边坡防护之抗滑桩类型、设计及计算

边坡防护之抗滑桩类型、设计及计算
边坡防护之抗滑桩类型、设计及计算

边坡防护之抗滑桩类型、设计及计算

一、概述

抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。

抗滑桩具有以下优点:

(1) 抗滑能力强,支挡效果好;

(2) 对滑体稳定性扰动小,施工安全;

(3) 设桩位置灵活;

(4) 能及时增加滑体抗滑力,确保滑体的稳定;

(5) 预防滑坡可先做桩后开挖,防止滑坡发生;

(6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。

二、抗滑桩类型

实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。

三、抗滑桩破坏形式

总体而言,抗滑桩破坏形式主要包括:

(1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出;

(2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断;

(3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断;

(4) 抗滑桩锚固深度及锚固力不足,桩被推倒;

(5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性

变形,使桩体位移过大而超过允许范围;

(6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。

对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。

四、抗滑桩设计

01

基本要求

抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。

抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。此外,抗滑桩设计还应满足以下要求:

?通过桩的作用可将滑坡推力滑坡的剩余抗滑力传递到滑面以下

稳定地层中,使滑体边坡安全系数达到规定值。保证滑体不越过桩顶,不从桩间挤出。

?桩身有足够的稳定性。桩的截面、间距及埋深适当,锚固段的横向应力在容许值内。

?桩身有足够的强度。钢筋配置合理,能够满足截面内力要求。

?保证安全,施工方便,经济合理。

02

设计流程

1)研究滑坡原因、性质、范围、厚度,分析滑坡的稳定状态、发展趋势;

2)根据滑坡地质剖面及滑面处岩土体的抗剪强度指标,计算滑坡推力;

3)根据地形、地质及施工条件等确定设桩位置及范围;

4)根据滑坡推力大小、地形及地层性质,拟定桩长、锚固深度、桩截面尺寸及桩间距;

5)确定桩的计算宽度,并根据滑体的地层性质,选定地基系数;

6)根据选定的地基系数及桩的截面形式、尺寸,计算桩的变形系数及其计算深度,据此判断是否按刚性桩或弹性桩进行设计;7)根据桩底的边界条件采用相应的公式计算桩身各截面的变

位、内力及桩侧应力(桩周岩土抗力)等,并计算最大剪力、弯矩及其位置;

8)校核地基强度,若桩身作用于地基的弹性应力(横向压应力)

超过地层容许值或小于容许值过多时,则应调整桩的埋深、截面尺寸或间距,重新计算,直至达到相关要求;

9)根据计算结果,绘制桩身的剪力图和弯矩图;

10) 对于钢筋混凝土桩,根据上述计算结果进行配筋设计。03

作用力系

作用于抗滑桩的外力主要包括滑坡推力、桩前滑体抗力(滑面以上桩前滑体对桩的抗力)、锚固段地层抗力(滑面以下地层对桩的抗力)、桩侧摩阻力和黏着力以及桩底反力等,其均为分布力。04

滑坡推力

作用于抗滑桩上的滑坡推力,与滑坡性质、滑体厚度、滑面形状以及桩的位置、间距等因素相关。一般先用工程地质法的各种手段,对滑坡稳定性进行分析,然后辅以力学计算。由于桩间土拱对滑坡推力的影响机理尚不清晰,通常假定每根桩所承受的滑坡

推力等于桩距(相邻两根桩中心的距离)范围之内的滑坡推力。剩

余下滑力的计算有两种模式,分别通过加大下滑力、折减抗滑力进行计算。

1) 计算基本假定

①在沿滑动主轴方向的地质纵断面图上,按滑面的产状和岩土性

质划分为若干铅直条块,由后向前计算各条块分界面上的剩余下滑力即是该部位的滑坡推力;

②每段滑体的下滑力方向与其所在条块的滑面平行;

③横向按单位宽度计算,不考虑两侧的摩擦阻力;

④视滑体为连续而无压缩的介质,由后向前传递下滑力并作整体

滑动,不考虑滑体内部的局部应力作用。

2) 滑体上的作用力

第i个条块滑体上的作用力可分为基本力系和特殊力系两类。基本力系包括滑体自重Wi、上一条块传递来的剩余下滑力E i-1、下一条块产生的支撑力E i、滑床反力N i、滑面的抗滑力T i;

特殊作用力系只有在可能出现的情况下,才列入计算,其主要包

括作用在条块上的外部荷载P i、动水压力Di(滑体饱水或其下部饱水且与滑带水相连通时考虑)、滑床上产生的浮托力S i、滑头水系有压力水头时的浮托力S i’及地震力E s i等。

3) 各作用力的计算

4) 通过加大下滑力计算

5) 通过折减抗滑力计算(推荐)

05

滑坡推力计算

计算滑坡推力时,首先根据试验资料、经验数据等进行综合分析,拟定各条块滑面的c i、φi值,或整个滑面的平均c、φ值,令F=1,依次计算各条块的剩余下滑力,并要求滑坡前缘出口的剩余下滑力等于或趋近于零。若不为零,则需调整c、φ值,重复

计算,直至等于或趋近于零为止,即反算求得c、φ值,如曲线a,进而综合确定滑面(带)的强度指标。

其次,根据工程要求,选定安全系数F,再重新计算各条块的剩余下滑力,即为设计下滑力,如曲线b。滑坡前缘出口处的最终不平衡下滑力,其为抗滑桩设计的主要依据之一。最后,根据选定的桩位、桩间距,计算作用在每根桩上的滑坡推力。

滑坡推力曲线

06

滑坡推力分布形式

滑坡推力分布及其作用点位置,与滑坡类型、部位、地层性质、变形状况及地基系数等因素有关。当滑体沿断面高度均匀向下变形、地基系数为常数时,推力呈矩形分布;当地基系数沿断面高度呈线性变化时,则推力呈三角形分布;当地基系数在顶部呈线性变化、底部为常数时,则推力呈梯形分布。

当滑坡为堆积层、破碎岩层时,下滑力自上而下呈三角形分布,由于滑体与滑床间存在摩擦,其下滑力有所减小,因而整个分布图形接近于抛物线形。一般而言,若滑体变形是均匀向下蠕滑,

当滑体是一种黏聚力较大的地层(如黏土、土夹石等),其推力分

布图形可近似按矩形考虑;若滑体是一种以内摩擦角为主要抗剪特性的堆积体,其推力分布图形可近似按三角形考虑,甚至按二次曲线考虑;介于此两者间的情况,可假定为梯形。实际工程中,一般根据具体情况采用三角形、梯形或矩形分布。

