变压器烧毁事故的分析

变压器烧毁事故的分析
变压器烧毁事故的分析

对变压器中性点直接接地装置烧毁事故的分析

唐海军

ANALYSIS OF BURN-OUT ACCIDENT OCCURRING AT DIRECT NEUTRAL GROUNDING DEVICE OF TRANSFORMER

TANG Hai-jun

(Changde Electric Power Bureau,Changde 415001,Hunan Province,China)

摘要:通过调查两起变压器中性点接地装置烧断、烧毁事故,从设计选型角度入手,采用电力系统短路故障计算方法,并结合继电保护配置及整定值,对故障现象及可能造成的保护误动和拒动以及供电可靠性进行了分析,建议采取用微机保护缩短故障切除时间、及时进行设备热稳定校验等措施。

关键词:变压器;中性点接地;接地装置烧毁;继电保护;电力系统

1 引言

近年来随着电力系统的发展,电网结构越来越复杂,规模也越来越庞大,发生复杂故障的机率逐渐增长,系统短路水平不断抬高,原有设备的抗故障能力却相对下降,很有必要对其进行计算校核;新投运设备的设计和选型计算俞显重要。对于大电流接地系统,由于变压器中性点经接地装置直接接地(如图1所示),变压器中性点的接地数目和分布决定了整个系统的零序电流分布和大小,中性点接地的好坏对电网的运行和系统稳定有着举足轻重的作用。笔者从对大量运行变压器的中性点引线、接地刀闸的调查了解到:这些接地装置大部分在设计选型时采用了估算值、经验值,并没有进行深入细致的计算;投入运行后,由于该回路正常没有电流流过,存在的隐患常常不易被发现,也往往不被运行和检修人员重视,对于腐蚀、锈蚀、压接不紧等情况也未及时进行处理,使得系统故障时经常有引线烧断、刀闸触头烧坏、连接软铜线(刀闸辨子线)烧断、连接接头处发热、发红等现象。本文通过调查两起变压器中性点接地装置烧断、烧毁事故,从设计选型角度入手,采用电力系统短路故障计算方法,并结合继电保护配置及整定值,对故障现象及可能造成的保护误动和拒动以及供电可靠性进行了分析。

图1变压器中性点接线

2 两次中性点接地装置烧断、烧毁事故情况

(1)铁山变电站。2001年8月28日9:10,雷雨天气,发现某市的铁山变电站的2号主变110kV 中性点引线(见图2)、5?26刀闸连接软铜线烧断。经检查发现110kV系统中其它地方有接地故障。由于该变电站只有一台主变,只得强迫停运,随后启用“特殊运行方式”,并对用户造成了100MW的送电损失。处理办法是更换同样规格的引线(LJ-120)和软铜线。

(2)德山变电站。2004年6月27日15:28,雷雨大风天气,发现某市的德山变电站的1号主变110kV侧5?16刀闸接线夹内铝导线(LJ-120)起弧烧坏(见图3),刀闸动触头烧坏(见图4),经检查铝导线靠线夹处有锈蚀情况;110kV系统德东线、德乾线、德永线均有接地故障,其系统接线如图5所示。随后被迫改变运行方式,1号主变停运,2号主变运行。

图2 烧坏的导线

图3 烧坏的线夹

图4 烧坏的刀闸触头

图5 大电流接地系统

3 选型计算方案

在有效接地系统中电气设备接地线截面应按接地短路电流进行热稳定校验,具体原则如下[1]:钢接地线的短时温度不应超过400℃,铜接地线不应超过450℃,铝接地线不应超过300℃。根据热稳定条件,未考虑腐蚀时接地线的最小截面应符合如下要求:

g S ≥ (1)

式中 S g 为接地线的最小截面,mm 2;I g 为流过接地线的短路电流稳定值,A ;t e 为短路的等效持续时间,s ;c 为接地线材料的热稳定系数,根据材料的种类性能及最高允许温度和短路前接地线的初始温度(一般取40℃)确定(如表1所示)。

