约束优化问题的极值条件

约束优化问题的极值条件
约束优化问题的极值条件

等式约束优化问题的极值条件

求解等式约束优化问题 )(m i n x f ..t s ()0=x h k ()m k ,,2,1???= 需要导出极值存在的条件,对这一问题有两种处理方法:消元法和拉格朗日乘子法(升维法) 一、消元法(降维法)

1.对于二元函数 ),(min 21x x f ..t s ()0,21=x x h ,

根据等式约束条件,将一个变量1x 表示成另一个变量2x 的函数关系()21x x ?=,然后将这一函数关系代入到目标函数()21,x x f 中消去1x 变成一元函数()2x F 2.对于n 维情况 ()n x x x f ,,,min 21???..t s ()0,,,21=???n k x x x h ),,2,1(l k ???= 由l 个约束方程将n 个变量中的前l 个变量用其余的l n -个变量表示:

()n l l x x x x ,,,2111???=++? ()n l l x x x x ,,,2122???=++? ...

()n l l l l x x x x ,,,21???=++?

将这些函数关系代入到目标函数中,得到()n l l x x x F ,,,21???++ 二、拉格朗日乘子法(升维法)

设T n x x x x ),,,(21???=,目标函数是()x f ,约束条件()0=x h k ),,2,1(l k ???=的l 个等式约束方程。为了求出()x f 的可能极值点T n x x x x ),,,(**2*1*???=,引入拉格朗日乘子k λ),,2,1(l k ???=,并构成一个新的目标函数

()()x h x f x F l

k k k ∑=+=1),(λλ

把()λ,x F 作为新的无约束条件的目标函数来求解它的极值点,满足约束条件

()0=x h k ),,2,1(l k ???=的原目标函数()x f 的极值点。 ()λ,x F 具有极值的必要条件

),,2,1(0n i x F i ???==?? ,),,2,1(0l k F

k

???==??λ可得n l +

个方程,从而解得T n x x x x ),,,(21???=和k λ),,2,1(l k ???=共有n l +个未知变量的值。 即T n x x x x ),,,(**2*1*???=是函数()x f 的极值点的坐标值。

不等式约束优化问题的极值条件

一、一元函数在给定区间上的极值条件

对于一元函数)(min x f ..t s ()01≤-=x a x g ()02≤-=b x x g

极值条件可以表示成:???

?

???≥≥===++0,00,002122112211μμμμμμg g dx dg dx dg dx df

引入作用下标集合()(){}

2,1,0===j x g j x J j 则可将上式改写成:

()???

?

???∈≥∈==+∑∈J

j J j x g dx dg dx df

j

j j J j j

,0,00μμ即只考虑起作用的约束及其对应的拉格朗日乘子。 二、库恩塔克条件

1、对于多元函数)(min x f ..t s ()0≤x g j ),,2,1(m j ???=

通过引入m 个松弛变量,是不等式约束变成等式约束,组成相应的拉格朗日函数

()

()()

∑=+++=m

j j n j j x x g x f x x F 1

2)(,,μμ

对应一元函数的极值条件可以推导出多元函数的极值条件为:

()

()

()

????

?????=≥====??+??∑=m j m j x g n i x x g x x f j j j m j i j j i ,...,2,1,0,...,2,1,0,...,2,1,0*

1*

*μμμ

引入起作用的约束的下标集合可改写成:

()

()

()

????

?????∈≥∈===??+??∑∈J j J j x g n i x x g x x f j j J j i j j i ,0,0,...,2,1,0*

*

*μμ

将上式偏微分形式表示为梯度形式得:

()()

∑∈?=?-J

j j j x g x f **μ

几何意义:在约束极小值点*

x 处,函数)(x f 的负梯度一定能表示成所有起作用

的约束在该点梯度的非负线性组合。 2、同时具有等式和不等式约束的优化问题

)(min x f ..t s ()0≤x g j ),,2,1(m j ???=,()),...,2,1(0l k x h k ==极值条件可表示为:

()???