07

桩周岩土抗力

设置抗滑桩后,当抗滑桩受到滑坡推力作用产生变形时,一部分滑坡推力传递到桩前滑体(滑面以上),另一部分通过桩体传递到锚固段地层(滑面以下)。抗滑桩周围岩土体对抗滑桩的抗力作用

称为桩周岩土抗力,其中滑面以上的称为桩前滑体抗力,或受荷段地层抗力;滑面以下的为锚固段地层抗力。

①地基系数为常数(即“K”法)的假定,适用于较完整岩层和硬

黏土;

②地基系数与深度成正比例增加(即“m”法)的假定,适用于硬塑至半坚硬的砂黏土、碎石类土或风化破碎的岩层。

2) 弹性抗力

在弹性限度内,与变位成正比的桩周岩土抗力称为弹性抗力,根据弹性理论,由地基系数计算桩周岩土作用于桩身的弹性抗力值及其分布。假定地层为弹性介质,桩为弹性构件,作用于桩侧任

一点y处的弹性抗力

3) 桩前滑体抗力

桩前滑体抗力与滑坡性质、桩前滑体规模等因素相关。试验表明,桩前滑体体积愈大,抗剪强度愈高,滑面愈平缓、粗糙,桩前滑体抗力愈大,反之愈小。此外,还与是否存在多层滑面有关。当抗滑桩在滑坡推力作用下产生变形,滑面以上桩前滑体抗力小于桩体所提供的极限抗力时,桩前滑体将产生隆起破坏,或沿桩前滑体中某一薄弱面产生剪切破坏。

桩前滑体抗力可由极限平衡时滑坡推力曲线、桩前被动岩土压力

或桩前滑体的弹性抗力(桩前剩余抗滑力)确定,设计时选用较小值。

①根据滑坡推力曲线确定桩前滑体抗力时,假定滑坡处于极限平衡状态,滑面以上的c、φ值根据反算法确定时,抗滑桩需要承受的推力(桩上设计荷载)为T=E-P。

②以桩前被动土压力作为桩前滑体抗力时,可按朗肯被动土压力公式计算。

③采用地基系数法时,将滑面以上桩身所受的滑坡推力作为已知

设计荷载,然后根据滑面上下地层的地基系数,把整根桩视为弹性地基梁进行计算,不考虑滑面存在的影响。

应特别注意,若桩前滑体将被挖掉或可能滑动,则不存在桩前滑体抗力,此时应将滑坡推力直接作为桩上设计荷载。

桩前滑体抗力的分布图形基本呈抛物线,抗力的最大值出现在滑体中部,靠近滑面的应力较小。当滑体为黏性土时,由于黏聚力影响,顶端抗力较滑体为松散介质时大,合力重心也较高。在工程设计中,桩前滑体抗力一般采用与滑坡推力相同的应力分布形式,也可采用抛物线分布形式。当采用抛物线分布时,可将抗力图形简化为一个三角形和一个倒梯形。

4) 锚固段地层抗力

锚固段地层抗力分两种情况:①抗滑桩锚固在完整岩层中,此时

把滑面以下的地层当作半无限的空间弹性体,抗滑桩处理为插入其中的一根杆件较为合适,因按空间弹性体计算较为复杂,故一般采用弹性力学中简便的链杆法计算,滑面处的抗力图形有明显

的应力集中现象;②抗滑桩锚固在破碎岩层或堆积层中,此时可

将地层视为弹性介质,采用地基系数法较为合适,而滑面处抗力较小。

08

抗滑桩设计要素

1) 桩的平面位置及其间距

抗滑桩的平面位置和间距,一般应根据滑坡的地层性质、推力大小、滑面坡度、滑体厚度和施工条件等因素综合考虑确定。多数滑坡体上部滑面陡,张拉裂缝多,不易设桩且在此部位设桩并不能对潜在滑体的中下部发挥作用,故效果较差;中部滑面深,下滑力大,设桩的工程量大,施工较为困难;潜在滑体的下部,滑面较缓,下滑力较小或系抗滑地段,布设桩容易,且基本上能对整个潜在滑体起到抗滑作用,在工程实践中,多将抗滑桩布设在该部位。

在平面上,桩通常为一排,布置方向应与滑体滑动方向垂直或接近垂直。对于沿滑动方向很长的多级滑体或下滑力很大的滑体,设两排或多排抗滑桩分级处治较为合理,也可采用抗滑桩和其它措施联合处理。合理的桩距应使桩间滑体具有足够的稳定性,在

下滑力作用下,不致从桩间挤出。初步选定时,桩的中心距可为6~10m,且宜大于桩的横截面短边或直径的2.5倍。

2) 桩的横截面及其计算宽度

抗滑桩横截面形状对桩的抗滑作用有较大影响。当滑体滑动方向明确时,可采用矩形截面,其长边宜与滑动方向一致;当滑体滑动方向难以准确确定时,宜采用圆形截面。抗滑桩的截面尺寸应根据单桩承受的滑坡推力大小、锚固段地层横向容许承载力和桩

间距等因素确定,且桩最小边宽度不宜小于 1.25m。初步选定时,矩形截面的短边边长可为 1.5~3m,长边边长不宜小于短边的 1.5倍;圆形截面的直径可为 1.5~5m。

3) 桩的锚固深度

桩的锚固深度与稳定地层的强度、滑坡推力、桩体刚度、截面和间距、是否及如何考虑桩前滑体抗力等因素有关。锚固不宜过深,通常采用缩小桩距或调整桩体截面尺寸等方法,以减小锚固深度。抗滑桩锚固段应锚固于潜在滑面以下的稳定地层内,且不应产生新的深层滑动。初步选定时,锚固深度可为桩长的1/4~1/3,最终应根据计算确定。

4) 桩底支承条件

抗滑桩的顶端一般为自由支承,而底端根据锚固程度不同,可分为自由支承、铰支承、固定支承三种,工程上通常采用前两种。

①自由支承:在滑面以下桩的O B段,地层为土体、松软破碎

岩体;

②铰支承:当桩底岩层完整时,并较O B段地层坚硬,但桩嵌

入此层不深;

③固定支承:当桩底岩层完整且极坚硬,桩嵌入该层较深。(不推荐)

5) 刚性桩与弹性桩

当βh2≤1.0或αh2≤2.5时,抗滑桩属刚性桩,否则属弹性桩。

锚固段地基系数为梯形分布时,可将桩分成若干小段,每小段内采用常数分布近似计算。

09

抗滑桩结构设计

抗滑桩桩身按受弯构件设计,当无特殊要求时可不做变形、抗裂

及挠度等验算。桩身混凝土的强度等级宜为C30,桩身中的主筋宜采用H R B 400钢,箍筋可采用H R B 335钢或H R B 400钢。

10

抗滑桩内力计算

国外通常采用线弹性地基系数法计算抗滑桩内力,将滑面以上按悬臂桩考虑,并采用一般静力学方法求解其内力,而滑面以下采用有限差分法求解其内力。国内大多采用悬臂桩法和地基系数法。