表1 接地线热稳定校验用的I g 、t e 和c 值

系统接地方式 I g

t e

c 钢 铝 铜

有效接地

单(两)相接地短路电流 见①和② 70 120 210

注:①发电厂、变电所的继电保护装置如配置了两套速动主保护、近接地后备保护、断路器失灵保护和自动重合闸,则按e m f 0t t t t ≥++取值。其中, t m 为主保护动作时间,s ;t f 为断路器失灵保护动作时间,s ;t 0为断路器开断时间,s 。②如配置了一套速动主保护、近或远(或远近结合的)后备保护和自动重合闸,有或无断路器失灵保护,则按

e 0g t t t ≥+取值。其中,t g 为第一级后备保护的动作时间,s 。

110kV 中性点接地刀闸德山变5?16、铁山变5?26均为GW8型,额定电流为600A ,额定短时耐受电流(额定热稳定电流,i k )25kA ,额定短路持续时间(额定热稳定时间,t k )标准值为2s (IEC60694的标准值为1 s ,推荐值为0.5 s 、2 s 、3 s )。中性点接地线型号均为LJ-120。

对于110kV 线路接地故障保护均配置有零序?段(A O ?)、零序??段(A O ??)、零序Ш段(A O Ш),主变110kV 侧配有零序?段(t 1、t 2),零序??段(t 1、t 2)。参照文献[2]短路故障计算的数据和查得的有关调度定值数据如表2所示。

表2 实际系统中I g 、t g

变电站 I d /A 保护动作时间/s

德山变 9002 主变110kV A O ?:t 1=2.5;t 2=3 东郊变 5316 德东线:A O ?? 1;A O Ш 2 永丰变 6833 德丰线:A O ?? 2;A O Ш 2.5 乾明变 7672 德乾线:A O ?? 1.5;A O Ш 2.5 铁山变 9100 主变110kV A O ?:t 1=2.5;t 2=3 西郊变 5460 铁西线:A O ?? 1.5;A O Ш 2 浦沅变

7172

铁浦?:A O ?? 1.5;A O Ш 2

注:I d 为110kV 母线接地短路最大短路电流。

德山变110kV 母线接地短路时I g =9002A ,c =120,由于110kV 系统一般不配置断路器失灵保护,t e =2.5+0.2s ,则有

2g 9002

123.3mm 120

S =

(t g =t 1=2.5s ) 考虑最严重情况时主变110kV 零序?段t 1时限保护开关拒动、t 2时限切除故障时,即t e =3+0.2s ,此时有

2g 9002134.2mm 120

S =

铁山变110kV 母线接地短路时I g =9100A ,t e =2.5+0.2s ,有

2

g

9002

123.3mm

120

S=

由上述计算结果可见,中性点接地刀闸热稳定

校验满足要求;而中性线截面120mm2不满足要求,

特别是考虑到运行年代已久,导线锈蚀、腐蚀情况

使导线有效截面减少后更不满足要求。图4中刀闸

触头烧坏,这是因动静触头间接触面太小,故障电

流流过过热所致。而对于图2和图3中的现象,主

要原因是导线与线夹长期受到腐蚀,接触电阻增

大,过热烧毁。

4 造成的后果及影响

(1)110kV中性点接地装置烧坏,使110kV

接地系统变为不接地系统,如此时发生单相接地、

两相短路接地,110kV中性点电位升高,非故障相

电压升高,将使110kV系统设备在过电压状态下运

行。

(2)改变了系统特别是110kV零序网络结构

和接地点分布,使110kV零序保护、接地距离保护

拒动或误动,对系统的稳定运行造成严重影响。

(3)主变被迫停运,严重影响对用户的供电。

5 结论及建议

(1)变压器中性点接地线、接地刀闸的选择

应严格按照有关规程要求,并结合电力系统现有情

况和10~20年发展规划,按接地短路电流进行热稳

定校验,并保证一定的冗余度。热稳定时间t k应大

于等于后备保护的动作时间加t o(t o为裕度时间,

一般取0.2 s),有时还要考虑连续几条线路的故障

情况,可考虑使t k大于等于2倍的后备保护动作时

间加t o。

(2)对于运行年代已久的接地装置应根据系

统和本地区短路容量的变化,每年校核热稳定容

量,对不满

足要求的及时进行更换改造。

(3)更换常规电磁式保护装置为微机保护装

置,尽量压缩保护时间级差;采用全线速动保护,

以使中性点承受的故障持续时间尽量短。

(4)提高安装、检修质量。特别注意压接点、

触头连接的紧密性。导线与线夹采用液压压接方

法。关注引线、软铜线的腐蚀程度,对于腐蚀严重

的部位,应对式(1)作必要的修正,即S g取更大一

些。

(5)文献[5]明确规定:“变压器中性点应有两

根与主地网不同地点连接的接地引下线,且每根接

地引下线均应符合热稳定的要求”,要创造条件,

逐步实施。

(6)文献[4]指出:“用红外测温仪或成像仪监

测变压器中性点套管连接处和汇流母线连接处的

温度。”

参考文献

[1]中国电力企业联合会标准化中心.《供电企业技术标准汇编》设计

标准[M].北京:中国电力出版社,2002.