????∈≥∈===??+??+??∑∑∈=J j J j x g n i x h x g x f j j J

j l k i k

k i j j i ,0,0,...,2,1,01μλμ

第四章 非线性规划1-约束极值问题

第四章 非线性规划 ???? ???? 无约束最优化问题线性规划约束最优化问题非线性规划 ?? ?凸规划约束最优化问题非凸规划 ?? ?直接解法约束最优化问题求解方法间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于这类方法可以选用有效的无约束优化方法,且易于处理同时具有不等式约束和等式约束的问题,因而在工程优化中得到了广泛的应用。 直接解法是在满足不等式约束的可行设汁区域内直接按索问题的约束最优解。 第一节 目标函数的约束极值问题 所谓约束优化设计问题的最优性条件.就是指在满足等式和不等式约束条件下,其目标函数值最小的点必须满足的条件,须注意的是,这只是对约束的局部最优解而言。 对于带有约束条件的目标函数,其求最优解的过程可归结为: 一、约束与方向的定义 一)起作用约束与松弛约束 对于一个不等式约束()0g X ≤来说,如果所讨论的设计点() k X 使该约束()0g X =(或 者说() k X 当时正处在该约束的边界上)时,则称这个约束是() k X 点的一个起作用约束或紧约 束,而其他满足()0g X <的约束称为松弛约束。

冗余约束 40g ≤ 当一个设计点同时有几个约束起作用时,即可定义起作用约束集合为 {}()()()|()0,1,2, ,k k u I X u g X u m === 其意义是对() k X 点此时所有起作用约束下标的集合。 二)冗余约束 如果一个不等式约束条件的约束面(即()0g X =)对可行域的大小不发生影 响,或是约束面不与可行域D 相交,即此约束称为冗余约束。 三)可行方向 可行方向:一个设计点()k X 在可行域内,沿某一个方向S 移动,仍可得到一个属于可行域的新点,则称该方向为可行方向。 1)设计点为自由点 设计点() k X 在可行域内是一个自由点,在各个方 向上都可以作出移动得到新点仍属于可行域,如图所示。 2)设计点为约束边界点 当设计点()k X 处于起作用约束i g 上时,它的移动就会受到可行性的限制。此时,()k X 点的可行方向S 必满足条件: ()0T k i S g X ?≤ (解释:()()cos ,()T k k T k i i i S g X S g X S g X ?=??,,()90T k i S g X ?≥?)) 当,()90T k i S g X ?=?时,方向S 是约束函数i g 在()k X 点处的切线方向,即()0T k i S g X ?=。 当某个设计点x 同时有几个约束起作用时(如

约束优化问题的极值条件

等式约束优化问题的极值条件 求解等式约束优化问题 )(m i n x f ..t s ()0=x h k ()m k ,,2,1???= 需要导出极值存在的条件,对这一问题有两种处理方法:消元法和拉格朗日乘子法(升维法) 一、消元法(降维法) 1.对于二元函数 ),(min 21x x f ..t s ()0,21=x x h , 根据等式约束条件,将一个变量1x 表示成另一个变量2x 的函数关系()21x x ?=,然后将这一函数关系代入到目标函数()21,x x f 中消去1x 变成一元函数()2x F 2.对于n 维情况 ()n x x x f ,,,min 21???..t s ()0,,,21=???n k x x x h ),,2,1(l k ???= 由l 个约束方程将n 个变量中的前l 个变量用其余的l n -个变量表示: ()n l l x x x x ,,,2111???=++? ()n l l x x x x ,,,2122???=++? ... ()n l l l l x x x x ,,,21???=++? 将这些函数关系代入到目标函数中,得到()n l l x x x F ,,,21???++ 二、拉格朗日乘子法(升维法) 设T n x x x x ),,,(21???=,目标函数是()x f ,约束条件()0=x h k ),,2,1(l k ???=的l 个等式约束方程。为了求出()x f 的可能极值点T n x x x x ),,,(**2*1*???=,引入拉格朗日乘子k λ),,2,1(l k ???=,并构成一个新的目标函数 ()()x h x f x F l k k k ∑=+=1),(λλ 把()λ,x F 作为新的无约束条件的目标函数来求解它的极值点,满足约束条件 ()0=x h k ),,2,1(l k ???=的原目标函数()x f 的极值点。 ()λ,x F 具有极值的必要条件 ),,2,1(0n i x F i ???==?? ,),,2,1(0l k F k ???==??λ可得n l +