悬臂桩法是最早提出的一种方法,具有简单实用的优点,其将滑

面以上视为悬臂梁,滑面以下视为W i n kl er弹性地基梁,由于

其对桩的实际受力状况偏于安全的简化,因而对桩的内力计算结果是过于保守的;地基系数法把整根梁作为弹性地基梁来处理,通常认为其较接近抗滑桩的实际受力状况,根据地基系数的假定

不同,上述方法又分为“K”法、“m”法等。

对于悬臂式抗滑桩、桩前滑体可能滑动的全埋式抗滑桩,通常采用悬臂桩法,对于一般的全埋式抗滑桩,上述两种方法均可采用。

《铁路路基支挡结构设计规范》(T B 10025)推荐使用悬臂桩

法。

11

地基强度校核

抗滑桩锚固深度的计算应根据地基的横向容许承载力确定。

五、抗滑桩内力计算

滑面以上的桩身内力,应根据滑坡推力和桩前滑体抗力计算;滑面以下的桩身变位和内力,应根据滑面处的弯矩、剪力和地基的

弹性抗力(锚固段地层抗力)进行计算。计算时,通常将抗滑桩位

于滑面以上的部分称为受荷段,滑面以下部分称为锚固段,两部分单独计算。

01

受荷段桩身内力

若桩前滑体自身不能保持稳定,当桩受力时,其不能提供反向支承力,此时抗滑桩称为悬臂桩,抗滑桩受荷段仅承受滑坡推力,桩身内力可根据结构力学公式直接计算。

若桩前滑体自身能保持稳定,且具有一定的稳定强度,当桩受力后,桩前滑体能提供一定的反向支承力以稳定桩后滑体,这部分力称为桩前滑体抗力,其大小、分布规律及对桩的作用很复杂,当桩前滑体抗力采用与滑坡推力相同的分布形式,桩身内力可根据结构力学公式计算。

根据简化后滑面处弯矩和剪力相等的原理,

h s为桩前滑体抗力最大应力处与桩顶的距离,其值随滑体黏聚力的增大而减小。试验表明,h s一般等于受荷段桩长的1/4~1/3,该值对计算结果影响不大。

02

锚固段桩身内力

1) 按刚性桩计算

刚性桩内力计算方法较多,目前较常用的是将锚固段桩身周围的地基介质视为弹性体以计算桩侧应力(锚固段地层抗力),从而计算锚固段桩身内力。

①滑面处地基系数的确定

对于地基系数不随深度变化的弹性介质,如密实土层和岩层,由于其地基系数较滑体大得多,因此上部滑体的存在不会影响滑床的弹性性质,滑面处地基系数仍为常数。

对于地基系数C=A+m y 的地层,A值的大小与应力释放、地

层性质和附加荷载等因素有关。应力释放需视地质年代中地层的沉积、卸荷、剥蚀、夷平和各种营力作用来考虑,即考虑超压密

作用;附加荷载主要包括滑体自重及其上部建(构)筑物等。一般而言,A及A’值可用换算法求得。

②桩身内力计算

在滑坡推力作用下,当桩埋入完整、坚硬岩石的表层时,将绕桩底转动,当桩埋入土层或软质岩层中时,将绕桩身某点转动。桩身内力的计算,根据滑面以下地层情况的不同有所区别。假设桩

身埋入同一地层,滑面以下m值相同,桩底为自由端,计算分

析如下:

2) 按弹性桩计算

按弹性桩计算锚固段桩身内力,本质上是利用初参数方程求解锚固段桩身变位及内力。初参数指桩起始端的位移、转角、弯矩和

剪力等物理量,即y=0时的x0、φ0、M0、Q0。桩的初参数

解即为用桩的四个初参数表示弹性桩桩轴微分方程的通解及其它物理量的解答,因其均为方程,故称为初参数方程。

(完整版)抗滑桩设计与计算

抗滑桩设计的步骤 1抗滑桩设计计算步骤 一.首先弄清滑坡的原因、性质、范围、厚度,分析滑坡的稳定状态和发展趋势。 二.根据滑坡地质断面及滑动面处岩土的抗剪强度指标,计算滑坡推力。 三.根据地形地质及施工条件等确定设桩的位置及范围。 ①根据滑坡推力大小、地形及地层性质,拟定桩长、锚固深度、桩截面尺寸及桩间距。 ②桩的计算宽度,并根据滑体的地层性质,选定地基系数。 矩形桩:Bp=Kf*Ka*b=1.0*(1+1/b)*b=b+1 圆形桩:Bp=Kf*Ka*d=0.9*(1+1/d)*d=0.9(d+1) ③根据选定的地基系数及桩的截面形式、尺寸,计算桩的变形系数(α或β)及其计算深度(αh或βh),据以判断是按刚性桩还是弹性桩来设计。 桩的截面形状应从经济合理及施工方便可虑。目前多用矩形桩,边长2~3m,以1.5×2.0m及2.0×3.0m两种尺寸的截面较为常见。 计算弹性地基内的侧向受荷桩时,有关地基系数目前有两种不同的假定: ⑴认为地基系数是常数,不随深度而变化,以“K”表示之,相应的计算方法称为“K”法,可用于地基为较为完整岩层的情况

⑵认为地基系数随深度按直线比例变化,即在地基深度为y处的水平地基系数为C H=m H*y或CH=A H+m H*y,竖直方向的地基系数为C V=m V*y或C V=A V+m V*y,。A H、A V表示某一常量,m H、m V分别表示水平及竖直方向地基系数的比例系数。相应这一假定的计算方法称为“m”法,可用于地基为密实土层或严重风化破碎岩层的情形。 2水平及竖向地基系数的比例系数应通过试验确定;当无试验资料时,可参可表1确定。较完整岩层的地基系数K值可参考表2及表3确定。 非岩石地基m H和m V值 表1 注:由于表中m H和m V采用同一值,而当平均深度约为10m时,m H值接近垂直荷载作用下的垂直方向地基系数C V值,故C V值不得小于10m V。 较完整岩层的地基系数K V值 表2 注:①在R=10~20Mpa的半岩质岩层或位于构造破碎影响带的岩质岩层v,根据实际情况可采用k H=A+m H y;