[2]刘万顺.电力系统故障分析[M].北京:中国电力出版社,1998.

[3]中国标准出版社编.供配电企业生产技术标准汇编高压开关分册

[M].北京:中国标准出版社,2001.

[4]唐芳轩.500kV单相变压器组中性点接地方式探讨[J].高压电器

2004,(40):216.

[5] 国家电力公司.防止电力生产重大事故的二十五项重点要求

[M].北京:中国电力出版社,2001.

收稿日期:2005-04-22。

作者简介:

唐海军(1963-),男,本科,高级工程师,从事电力系统继电保护

及自动化等方面的技术管理和研究工作;

变压器突发短路故障的缺陷分析

变压器突发短路故障的 缺陷分析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变压器突发短路故障的缺陷分析引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV 及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目

1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。 1.2 绝缘电阻试验 变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。 1.3 绕组直阻试验

变压器烧毁原因分析1

变压器烧毁原因分析 变压器烧毁原因 (1)配电变压器高、低压两侧无保险。有的虽然已经装上跌落式熔断器和羊角保险,但其熔丝多是采用铝或铜丝代替,致使低压短路或过载时,熔丝无法正常熔断而烧毁变压器。 (2)配电变压器的高、低熔丝配置不当。变压器上的熔丝普遍存在着配置过大的现象,从而造成了配电变压器严重过载时,烧毁变压器。 (3)由于农村照明线路较多,大多数又是采用单相供电,再加上施工中跳线的随意性和管理不到位,造成了配变负荷的偏相运行。长期使用,致使某相线圈绝缘老化而烧毁变压器。 (4)分接开关。 1)私自调节分接开关。由于冬夏两季的用电负荷差异大,电压的高低变化大。因而有些农村和企业的电工不经电力修试部门试验调整而私自调节分接开关,造成配变分接开关不到位,接触不良而烧毁。 2)分接开关质量差,结构不合理,压力不够,接触不可靠,外部字轮位置与内部实际位置不完全一致,引起星形动触头位置不完全接触,错位的动、静触头使两抽头之间的绝缘距离变小,并在两抽头之间的电势作用下发生短路或对地放电,短路电流很快就会把抽头线匝烧毁,甚至导致整个绕组损坏。 (5)渗油是变压器最为常见的外表异常现象。由于变压器本体内充满了油,各连接部位处都有胶珠、胶垫以防止油的渗漏。经过长时间的运行,会使变压器中的某些胶珠、胶垫老化龟裂而引起渗油,从而导致绝缘受潮后性能下降,放电短路,烧毁变压器。 (6)配电变压器的高、低压线路大多数是由架空线路引入,由于避雷器投运不及时或没有安装10kV避雷器,造成雷击时烧毁变压器。 (7)一些配电变压器没有配置一级保护,或者是配置了一级保护但其动作性、可靠性极低,有的甚至根本不能动作。 (8)铁心多点接地。 1)l0kV配电变压器铁心多点接地是很不容易被发现和测试的,这主要是因为变压器的铁心接地是在内部用一块很薄的紫色铜片一头夹在铁心(硅钢片)之间,另一头则压在铁心夹板上与变压器外壳直接连接。 2)铁心硅钢片之间涂有绝缘漆,但其绝缘电阻很小,只能隔断涡流而不能阻止高压感应电流。如果硅钢片表面上的绝缘漆因自然老化,会产生很大的涡流损耗,增加铁心的局部过热,损坏变压器。 (9)当配电变压器低压侧发生接地、相间短路时,将产生一个高于额定电流20-30倍的短路电流,这么大的电流作用在高压绕组上,线圈内部将产生很大的机械应力,这种机械应力将导致线圈压缩,短路故障解除后应力也随着消失,线圈如果重复受到机械应力的作用后,其绝缘胶珠、胶垫等就会松动脱落,铁心夹板螺丝也会稍微松弛,高压线圈畸变或崩裂。另外也会产生高出允许温升几倍的温度,从而导致变压器在极短的时间内烧毁。 (10)人为的损坏。 1)变压器的引出线是铜螺杆,而架空线一般多采用铝芯胶皮线,这样在空气中铜铝之间是很容易产生电化腐蚀的,在电离作用下,铜铝之间形成氧化膜,使其接触电阻增大,在引线处将螺杆、螺帽及引线烧坏或熔在一起。 2)套管闪络放电也是变压器常见的外表异常现象之一。空气中有导电性能的金属尘埃附吸在套管表面上,若遇上雨雪潮湿天气,电网系统谐振,遭受雷击过电压时,就会发生套管闪络放电或爆炸。 3)在紧固或松动变压器的引线螺帽时,用力不均使导电螺杆跟着转动,导致变压器内部高压线圈引线扭断或低压引出的软铜片相碰造成相间短路。 4)在吊芯检修时没有按检修规程及工艺标准进行,常常不慎将线圈、引线、分接开关等处的绝缘破坏或将工具遗忘在变压器内,轻则发生闪烁放电现象,重则短路接地,损坏变压器。 综上所述,配电变压器烧毁的原因是多方面的,有的是自然所致,有的则是人为所造成的。