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

用外点法求解非线性约束最优化问题

题目:用外点法求解非线性约束最优化问题 学院信息管理学院 学生姓名余楠学号 81320442 专业数量经济学届别 2013 指导教师易伟明职称教授 二O一三年十二月

用外点法求解非线性约束最优化问题 摘要 约束最优化问题是一类重要的数学规划问题。本文主要研究了用外点罚函数法对约束非线性规划问题进行求解。对于一个约束非线性规划用罚函数求解的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。本文最后利用c语言编程得到满足允许误差内的最优解。 本文主要对一个约束非线性规划问题的实例,首先利用上述迭代的方法,计算出各迭代点的无约束极值问题的最优解。然后应用c语言编程,得到精确地最优解,需迭代四次次才使得ε≤0.001,得到的最优解为* X=(333 .0)T。 .0, 666 关键词:外点罚函数法非线性规划约束最优化迭代最优解

一、背景描述 线性规划的目标函数和约束条件都是决策变量的线性函数,但如果目标函数或约束条件中含有决策变量的非线性函数,就称为非线性规划。非线性规划与线性规划一样,也是运筹学的一个极为重要的分支,它在经济、管理、计划、统计以及军事、系统控制等方面得到越来越广泛的应用。 非线性规划模型的建立与线性规划模型的建立类似,但是非线性规划问题的求解却是至今为止的一个研究难题。虽然开发了很多求解非线性规划的算法,但是目前还没有适用于求解所有非线性规划问题的一般算法,每个方法都有自己特定的适用范围。 罚函数法是应用最广泛的一种求解非线性规划问题的数值解法,它的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。这种惩罚体现在求解过程中,对于企图违反约束的那些迭代点,给予很大的目标函数值,迫使这一系列无约束问题的极小值点无限的向可行集(域)逼近,或者一直保持在可行集(域)内移动,直到收敛于原来约束问题的极小值点。 外点法的经济学解释如下:若把目标函数看成“价格”,约束条件看成某种“规定”,采购人员在规定的范围内采购时价格最便宜,但若违反了规定,就要按规定加收罚款。采购人员付出的总代价应是价格和罚款的综合。采购人员的目标是使总代价最小,当罚款规定的很苛刻时,违反规定支付的罚款很高。这就迫使采购人员在规定的范围内采购。数学上表现为罚因子足够大时,无约束极值问题的最优解应满足约束条件,而成为约束问题的最优解。 二、基础知识 2.1 约束非线性优化问题的最优条件 该问题是一个约束非线性优化问题,利用外点罚函数法求解该问题,约束非线性优化问题的最优解所要满足的必要条件和充分条件是我们设计算法的依据,为此有以下几个定理。

matlab 无约束优化问题

实验八 无约束优化问题 一.实验目的 掌握应用matlab 求解无约束最优化问题的方法 二.实验原理及方法 1:标准形式: 元函数 为其中n R R f X f n R x n →∈:) (min 2.无约束优化问题的基本算法一.最速下降法(共轭梯度法)算法步骤:⑴ 给定初始点 n E X ∈0,允许误差0>ε,令k=0; ⑵ 计算() k X f ?; ⑶ 检验是否满足收敛性的判别准则: () ε≤?k X f , 若满足,则停止迭代,得点k X X ≈*,否则进行⑷; ⑷ 令() k k X f S -?=,从k X 出发,沿k S 进行一维搜索, 即求k λ使得: ()() k k k k k S X f S X f λλλ+=+≥0 min ; ⑸ 令k k k k S X X λ+=+1,k=k+1返回⑵. 最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,当接近极值点时,宜选用别种收敛快的算法..牛顿法算法步骤: (1) 选定初始点n E X ∈0,给定允许误差0>ε,令k=0; (2) 求()k X f ?,()() 1 2-?k X f ,检验:若() ε