某抗滑桩设计验算

某抗滑桩设计验算 案例说明 本章以实际边坡工程为例,详细介绍和讲解GEO5 2016中新增的「抗滑桩设计」模块的具体功能和使用方法。「抗滑桩设计」模块(以下简称「抗滑桩」模块)的开发参考了相关中国规范、工程手册和设计经验,并得到了很多中国工程师的建议和指导。 工程概况 本工程案例为某铁路路堑边坡支护工程,铁路路线恰好穿过边坡坡脚。施工前边坡已经发生过一次滑动破坏,滑动面比较明确,为了防止二次滑动给路基产生的毁灭性破坏,需要对边坡进行支护处理。设计采用的支护方式为:先在滑坡中部添加一排抗滑桩,接着在滑坡中下部设置片石重力式挡墙,最后再进行路堑开挖并设挡土墙。 为安全起见,这里将路堑开挖完成以后的边坡剖面作为计算剖面,即假设先挖路堑再进行边坡支护,而实际的施工顺序应为先进行边坡支护再进行路堑开挖。图28.1为滑坡初始计算剖面。 图1 边坡初始计算剖面 滑坡推力与滑体抗力计算 抗滑桩桩后滑坡推力与桩前滑体抗力需要在GEO5「土质边坡稳定分析」模块(以下简称「土坡」模块)中进行计算。首先打开「土坡」模块,设计之初,我们已经在CAD软件中绘制了边坡的剖面模型,所以在这里直接导入边坡剖面

模型即可。点击【文件】 【导入】 【将DXF文件以多段线导入】,在弹出的窗口中选择打开边坡剖面DXF文件,接着在设置窗口左侧的图层列表中勾选需要导入的地层线(注意:项目单位的选择,这里选择为“m”,偏移选择“自动定位到原点”。) 图2 模型导入设置 边坡剖面成功导入以后,在【分析设置】中确认选择的是「中国-铁路行业」,采用默认的设计安全系数1.35,即滑坡推力和滑体抗力也采用该安全系数计算。 接着在竖向模式菜单栏中点击【岩土材料】,在岩土材料界面中添加边坡岩土体材料。表1为岩土材料参数列表。 表1 岩土材料参数

边坡防护之抗滑桩类型、设计及计算

边坡防护之抗滑桩类型、设计及计算 一、概述 抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。 抗滑桩具有以下优点: (1) 抗滑能力强,支挡效果好; (2) 对滑体稳定性扰动小,施工安全; (3) 设桩位置灵活; (4) 能及时增加滑体抗滑力,确保滑体的稳定; (5) 预防滑坡可先做桩后开挖,防止滑坡发生; (6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。 二、抗滑桩类型

实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。 三、抗滑桩破坏形式 总体而言,抗滑桩破坏形式主要包括: (1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出; (2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断; (3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断; (4) 抗滑桩锚固深度及锚固力不足,桩被推倒; (5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性

变形,使桩体位移过大而超过允许范围; (6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。 对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。 四、抗滑桩设计 01 基本要求 抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。 抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。此外,抗滑桩设计还应满足以下要求: ?通过桩的作用可将滑坡推力滑坡的剩余抗滑力传递到滑面以下 稳定地层中,使滑体边坡安全系数达到规定值。保证滑体不越过桩顶,不从桩间挤出。 ?桩身有足够的稳定性。桩的截面、间距及埋深适当,锚固段的横向应力在容许值内。 ?桩身有足够的强度。钢筋配置合理,能够满足截面内力要求。 ?保证安全,施工方便,经济合理。 02 设计流程

抗滑桩课程设计

岩土工程设计课程设计1基础计算 1.1土压力计算:含计算数据、计算过程、土压力示意图 参数: 1)土体分层:3层 2)计算深度:6m 3)地下水埋深:2m 4)单层厚度:2m 1.1.1静止土压力的计算 静止土压力: Ea=145.39KPa 静止土压力作用点距地基距离:0.54m

1.1.2主动土压力的计算 主动土压力: Ea=-152.65 KPa 主动土压力作用点距离墙底距离:0.56m 1.1.3被动土压力的计算 被动土压力:Ea=1505.11 KPa 作用点距离:0.39m 1.1滑坡推力计算:含计算数据、计算过程、滑坡推力示意图参数: 1)内聚力:100KPa 2)内摩擦力:10° 3)土体密度:2g/cm3 4)滑坡数

1.2滑坡推力的计算1. 2.1滑坡体断面图

1.1.2条块单位宽度重力 Gn=ρV n G1=2174.40 KN G2=635.60KN G3=1458.40KN G4=1824.20KN G5=3611.40KN 1.1.3、计算传递系数 由公式ψ=cos(βn-1-βn)-sin(βn-1-βn)tanφn ψ2=0.95 ψ3=1 ψ4=1.02 ψ5=1 1.1.4从第一个条块开始计算每延米推力 由公式Fn=γt G n sinβn-G n conβn tanφn-c n l n+ψF n-1 F1=25.73KN F2=-3710.51KN F3=-6975.62KN 因此作用在桩上的单位宽度的滑坡推力荷载为-6975.62KN 2 实例计算 2.1 计算题目条件 2.2 计算流程:含计算步骤、每一步骤的计算公式 2.2.1桩的位置、平面布置、桩间距、桩位的设计 2.2.2桩型、桩长、锚固深度、截面尺寸的设计

抗滑桩设计计算书

目录 1 工程概况 2 计算依据 3 滑坡稳定性分析及推力计算 3.1 计算参数 3.2 计算工况 3.3 计算剖面 3.4 计算方法 3.5 计算结果 3.6 稳定性评价 4 抗滑结构计算 5 工程量计算

、工程概况 拟建段位于重庆市巫溪县安子平,设计路中线在现有公路右侧约100m,设计为大拐回头弯,设计路线起止里程为K96+030?K96+155,全长125m,设计路面净宽7.50m,设计为二级公路,设计纵坡3.50%,地面高程为720.846m?741.70m,设计起止路面高程为724.608m?729.148m, K96+080-K96+100 为填方,最大填方为4.65m,最小填方为1.133m。 二、计算依据 1. 《重庆市地质灾害防治工程设计规范》 (DB50/5029-2004); 2. 《建筑地基基础设计规范》 ( GB 50007-2002); 3. 《建筑边坡工程技术规范》 ( GB 50330-2002); 4. 《室外排水设计技术规范》 (GB 50108-2001); 5. 《砌体结构设计规范》(GB 50003-2001); 6. 《混凝土结构设计规范》 (GB 50010-2010); 7. 《锚杆喷射混凝土支护技术规范》 ( GB 50086-2001); 8. 《公路路基设计规范》 ( JTG D30—2004); 9. 相关教材、专著及手册。 三、滑坡稳定性分析及推力计算 3.1 计算参数 3.1.1 物理力学指标:天然工况:丫1=20.7kN/m3, ? 1=18.6 °,C=36kPa 饱和工况:Y=21.3kN/m3,?=15.5 ° C2=29kPa 3.1.2 岩、土物理力学性质 该段土层主要为第四系残破积碎石土,场地内均有分布,无法采取样品测试,采取弱风化泥做物理力学性质测试成果:弱风化泥岩天然抗压强度24.00Mpa,饱和抗压强度17.30 Mpa,天然密度2.564g/cm3,比重2.724,空隙度8.25%,属软化岩石,软质岩石。

