Short 对电源短路:4.88V,GND Short对地短路:0.02V ⒊进气压力传感器:Sensor AD Open 信号线开路:0.07V,Vcc Short 对电源短路: 4.88V,GND Short 对地短路:0.02V ⒋共轨压力传感器:Sensor AD Open 信号线开路:4.83V,Vcc Short 对电源短路: 4.88V

电控高压共轨系统的技术特点

电控高压共轨系统的技术特点 电控高压共轨系统的技术特点 电控高压共轨技术是指在高压油泵、共轨管、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此分开的一种技术,由高压油泵把高压燃油输送到共轨管,通过对共轨管内的油压进行闭环控制,喷压独立可调。 这种系统具有以下特点: 可靠性:对轻型车来说系统零部件成熟且有长期使用考核验证、中型比较成熟;但是对重型柴油机使用寿命未经验证(单体泵供应商声称100万公里,而共轨供应商尚无一敢承诺30万公里);υ 继承性:结构简单,安装方便。υ 灵活性:共轨油压独立于发动机转速控制、整车控制功能强,适应轻型车特别是乘用车的要求;υ 优化噪声:预喷技术可以降低怠速噪声;υ 喷油规律:共轨系统的初始喷射率太高,不符合柴油机燃烧所需要的先缓后急的规律,不利于排放控制;υ 喷油压力:一代共轨喷油压力1350~1450bar,二代做到1600bar,总体来说比单体泵和泵喷嘴要低,所以在油耗上有3%左右的劣势;将来做到1800barυ以上但是需要采用增压共轨技术,还没有成熟,成本增加较大。 多次喷射:可以实现多次喷射,目前最好的共轨系统可以进行6υ次喷射;共轨系统的灵活性好,但是势必带来匹配工作的难度。时间和技术人员的水平,决定了一定阶段在中国使用太灵活的系统不一定能达到预期的效果; 升级潜力:多次喷射特别是后喷能力使得共轨系统特别方便地和后处理系统配合,具有实现欧Ⅳ、欧Ⅴ排放法规的潜力;υ 适应能力:燃油(水、灰份杂质)适应能力差,对用户使用条件要求高υ 复杂性:系统特别是控制系统和控制策略复杂对整车厂、用户、售后维修均带来挑战;零部件更换成本高,特别是电控喷油器和电控喷油泵;υ

电装工艺简介

电装工艺:保持创新的精神 电装,是电子装联(或电子组装)的简称;电子装联(eiectronic assembiy)指的是在电子电气产品形成中采用的装配和电连接的工艺过程。 电装工艺的含义是,“现代化企业在组织大规模的科研生产,把许多人组织在一起,共同地有计划地进行电子电气产品的装配和电连接,需要设计、制定共同遵守的电子装联法规、规定,这种法规和规定就是电装工艺技术,简称电装工艺”。 对于电子产品而言,电路设计产品的功能,结构设计产品的形态,工艺设计产品的过程。 电子设备中的装联技术,过去一般通称电装和电子装联,多指在电的效应和环境介质中点与点之间的连接关系;近几年业内甚至有一种倾向,把涵义十分广泛,内容十分丰富的电子装联技术狭隘的概括在板级电路的“SMT”内。 谈到电子装联技术,人们往往只注意电子装备的基本部件——印制电路板组装件的可制造性设计,这是可以理解的;因为,毕竟在印制电路板组装件中包含了太多丰富的内容。目前,THT、SMT是其中主要研究、设计内容。 但从事工程任务的电路设计师和电装工艺师们都十分清楚,电子装联技术,绝不单纯的局限于印制电路板组装件,它包含了更多的内涵。从某种程度上讲,常规印制电路板组装件(即板级电路的THT、SMT)相对而言还比较好办,因为,至少这类板级电路的可制造性设计还有相对先进的装联设备和设计软件作技术支撑,但对于作为构成电路设计重要组成部分的整机/单元模块,高、低频传输线,高频、超高频、微波电路印制电路板组装件,板级电路、整机/单元模块的EMC,板级电路模块及整机/单元模块的MPT设计,无论是国内或国外都是有待进一步解决。 “九、五”后期,我们对电子装联的概念进行了拓展,提出了“电气互联技术”这一具有前瞻性的创新。 在电子装备中,电气互联技术指的是:“在电、磁、光、静电、温度等效应和环境介质中任何两点(或多点)之间的电气连通技术,即由电子、光电子器件、基板、导线、连接器等零部件,在电磁介质环境中经布局布线联合制成承制所设定的电气模型的工程实体的制造技术”。

重型柴油车电控高压共轨系统图文教程

重型柴油车电控高压共轨系统图文教程 为了防止全球变暖和降低废气排放,从而减少对人类健康的影响,改善车辆的燃油经济性已成为全世界亟需解决的问题。在欧洲,柴油发动机车辆是很受欢迎的,因为它的燃油经济性较好。另一方面,必须大大降低废气中所含的“氮氧化(NOx)”和“粒子状物质(PM)”,以满足废气法规的要求,而用以改善燃油经济性和降低废气的相关技术也正在积极开发中。 ●对柴油车辆的要求: 减少废气(NOx、PM、一氧化碳(CO)、碳氢化合物(HC)和烟雾)。 改善燃油经济性。减少噪音。提高功率输出和驾驶性能。 ●废气排放法规的变迁(大型车辆柴油法规) ●对燃油喷射系统的要求 为了应对施加于柴油车辆的各种要求,燃油喷射系统(包括喷射泵和喷嘴)起到举足轻重的作用,因为它直接影响到发动机和车辆的性能。其中一些要求是:更高的喷射压力、最佳的喷射率、更高精度的喷射正时控制、更高精度的喷射量控制。因此电控高压共轨柴油机在现今正逐步推广。 ●共轨系统特性 共轨系统使用一种称为油轨的蓄压室来存储加压燃油,带电子控制电磁阀的喷油器可将加压燃油喷射到各个气缸中。 由于发动机控制器控制喷射系统(包括喷射压力、喷射率和喷射正时),所以喷射系统是相对独立的,不受发动机转速或负荷的影响。 由于发动机控制器可以将喷射量和喷射正时控制到很高的精度,甚至可实现多次喷射(一次喷射行程中有多次燃油喷射)。 这样确保喷射压力在任何时候都是稳定的,即使在低发动机转速范围,通常可以显著减少在起动和加速期间柴油发动机排出的黑烟量。因此,废气更加清洁且废气排放减少,从而实现更高的功率输出。 A.喷射控制的特性

a.喷射压力控制 在低发动机转速下实现高压喷射。 优化控制,从而减少粒子状物质和NOx的排放。 b.喷射正时控制 根据驾驶情况实现最佳控制。 c.喷射率控制 在进行主喷射之前,先导喷射控制首先喷射少量燃油。 ●燃油共轨构成 ?共轨控制系统可大致划分为以下四个方面:传感器、发动机控制器、EDU和执行器。 A.传感器 监测发动机和泵的状况。 B.发动机控制器 从传感器接收信号,计算实现发动机最佳运行所需的正确喷射量和喷射正时,然后向执行器发出合适的信号。 C.执行器 根据从发动机控制器接收的信号,提供最佳喷射量和喷射正时。

相关文档
最新文档