无约束最优化问题及其Matlab求解

无约束最优化问题及其Matlab 求解 一、教学目标 1. 了解悟约束规划的基本算法最速下降法(共轭梯度法)的基本步骤 2. 掌握用Matlab 求解五约束的一元规划问题、多元规划问题、以及Matlab 求解过程中参数的设置。 3. 针对实际问题能列出其无约束规划方程并用Matlab 求解。 二、 教学手段 1. 用Flashmx 2004制作课件,并用数学软件Matlab 作辅助教学。 2. 采用教学手法上采取讲授为主、讲练结合的方法。 3. 上机实践操作。 三、 教学内容 (一)、求解无约束最优化问题的基本思想 标准形式: ★(借助课件说明过程) (二)、无约束优化问题的基本算法 1.最速下降法(共轭梯度法)算法步骤: ⑴ 给定初始点n E X ∈0,允许误差0>ε,令k=0; ⑵ 计算()k X f ?; ⑶ 检验是否满足收敛性的判别准则: ()ε≤?k X f , 若满足,则停止迭代,得点k X X ≈*,否则进行⑷; ⑷ 令()k k X f S -?=,从k X 出发,沿k S 进行一维搜索, 即求k λ使得: ()() k k k k k S X f S X f λλλ+=+≥0min ; ⑸ 令k k k k S X X λ+=+1,k=k+1返回⑵. 最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢。 ★(借助课件说明过程,由于 算法 在实际中用推导过程比较枯燥,用课件显示搜索过程比较直观) 2. 采用Matlab 软件,利用最速下降法求解无约束优化问题 常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x ,fval]= fminbnd (...) (4)[x ,fval ,exitflag]= fminbnd (...) (5)[x ,fval ,exitflag ,output]= fminbnd (...) 其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。函数fminbnd ()X f n E X ∈min 其中 1:E E f n →

运筹学深刻复知识题2013

运筹学复习题 线性规划的基本概念 一、填空题 1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。 2.图解法适用于含有两个变量的线性规划问题。 3.线性规划问题的可行解是指满足所有约束条件的解。 4.在线性规划问题的基本解中,所有的非基变量等于零。 5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关 6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。7.线性规划问题有可行解,则必有基可行解。 8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。 9.满足非负条件的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。 11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。 13.线性规划问题可分为目标函数求极大值和极小_值两类。 14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。 二、单选题 1.如果一个线性规划问题有n个变量,m个约束方程(m

可行解的个数最多为_C_。 A.m个B.n个C.C n m D.C m n个 2.下列图形中阴影部分构成的集合是凸集的是A 3.在下列线性规划问题的基本解中,属于基可行解的是B A.(一1,0,O)T B.(1,0,3,0)T C.(一4,0,0,3)T D.(0,一1,0,5)T 7.关于线性规划模型的可行域,下面_D_的叙述正确。 A.可行域内必有无穷多个点B.可行域必有界C.可行域内必然包括原点D.可行域必是凸的 8.下列关于可行解,基本解,基可行解的说法错误的是_B__. A.可行解中包含基可行解B.可行解与基本解之间无交集 C.线性规划问题有可行解必有基可行解D.满足非负约束条件的基本解为基可行解 9.线性规划问题有可行解,则 A A 必有基可行解 B 必有唯一最优解 C 无基可行解D无唯一最优解 10.为化为标准形式而引入的松弛变量在目标函数中的系数应为A A 0 B 1 C 2 D 3 11.若线性规划问题没有可行解,可行解集是空集,则此问题 B A 没有无穷多最优解 B 没有最优解 C 有无界解 D 无有界解 三、多选题 1.在线性规划问题的标准形式中,不可能存在的变量是D . A.可控变量B.松驰变量c.剩余变量D.人工变量