抗滑桩设计计算书

抗滑桩设计计算书-CAL-FENGHAI.-(YICAI)-Company One1

目录 1 工程概况 2 计算依据 3 滑坡稳定性分析及推力计算计算参数 计算工况 计算剖面 计算方法 计算结果 稳定性评价 4 抗滑结构计算 5 工程量计算

一、工程概况 拟建段位于重庆市巫溪县安子平,设计路中线在现有公路右侧约100m,设计为大拐回头弯,设计路线起止里程为K96+030~K96+155,全长125m,设计路面净宽7.50m,设计为二级公路,设计纵坡%,地面高程为720.846m~741.70m,设计起止路面高程为724.608m~729.148m,K96+080-K96+100为填方,最大填方为4.65m,最小填方为1.133m。 二、计算依据 1.《重庆市地质灾害防治工程设计规范》(DB50/5029-2004); 2.《建筑地基基础设计规范》(GB 50007-2002); 3.《建筑边坡工程技术规范》(GB 50330-2002); 4.《室外排水设计技术规范》(GB 50108-2001); 5.《砌体结构设计规范》(GB 50003-2001); 6.《混凝土结构设计规范》(GB 50010-2010); 7.《锚杆喷射混凝土支护技术规范》(GB 50086-2001); 8.《公路路基设计规范》(JTG D30—2004); 9. 相关教材、专着及手册。 三、滑坡稳定性分析及推力计算 计算参数 3.1.1 物理力学指标:天然工况:γ1=m3,φ1=°,C1=36kPa 饱和工况:γ2=m3,φ2=°,C2=29kPa 3.1.2 岩、土物理力学性质 该段土层主要为第四系残破积碎石土,场地内均有分布,无法采取样品测试,采取弱风化泥做物理力学性质测试成果:弱风化泥岩天然抗压强度,饱和抗压强度 Mpa,天然密度2.564g/cm3,比重,空隙度%,属软化岩石,软质岩石。 表1 各岩土层设计参数建议值表

(完整版)滑坡抗滑桩设计计算

抗滑桩设计 一:设计题目 某高速公路K15+620~K15+880 滑坡处治设计。 二:设计资料 1:概述 某高速公路K15+620~K15+880位于崩坡积块石土斜坡前缘,原设计为路堑墙支挡块石土,泥岩已护面墙防护。开挖揭露地质情况与设计差异较大,在坡题前缘全断面开挖临空后,受预计暴雨作用块石土形成牵引式滑坡。滑坡发生后,对该滑坡进行施工图勘测,并结合工程地质勘测报告,对该滑坡提出处置的方案。K15+620~K15+880滑坡采用“清方+支档+截排水”综合处理,滑坡处治平面布置图见附图1,要求对抗滑桩进行设计。 2:工程地质条件 该高速公路K15+620~K15+880 滑坡区位于条状低山斜坡中上部,沿该段公路左侧展布,前缘高程304m 左右,后缘高程355m 左右,地形坡角约30 度。滑体纵向长约105 米,宽200~300 米,滑体厚度8~20 米,面积接近1.5×104m2,体积约15×104m3。主滑动方向202°,属于大型牵引式块石土滑坡。 通过地质测绘及钻探揭露,滑体物质主要由崩坡积块石土(Q4c+dl)组成。块石土呈紫红、灰褐等色,稍湿~湿,松散~稍密,成份主要为砂岩、少量粉砂质泥岩,多为中等风化,棱角状,粒径20cm~50cm,约占60%,次为小块石,约占10%,其间由紫红色低液限粘土充填。在滑体后部相对较薄,厚5~8m;在滑体中部、前端分布较厚,厚9~24m。滑动带(面)多为块石土与基岩的接触带,滑带厚0.2~0.6m 左右,滑带土中小块石含量较低(<5%),低液限粘土湿、 可塑~软塑,有搓揉现象,见镜面、擦痕等。滑床物质主要为侏罗系沙溪庙组泥岩、砂岩。泥岩多为紫红色,主要由粘土矿物组成,砂质含量不均,局部富集,泥质结构、厚层状构造;砂岩多为灰白色,主要由长石、石英、云母等矿物组成,泥、钙质胶结,细粒结构,厚层状构造。岩层产状265o~290o∠15o~28o,基岩顶面的产状近似于岩层产状。岩体内见节理、裂隙发育,裂隙产状273o∠72o、210o∠65o。 该滑坡的变形迹象明显,包括拉张裂缝、滑塌、地裂缝等。拉张裂缝主要沿后缘基岩陡壁的壁脚分布,分布高程一般在340~350m 左右,缝宽一般10~ 20cm,长度一般6~15m,一般无下错,可见深度30cm,延伸方向100o左右。随着滑坡变形发展,该滑坡可分为I、II 级。I 级滑坡主要位于路线左侧的第一级块石堆积坡体,为滑坡的主要推力来源。该段滑体深厚,下滑变形强烈,裂缝密集,前缘溜塌、鼓出明显。II 级滑坡位于整个滑坡的右后缘块石堆积坡体上,滑体厚度较小,变形不强烈,主要受一级牵引所致。 3.平面图及主要计算断面:见附图。(由教师提供电子版的图,所需尺寸直接由图上量取) 4.主要计算参数与数据 根据地勘单位提供的室内试验值、推荐值,结合实测断面反算参数,确定计 算参数及数据如下:

抗滑桩设计计算(验算)

抗滑桩防护方案计算验算 抗滑桩原设计长度为15米,桩基埋入承台深度为4.5米,桩基另侧采用万能杆件支撑(见附后图)。由于承台基坑开挖较深,在承台施工时万能杆件横向支撑干扰较大,给施工带来很大的不便。为此提出抗滑桩防护修改方案:1、取消万能杆件横向支撑;2、加大抗滑桩入土埋置深度,由4.5米增至9米,总桩长增至19米;3、在桩顶部设1.2m×0.8m系梁连接所有抗滑桩,加强桩顶部的整体稳定性。具体验算如下: 一、桩长及桩身最大弯矩计算 开挖深度10米,桩下土层为新黄土和圆砾土,土的内摩擦角取35°,土的重度γ=18KN/m3,无地下水,采用人工挖孔灌注桩支护。取1米为计算单元,计算桩入土深度及最大弯矩。 顶部车辆荷载P=10KN/m2。 1、桩的入土深度

14 .06224.0696.64)(67.63 2 /77.284283 .1083.010837 .0)(49 .51271.010271.0181069 .3)2 45(271 .0)2 45(/191056 .0101856.018 10 3 2'223 '' '== ===-====??+???==+=+==-= =?+??=?+??==+==-==+?=+?=== = ∑∑∑l K E n l K E m r K K K m h m KN K P h K h l E h l r K K e K P K h e tg K tg K m KN h h h m P h P P a a P γγαγααααααααγμμγ? ? γγγ 由m ,n 值查图(布氏理论曲线)得:62.0=ω m x t m l x 89.82.171.662.083.10=+==?==μω 故挖孔桩总长为10+8.89=18.9m (按19m 施工) 2、桩的最大弯矩计算 ∑∑?=-=---+==-= m KN x K K x l E M m K K E x m P m P m 8.174607.28185.20276 )()(96.2' )(23 'max γαγαα 设桩中心距按1.5米布置

抗滑桩设计

滑坡推力 滑动面 地面 悬臂式桩滑坡推力 滑动面 地面 已知力 地基反力 全埋式桩 抗滑桩设计的要求和步骤 抗滑桩设计应满足的要求如下: (1) 整个滑坡体具有足够的稳定性,即抗滑稳定安全系数满足设计要求值,保证滑体不超过桩顶,不从桩间挤出; (2) 桩身要有足够的强度和稳定性。桩的断面和配筋合理,能满足桩内应力和桩身变形的要求; (3) 桩周的地基抗力和滑体的变形在容许范围内; (4) 抗滑桩的间距、尺寸、埋深等都较适当,保证安全,方便施工,并使工程量最省。 抗滑桩设计计算步骤如下: (1) 首先弄清滑坡的原因、性质、范围、厚度,分析滑坡的稳定状态、发展趋势; (2) 根据滑坡地质断面及滑动面处岩(土)的抗剪强度指标,计算滑坡推力; (3) 根据地形、地质及施工条件等确定设桩的位置及范围; (4) 根据滑坡推力大小、地形及地层性质,拟定桩长、锚固深度、桩截面尺寸及桩间距; (5) 确定桩的计算宽度,并根据滑体的地层性质,选定地基系数; (6) 根据选定的地基系数及桩的截面形式、尺寸,计算桩的变形系数(或)及其计算深度(h或h),据以判断是按刚性桩还是按弹性桩来设计; (7) 根据桩底的边界条件采用相应的公式计算桩身各截面的变位,内力及侧壁应力等,并计算确定最大剪力、弯矩及其部位; (8) 校核地基强度。若桩身作用于地基的弹性应力超过地层容许值或者小于其容许值过多时,则应调整桩的埋深或桩的截面尺寸,或桩的间距,重新计算,直至符合要求为止; (9) 根据计算的结果,绘制桩身的剪力图和弯矩图; (10) 对于钢筋混凝土桩,还需进行配筋设计。 4.3.2抗滑桩设计的基本假定 作用于抗滑桩的外力包括:滑坡推力、受荷段地层(滑体)抗力、锚固段地层抗力、桩侧摩阻力和粘着力以及桩底应力等。这些力均为分布力。 (1)滑坡推力作用于滑面以上部分的桩背上,可假定与滑面平行。由于还没有完全弄清桩间土拱对滑坡推力的影响,通常是假定每根桩所承受的滑坡推力等于桩距(中至中)范围之内的滑坡推力; (2) 根据设桩的位置及桩前滑坡体的稳定情况,抗滑桩可分为悬臂式和全埋式两种。受力情况如图(图4-1)所示。当桩前滑坡体不能保持稳定可能滑走的情况下,抗滑桩应按悬臂式桩考虑;而当桩前滑坡体能保持稳定,抗滑桩将按全埋式桩考虑;

抗滑桩计算书

抗滑桩设计计算书 设计资料: 物理力学指标: 滑体:γ1=19 kN/m 3 ,φ1=40°,C 1=0 kPa 滑床:γ2=20.6 kN/m 3 ,φ2=42.3°,C 2=0 kPa 根据岩性及地层情况,滑面处的地基系数采用A =300000 kN/m 3 ,滑床土的地基系数随深 度变化的比例系数采用m =80000 kN/m 4 ,桩附近的滑体厚度为6m ,该处的滑坡推力E =410.00835 kN/m ,桩前剩余抗滑力E'=0 kN/m 。 抗滑桩采用C20钢筋混凝土,其弹性模量E h =28e6 kPa ,桩断面为b×a =1m×1.5m 的矩形,截面S =1.5m 2 ,截面模量2 16 W ba = =.375m 3,截面对桩中心惯性矩3 112 I ba = =.28125m 4,相对刚度系数EI =0.85E h · I =6693750m 2,桩的中心距l =5m ,桩的计算宽度B p =b +1=2m ,桩的埋深h =4m 。 一、采用m 法计算桩身的内力 (1)计算桩的刚度 桩的变形系数α= =0.473903699380272m -1 桩的换算深度α·h =1.89561479752109<2.5,故按刚性桩计算。 (2)计算外力 每根桩承受的水平推力T =410.00835×5=2050.04175kN 每根桩前的剩余抗滑力P =0×5=0kN 桩前被动土压力21111tan 4522p E h ?γ? ?= ?+= ?? ?733.421329758784kN/m 桩前被动土压力大于桩前剩余抗滑力,故桩前抗力按剩余抗滑力控制。 滑坡推力按三角形分布;桩前抗力按三角形分布,如图1。

抗滑桩设计步骤

沙伟奇 201306030107抗滑桩设计步骤 1、 选定桩的位置。 一般设置在坡体的前缘。 2、 根据滑坡推力,地基土性质、桩用材料等资料拟定桩的间距、 截面形状和尺寸和埋置深度 间距:单桩不考虑间距 截面形状及尺寸:钢筋混凝土桩的截面形状有矩形、圆形。当滑坡推力不能确定时,多采用圆形桩。 埋置深度:桩长宜小于35m ,锚固深度约为全桩长的1/2~1/4 3、 计算作用在抗滑桩上的各力 滑坡推力:由前步骤计算得知 桩前土抗力:滑动面以上的桩前土抗力,可由极限平衡时滑坡推力曲线在设置桩处的值,桩前被动土压力确定,二者选小值。桩前滑坡体可能滑走时不考虑桩前土抗力。 锚固段岩土体抗力,通常由弹性地基系数法确定。 4、 地基反力计算、确定地基系数,K 法,M 法 1) 地基反力: y y p CB P X y P ——地基反力(KN/m 2 ) C ——地基系数(kpa/m ) p B ——桩的计算宽度(m ) y X ——地层y 处的位移量(m )