第四章 非线性规划约束极值问题

第四章 非线性规划 ?? ?? ???? 无约束最优化问题线性规划约束最优化问题非线性规划 ?? ?凸规划约束最优化问题非凸规划 ?? ?直接解法约束最优化问题求解方法间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于这类方法可以选用有效的无约束优化方法,且易于处理同时具有不等式约束和等式约束的问题,因而在工程优化中得到了广泛的应用。 直接解法是在满足不等式约束的可行设汁区域内直接按索问题的约束最优解。 第一节 目标函数的约束极值问题 所谓约束优化设计问题的最优性条件.就是指在满足等式和不等式约束条件下,其目标函数值最小的点必须满足的条件,须注意的是,这只是对约束的局部最优解而言。 对于带有约束条件的目标函数,其求最优解的过程可归结为: 一、约束与方向的定义 一)起作用约束与松弛约束 对于一个不等式约束()0g X ≤来说,如果所讨论的设计点() k X 使该约束()0g X =(或 者说() k X 当时正处在该约束的边界上)时,则称这个约束是() k X 点的一个起作用约束或紧约 束,而其他满足()0g X <的约束称为松弛约束。

冗余约束 4 0g ≤ 当一个设计点同时有几个约束起作用时,即可定义起作用约束集合为 {}()()()|()0,1,2, ,k k u I X u g X u m === 其意义是对() k X 点此时所有起作用约束下标的集合。 二)冗余约束 如果一个不等式约束条件的约束面(即()0g X =)对可行域的大小不发生影 响,或是约束面不与可行域D 相交,即此约束称为冗余约束。 三)可行方向 可行方向:一个设计点()k X 在可行域内,沿某一个方向S 移动,仍可得到一个属于可行域的新点,则称该方向为可行方向。 1)设计点为自由点 设计点() k X 在可行域内是一个自由点,在各个方 向上都可以作出移动得到新点仍属于可行域,如图所示。 2)设计点为约束边界点 当设计点()k X 处于起作用约束i g 上时,它的移动就会受到可行性的限制。此时,()k X 点的可行方向S 必满足条件: ()0T k i S g X ?≤ (解释:()()cos ,()T k k T k i i i S g X S g X S g X ?=??,,()90T k i S g X ?≥?)) 当,()90T k i S g X ?=?时,方向S 是约束函数i g 在()k X 点处的切线方向,即()0T k i S g X ?=。 当某个设计点x 同时有几个约束起作用时(如

运筹学期末复习及答案

运筹学概念部分 一、填空题 1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。 2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。 3.模型是一件实际事物或现实情况的代表或抽象。 4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。 6.运筹学用系统的观点研究功能之间的关系。 7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。 9.运筹学解决问题时首先要观察待决策问题所处的环境。 10.用运筹学分析与解决问题,是一个科学决策的过程。 11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。 12.运筹学中所使用的模型是数学模型。用运筹学解决问题的核心是建立数学模型,并对模型求解。 13用运筹学解决问题时,要分析,定义待决策的问题。 14.运筹学的系统特征之一是用系统的观点研究功能关系。 15.数学模型中,“s·t”表示约束(subjectto 的缩写)。 16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。 18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。 二、单选题 19.建立数学模型时,考虑可以由决策者控制的因素是( A ) A.销售数量B.销售价格C.顾客的需求 D.竞争价格 20.我们可以通过( C)来验证模型最优解。 A.观察B.应用C.实验D.调查 21.建立运筹学模型的过程不包括( A )阶段。 A.观察环境B.数据分析C.模型设计D.模型实施 22.建立模型的一个基本理由是去揭晓那些重要的或有关的(B ) A数量B变量C约束条件 D 目标函数 23.模型中要求变量取值( D ) A可正 B可负 C非正 D非负 24.运筹学研究和解决问题的效果具有(A ) A 连续性 B整体性C 阶段性D再生性

单纯形法解决无约束优化问题

分数: ___________任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

运筹学简答题(预测)

运筹学简答题 3、什么是线性规划? 所谓线性规划就是求一个线性函数在一组线性约束条件下极值的问题。 4、何为线性规划的标准型? 1.目标函数最大值, 2.每个变量非负, 3.约束条件均为等式, 4.右端项非负 5、在用单纯形求解时LP时,如何判断一个线性规划问题有唯一最优解,或无穷多最优解,或无界解,或无可行解? 所有非基变量的检验数小于零,该线性规划问题有唯一最优解; 所有非基变量的检验小于等于零,且至少有一个等于零,则该线性规划有无穷多最优解 当某非基的检验数大于零,但该检验数所在列的元素小于或等于零时,则该线性规划问题有无界解 当检验小于等于零,但基变量中含人工变量时,则该线性规划问题无解。 6、线性规划的特点 每个问题都用一组决策变量表示某一方案 存在一定的约束条件 都有一个要求达到的目标 7、整数规划的定义及特征 要求全部或部分决策变量的取值为整数的线性规划问题,称为整数规划 可行域为点集,目标函数:ZIP<=ZLP (整数规划的目标函数值劣于同型的松弛问题)8、线性规划与目标规划的区别? 线性规划:单一目标,求最优解,约束同等要求,约束相容 目标规划:多个目标,求满意解,约束有轻重缓急,各种要求有时冲突 9、求最短路的步骤 预备2.修正3.生成新的P 4.判断 10、PERT与CPM的区别 PERT更多地应用于研究与开发项目。?新开发系统?工作按排情况的评价和审查?随机性工期 CPM主要应用于以往在类似工程中已经取得一定经验的承包工程?有经验系统?完成任务的日期和关键工作?确定型的工期 11、什么是网络计划 网络计划是用网络图的形式把一项任务的有关项目有机地组成一个整体,合理地安排人力、物力、财力等资源,以求多快好省地完成任务的一种计划管理方法。 13、网络计划的应用 工期优化,费用优化,资源优化 14、网络计划的原则 网咯图一般从左到有,从上到下,不能有回路 网络图必须正确表达已定的逻辑关系 网络图只能有一个总始点和一个总终点 两个节点之间不能有两条或两条以上的工序 箭线尽量避免交叉 每项活动都应有节点表示其开始于结束。 15、如何确定出网络计划中关键路线? 总时差为零的关键事件或总时差为零的作业,将他们连接起来,得到关键路线 16、总时差和单时差的区别?

《管理运筹学》自测题

《管理运筹学》自测题 一、填空题 1.线性规划问题是求一个在一组线性约束条件下的极值问题。 2.图解法适用于含有个变量的线性规划问题。 3.线性规划问题的可行解是指满足所有的解。 4.在线性规划问题的基本解中,所有的非基变量等于______。 5.在线性规划问题中,基可行解的_________所对应的列向量线性无关。 6.若线性规划问题有最优解,则最优解一定可以在可行域的_______达到。 7.线性规划问题有可行解,则必有________。 8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其_____的集合中进行搜索即可得到最优解。 9.满足_______的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的_______在目标函数中的系数为零。 11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加入_______。12.线性规划模型包括决策(可控)变量,约束条件,_______三个要素。 13.线性规划问题可分为目标函数求极大值和______两类。 14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须____。15.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是_____。 16.求解线性规划问题可能的结果有_____,有唯一最优解,有无穷多个最优解。 17.如果某个约束条件是“≤”情形,若化为标准形式,需要引入_______。 18. 运筹学的主要目的在于求得一个合理运用人力、物力和财力的_______。 19. 建立数学模型时,需要回答的问题有性能的客观量度,__________,_____________。 二、选择题 1.运筹学的主要内容包括:( ) A.线性规划 B.非线性规划 C.存贮论 D.以上都是 2.下面是运筹学的实践案例的是:( ) A.丁谓修宫 B.田忌赛马 C.二战间,英国雷达站与防空系统的协调配合 D.以上都是 3.规划论的内容不包括:( ) A.线性规划 B.非线性规划 C.动态规划 D.网络分析 4.关于运筹学的原意,下列说法不正确的是:( ) A.作业研究 B.运作管理C.作战研究D.操作研究 5.运筹学模型:() A.在任何条件下均有效 B.只有符合模型的简化条件时才有效 C.可以解答管理部门提出的任何问题 D.是定性决策的主要工具 6.最早运用运筹学理论的是:() A.二次世界大战期间,英国军事部门将运筹学运用到军事战略部署 B.美国最早将运筹学运用到农业和人口规划问题上 C.二次世界大战后,英国政府将运筹学运用到政府制定计划