2) 地基系数 2 0() C m y y =+ m ——地基系数随深度变化的比例系数 n ——随岩土类别而变化的比例常数 0 y ——与岩土类别有关的常数 ①K 法 当n=0,C 为常数,即C K = 适用于较完整的硬质岩层,未扰动的硬粘土和性质相近的半岩质地层。 ②m 法 当1n = ,0y = 时,C my = ,C 值呈三角形变化规律,适用于一般硬塑至半坚硬的沙粘土、碎石类土或风化破碎呈土状的软质页岩以及密度随深度增加的地层。 参考:表5-1、表5-2 3) 抗滑桩的计算宽度 矩形桩 1p b B =+ b ——桩的宽度 圆形桩 0.9(1)p d B =+ d ——桩的直径 5、 计算桩的变形系数α或β及换算深度αh 或βh ,来判断按弹性 桩 或刚性桩来计算 a) K 法

抗滑桩计算书

5.2抗滑桩计算与设计 5.2.1桩的平面布置位置及间距的选取原则 桩布置在应设在滑坡体较薄,锚固段地基强度较高、滑面较平缓等综合考虑较好的地段。平面上多成排布置。排的走向与滑体的滑动方向相互垂直。设计初步选定为将桩不知在滑体的下部,该部位下滑力相对较小,坡面较缓,宜在此处设桩。 桩间距也应根据实际情况综合确定,两桩之间在能形成土拱的的条件下,土拱的支撑力和桩侧摩擦力之和应大于一根桩所能承受的滑坡推力。一般取5-6m。本设计中取6m。 5.2.2抗滑桩桩身计算标准 以设计工况和校核工况的推力计算结果为依据,经过分析知Ⅰ-Ⅰ剖面稳定性较其他较低,故选取其在暴雨工况为设计计算标准,滑坡推力为2075.77KN。桩的布置形式详见施工图。 查相关规范知,桩的截面尺寸及相关长度初步取值如下:桩截面尺寸为2.0×3.0m,受荷段16m,锚固段8m计算,桩总长24m,桩间距6m,桩总共9根。采用“m”法计算,桩底支承条件为自由支承。 抗滑桩的计算深度均为=b+1=3m 5.2.3抗滑桩桩身材料选择 (1)混凝土强度等级为C30,桩护壁混凝土强度等级为C20. (2)钢筋:HPB235级,HRB335级 (3)混凝土保护层厚度:桩为50mm,梁的为35mm。 5.2.4桩体受力计算 5.2.4.1设计资料及相关参数的选取 设计抗滑桩长度为24m,受荷段16m,锚固段8m,间距6m,桩截面 b×a=2×3=6m2,桩截面惯性矩I=ba3/12=2×33/12=4.5m4, 桩截面模量W=ba2/6=3m3, 桩的混凝土(C30)弹性模量E=26×103Mpa, 桩抗弯刚度EI=2.6×104×4.5×103=1.17×108KN·m2, 桩的计算宽度B=b p+1=2+1=3m, 桩的变形系数 桩的计算深度αh2=0.31×8=2.48m<2.5m,属于刚性桩,桩底端的边界条件按自由端考虑。

抗滑桩类型、设计及计算

抗滑桩类型、设计及计算 一、概述 抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。 抗滑桩具有以下优点: (1)抗滑能力强,支挡效果好; (2) 对滑体稳定性扰动小,施工安全; (3) 设桩位置灵活; (4) 能及时增加滑体抗滑力,确保滑体的稳定; (5) 预防滑坡可先做桩后开挖,防止滑坡发生; (6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。 二、抗滑桩类型 实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。 三、抗滑桩破坏形式 总体而言,抗滑桩破坏形式主要包括: (1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出; (2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断; (3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断;

(4) 抗滑桩锚固深度及锚固力不足,桩被推倒; (5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性变形,使桩体位移过大而超过允许范围; (6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。 对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。 四、抗滑桩设计 01 基本要求 抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。 抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。此外,抗滑桩设计还应满足以下要求: ?通过桩的作用可将滑坡推力滑坡的剩余抗滑力传递到滑面以下 稳定地层中,使滑体边坡安全系数达到规定值。保证滑体不越过桩顶,不从桩间挤出。 ?桩身有足够的稳定性。桩的截面、间距及埋深适当,锚固段的横向应力在容许值内。 ?桩身有足够的强度。钢筋配置合理,能够满足截面内力要求。?保证安全,施工方便,经济合理。 02 设计流程

抗滑桩结构配筋计算终

抗滑桩结构配筋计算终 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

审定:审查:校核:编写:

抗滑桩结构配筋计算 一、计算目的 已知抗滑桩需抵抗的剩余下滑力,进行结构配筋验算。 二、计算依据 《水工混凝土结构设计手册》 《水工建筑物荷载设计规范》DL 5077-1997 《水工混凝土结构设计规范》 《实用桩基工程手册》中国建筑工业出版社史佩栋主编 《材料力学》教材 表1 边坡剩余下滑力(kN) 三、抗滑桩结构计算思路 抗滑桩的结构计算包括2部分:其一为计算抗滑桩的锚固深度(嵌入基岩深度):其二为计算抗滑桩的内力、截面及配筋。本算稿采用工程中常用的悬壁桩简化法计算。 1、基本假定 1) 同覆盖层比较,假定桩为刚性的; 2) 忽略桩与周围覆盖层间的摩擦力、粘结力; 3) 锚固段地层的侧壁应力成直线变化。其中:滑动面和桩底基岩的侧壁应力发挥一致,并等于侧壁容许应力;滑动面以下一定深度内的侧壁应力假定相同,并设些等压段内的应力之和等于受荷段荷载; 4) 假定边坡剩余下滑力按三角形分布。 2、基本计算公式 1) 锚固深度计算及内力计算公式

0,0'=-=∑p m T B y E H σ即 (1) 06 1 )22()23( ,023331'=-+-++=∑h B h y B y h y h E M p m p m m T σσ即 (2) 32h y h m += (3) 式中:'T E ──荷载,即每根桩承受的剩余下滑力水平分值(kN); 1h ──桩的受荷段长度(抵抗长度)(m); m y ──锚固段基岩达[σ]区的厚度(m); 3h ──锚固段基岩弹性区厚度(m); p B ──桩的计算宽度(m);按“m ”法计算,则1+=b B p 推导得最小锚固深度: ? ?? ? ??++=1'' 'min 22][3][][h B E B E B E h p T p T p T σσσ (4) 锚固段基岩达[σ]区的厚度: 2 2)()(2 2 22121h h h h h y m ++++-= (5) 锚固段基岩弹性区厚度 23h y h m -= (6) 锚固段地层侧壁应力 p m T B y E '= σ (7)