《运筹学》期末复习题

《运筹学》期末复习题 第一讲运筹学概念 一、填空题 1.运筹学的主要研究对象就是各种有组织系统的管理问题,经营活动。 2.运筹学的核心主要就是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。 3.模型就是一件实际事物或现实情况的代表或抽象。 4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。5.运筹学研究与解决问题的基础就是最优化技术,并强调系统整体优化功能。运筹学研究与解决问题的效果具有连续性。 6.运筹学用系统的观点研究功能之间的关系。 7.运筹学研究与解决问题的优势就是应用各学科交叉的方法,具有典型综合应用特性。 8.运筹学的发展趋势就是进一步依赖于_计算机的应用与发展。 9.运筹学解决问题时首先要观察待决策问题所处的环境。 10.用运筹学分析与解决问题,就是一个科学决策的过程。 11、运筹学的主要目的在于求得一个合理运用人力、物力与财力的最佳方案。 12.运筹学中所使用的模型就是数学模型。用运筹学解决问题的核心就是建立数学模型,并对模型求解。 13用运筹学解决问题时,要分析,定议待决策的问题。 14.运筹学的系统特征之一就是用系统的观点研究功能关系。 15、数学模型中,“s·t”表示约束。 16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。 17.运筹学的主要研究对象就是各种有组织系统的管理问题及经营活动。 18、1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。 二、单选题 1.建立数学模型时,考虑可以由决策者控制的因素就是( A ) A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格 2.我们可以通过( C )来验证模型最优解。 A.观察 B.应用 C.实验 D.调查 3.建立运筹学模型的过程不包括( A )阶段。 A.观察环境 B.数据分析 C.模型设计 D.模型实施 4、建立模型的一个基本理由就是去揭晓那些重要的或有关的( B ) A数量B变量 C 约束条件 D 目标函数 5、模型中要求变量取值( D ) A可正B可负C非正D非负 6、运筹学研究与解决问题的效果具有( A ) A 连续性 B 整体性 C 阶段性 D 再生性 7、运筹学运用数学方法分析与解决问题,以达到系统的最优目标。可以说这个过程就是一个(C) A解决问题过程B分析问题过程C科学决策过程D前期预策过程8、从趋势上瞧,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的就是 ( C )

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

单纯形法解决无约束优化问题

分数: ___________ 任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

条件极值及拉格朗日乘数法

§4条件极值 一、何谓条件极值 在讨论极值问题时,往往会遇到这样一种情形,就是函数的自变量要受到某些条件的限制。决定一给定点),,(000z y x 到一曲面0),,(=z y x G 的最短距离问题,就是这种情形。我们 知 道 点 ) ,,(z y x 到点 ) ,,(000z y x 的距离为 202020)()()(),,(z z y y x x z y x F -+-+-=.现在的问题是要求出曲面0 ),,(=z y x G 上的点),,(z y x 使F 为最小.即问题归化为求函数),,(z y x F 在条件0),,(=z y x G 下的最小值问题. 又如,在总和为C 的几个正数n x x x ,,21的数组中,求一数组,使函数值 2 2221n x x x f +++= 为最小,这是在条件C x x x n =+++ 21)0(>i x 的限制下,求 函数f 的极小值问题。这类问题叫做限制极值问题(条件极值问题). 例1 要设计一个容积为V 的长方体形开口水箱 . 确定长、宽和高 , 使水箱的表面积最小 . 分别以x 、y 和z 表示水箱的长、宽和高 , 该例可表述为 : 在约束条件 V xyz =之下求函数xy yz xz z y x S ++=)(2),,(的最小值 . 条件极值问题的一般形式是在条件组)(,,2,1,0),,,(21n m m k x x x n k <== ? 限制下, 求目标函数),,,(21n x x x f y =的极值. 对这种问题的解法有: 化为无条件极值. 例 1 由V xyz =解出 xy V z = , 并代入函数),,(z y x S 中, 得到xy x y V y x F ++=)1 1(2),(, 然后按)0,0(),(=y x F F , 求出稳定点32V y x ==, 并有 3 22 1V z = , 最后判定在此稳定点上取的最小面积3243V S =.