抗滑桩设计计算书模板

抗滑桩设计计算书

目录 1 工程概况 2 计算依据 3 滑坡稳定性分析及推力计算 3.1 计算参数 3.2 计算工况 3.3 计算剖面 3.4 计算方法 3.5 计算结果 3.6 稳定性评价 4 抗滑结构计算 5 工程量计算

一、工程概况 拟建段位于重庆市巫溪县安子平,设计路中线在现有公路右侧约100m,设计为大拐回头弯,设计路线起止里程为K96+030~K96+155,全长125m,设计路面净宽7.50m,设计为二级公路,设计纵坡 3.50%,地面高程为720.846m~741.70m,设计起止路面高程为724.608m~729.148m,K96+080-K96+100为填方,最大填方为4.65m,最小填方为1.133m。 二、计算依据 1.《重庆市地质灾害防治工程设计规范》(DB50/5029- ); 2.《建筑地基基础设计规范》(GB 50007- ); 3.《建筑边坡工程技术规范》(GB 50330- ); 4.《室外排水设计技术规范》(GB 50108- ); 5.《砌体结构设计规范》(GB 50003- ); 6.《混凝土结构设计规范》(GB 50010- ); 7.《锚杆喷射混凝土支护技术规范》(GB 50086- ); 8.《公路路基设计规范》(JTG D30—); 9. 相关教材、专著及手册。 三、滑坡稳定性分析及推力计算

3.1 计算参数 3.1.1 物理力学指标:天然工况:γ1=20.7kN/m3,φ1=18.6°,C1=36kPa 饱和工况:γ2=21.3kN/m3,φ2=15.5°,C2=29kPa 3.1.2 岩、土物理力学性质 该段土层主要为第四系残破积碎石土,场地内均有分布,无法采取样品测试,采取弱风化泥做物理力学性质测试成果:弱风化泥岩天然抗压强度24.00Mpa,饱和抗压强度17.30 Mpa,天然密度2.564g/cm3,比重2.724,空隙度8.25%,属软化岩石,软质岩石。 表1 各岩土层设计参数建议值表 F 3.1.3 滑坡推力安全系数 1.15 st 3.2 计算工况 选取公路填筑后自然状态、饱和状态两种工况对滑斜坡进行计算。 3.3 计算剖面

抗滑桩设计计算

课程名称:路基及支挡结构 设计题目:抗滑桩设计与计算 院系:土木工程系 专业: 年级: 姓名: 指导教师:

课程设计任务书 专业姓名学号 开题日期:年月日完成日期:年月日 题目抗滑桩设计计算 一、设计的目的 抗滑桩是一种重要的支挡结构,在铁路、公路、水运及建筑等部门应用十分广泛,本课程设计旨在培养学生独立设计抗滑桩的能力,通过本次设计,学生应系统掌握重力式挡土墙的设计理论和方法。 二、设计的内容及要求 (一)工程概况与地质条件 某公路滑坡主轴断面如图1所示,滑体为碎石土堆积层,3 21/kN m γ=, 5c kPa =,20φ=?,滑床为弱风化页岩,地基系数3120000/h K kPa m =,地基侧向容许压 应力[]2000h kPa σ=。 为整治此滑坡,建议在滑坡前缘设一排钢筋混凝土抗滑桩,悬臂段长9~10m ,桩底 滑桩。 图 滑坡主轴断面示意图

滑体分块参数如表1所示。 表1 滑体分块体积及相应滑面抗剪强度设计参数 抗滑桩悬臂段滑坡推力呈矩形分布。 (二)、设计依据 本课程设计依据《铁路路基支挡结构设计规范》(TB 10025-2006)进行,相应的技术标准应按该规范执行。 (三)、设计步骤 1、采用传递系数法计算滑坡推力; 2、拟定桩身截面尺寸与平面布置; 3、计算抗滑桩悬臂段内力; 4、计算抗滑桩锚固段内力与变位 (1)确定桩的计算宽度; (2)确定桩的类型(刚性桩、弹性桩); (3)计算锚固点处桩身内力与变位; (4)计算锚固点以下桩身内力与桩侧土体抗力; 5、验算桩顶位移(不大于10cm),若不满足重复2~4步; 6、验算桩侧地层强度,若不满足重复2~5步; 7、桩身配筋。 (四)、设计要求

抗滑桩设计

成都理工大学环境与土木工程学院 李家坪滑坡抗滑桩 课程设计 老师: 姓名: 学号: 班级: 2012-6-28

李家坪滑坡治理工程抗滑桩设计 一、前言 李家坪滑坡(下滑体) 位于开县丰乐镇。该滑坡属巨型土质滑坡,滑坡范围及周围有大量居民,滑坡后部有云开公路通过。三峡工程蓄水至175m 后,滑坡前缘将被淹没,稳定性计算及分析表明,滑坡虽可维持基本稳定,但安全储备不足,因此,开展该滑坡治理是非常必要的。 二、设计资料及设计要求 (一)设计资料 1、自然地理及地质背景 李家坪滑坡(下滑体) 位于开县丰乐镇境内,(长江支流)小江的支流—彭溪河左岸。 滑坡所在地区属亚热带季风气候区,春早、夏热、秋雨绵,冬暖而多雾,无霜期长,气候温暖湿润,雨量充沛。年降雨量1149.3~1213.5mm,其中5~9 月降雨量占全年降雨量的 70%,冬季(12 月至次年 2 月)降雨量最少,仅占全年降雨量的 4.2%,该区地处大巴山迎风面,常形成雨量中心单,日最大雨量 220.5 mm(1982 年7 月 11 日),三日最大雨量 357.7mm。 滑坡地处剥蚀、侵蚀低山沟谷地貌区。高程 170 m 以下为彭溪河河谷阶地,地势平缓;170m以上为低山斜坡地貌,下部较陡,坡度一般为 10°~20°;中部较平缓,后部稍陡,一般大于坡度 15°,斜坡上发育三条横向冲沟,自西向东依次为齐家沟、无名沟、邹家沟。李家坪滑坡即位于齐家沟与邹家沟之间。 滑坡所在地区主要出露第四系残坡积(Q4el dl+)、冲洪积物(Q4al pl+)。局部(如冲沟沟底)出露侏罗系上沙溪庙组(J )砂质 2S 泥岩、砂岩,岩层产状近于水平。 滑坡所在地区地下水主要为松散介质孔隙水、基岩裂隙水。残坡积物透水性差,无统一地下水位,主要属上层滞水;冲洪积物(I 级阶地、河漫滩)透水性强,属潜水,地下水埋深一般3~10m;基岩裂

相关文档
最新文档