§6.3 泛函的条件极值

§6.3 泛函的条件极值 一、泛函条件极值问题的提出(等周问题) 求在连接A 、B 长度为L 的所有曲线中与直线AB 所围成面积最大的曲线? AB 弧长:dx y L b a ∫+=2'1 (1) 曲线AB 与直线AB 所围成面积:()∫=b a dx x y S (2) 边界条件:()()0,0== b y a y (3) 在满足约束条件(1)和边界条件(3)的情况下,寻找满足由方程(2)的构成泛函问题的极小曲线函数。 二、一般泛函条件极值的E-L 方程 泛函[]()∫=b a dx y y x F y J ',,,约束条件()L dx y y x G b a =∫',,, 其中[][]()(){} 2120,,,y b y y a y b a C y y y D ==∈=。 设()x y 是所求泛函的极值函数,取任意光滑函数()[]b a C x ,2 0∈η ()()()x x y x y εη+=1,()()0,0==b a ηη 从而构成一元函数 ()[]()∫++=+=b a dx y y x F y J '',,εηεηεηε? ()L dx y y x G b a =++∫'',,εηεη 利用拉格朗日乘子法,定义新的泛函 ()()()[]∫+++++=Φb a dx y y x G y y x F '',,'',,,εηεηλεηεηλε (4) 其中,λ为常数。 泛函()λε,Φ取极值,即需() 0,0=Φ=εελεd d ()()0'''',''''''''''0=???????+?=??++??+=+++=+++=Φ∫∫∫∫∫∫∫∫∫∫=b a y y y y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y y y y dx G dx d G F dx d F dx G dx d G dx G dx F dx d F dx F dx G dx G dx F dx F dx G G F F d d ηλληληληληηηηληληηηληληηε λεε

浅谈一类有约束条件的最值题的解法

活用数形结合求解一类有约束条件的最值题 西安市第一中学 张莲生 简单线性规划是现行高中数学教材必修5的一部分必修内容,是解决一些在线性约束条件下的线性目标函数的最值(最大值或最小值)的问题。它是运筹学的一个重要内容,对于形成最优化思想有着重要的作用,并且在实际生产活动中也有着广泛的应用,可以实现对资源的最佳利用。简单线性规划只能解决一些二元线性约束下条件下的二元函数的最值问题,但它的思想可以延伸到其他的数学最值问题的求解过程中。 简单线性规划的基本思想即在一定的约束条件下,通过数形结合求函数的最值。解决问题时主要是借助平面图形,运用这一思想能够比较有效地解决一些二元函数的最值问题。 本文将从规划的思想出发来探讨高中数学中一类有约束条件的最值问题的解法。 一、线性约束条件下的二元函数最值问题 在这类问题中, 它的线性约束条件是一个二元一次不等式组,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内各点的坐标即为可行解。当目标函数是一个二元一次函数时,在可行解中使得目标函数取得最大值和最小值的点的坐标即简单线性规划的最优解;当目标函数不是二元一次函数时,可以利用目标函数所具有的几何意义转化求解. (一)利用直线的截距求线性规划的最优解 例1 已知x 、y 满足条件24250x x y x y ≥??+≤??-++≥? ,求3z x y =+的最值。 解:约束条件所表示的可行域如图1 所示. 其中直线2x =与直线250x y -++=为(2,1)P -,直线4x y +=与直线25x y -++=交点为(3,1)Q . 3z x y =+可变形为3y x z =-+,此时z 可理解 为直线3y x z =-+的截距. 现作直线:3l y x =-, 再作一组与l ∵x 、y 是上面不等式组所表示的区域内的点的横纵坐标, ∴当直线3y x z =-+通过点(2,1)P -时, z 取最小值即min 3215z =?-=,

相关文档
最新文档