配电变压器烧毁的原因及防范措施示范文本

配电变压器烧毁的原因及防范措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

配电变压器烧毁的原因及防范措施示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 10KV配电变压器烧毁的原因 在我从事十年的配电线路工作中,我遇到烧毁的配电 变压器多达13台,其中只有1台属于厂家质量问题,其余 12台都是人为因素造成的烧毁。人为因素主要是管理不到 位,工作人员责任心不强,工作不全面不完善所导致,下 面我就具体原因做如下介绍: 配电变压器高低压两侧无熔断器或熔断器熔丝选择过 大,与配电变压器容量不匹配或更换熔丝时随手用铜线(铝 线)代替熔丝,在超负荷下长时间严重过载运行都无法熔 断,熔断器形同虚设造成配电变压器烧毁。 配电变压器的高、低压线路大多数是由架空线路引

入,由于防雷装置的接地电阻不合格,接地线被盗未及时发现和处理;避雷器装置位置距变压器过远,超出10米保护范围;冬季撤出运行的避雷器在来年雷雨季节前未恢复投运,在雷雨季节遭受雷击过电压而烧毁变压器。 负荷管理不到位,三相负荷不均衡及严重超负荷。 农村除排灌专用变压器外,大多变压器采用单相供电,照明线路较多,再加上施工中按区域排线分负荷,接电随意性和管理不到位,造成三相负荷不均衡引起中性点飘移,严重时相电压将高出额定相电压很多,增加配电变压器损耗,铁芯发热,又因为变压器是按三相均衡负荷设计制造的,长期偏相重负荷运行使某相绕组不堪重负绝缘老化造成单相或两相绕组烧毁。 配电变压器日负荷变化大,在夏季干旱时,排灌用电剧增,特别是高温季节风扇、空调用电剧增,用电时间加长,使原来负荷不满的配电变压器超负荷运行,造成变压

220kV变压器故障的电气试验分析

220kV变压器故障的电气试验分析 发表时间:2017-11-29T15:19:10.303Z 来源:《电力设备》2017年第23期作者:王庆1 王少鲁2 [导读] 摘要:变压器在用电高峰期过后进行本体排油,从检查窗进去对变压器内部检查验证后,发现B相低压线圈发生轻度变形,核实了本次试验结论的正确无误性。 (1.国网陕西省电力公司西安供电公司;2.国网陕西省电力公司检修公司陕西省西安市 710043) 摘要:变压器在用电高峰期过后进行本体排油,从检查窗进去对变压器内部检查验证后,发现B相低压线圈发生轻度变形,核实了本次试验结论的正确无误性。此次缺陷处理提醒大家,试验是电力设备运行和维护中的一个重要环节,用以发现运行中设备的隐患,预防事故的发生或设备的损坏,对设备进行检查、试验或监测,是保证电力系统安全运行的有效手段之一。不能有丝毫懈怠,一时的疏忽就可能放过一个故障,造成无法弥补的后果。这就要求对试验工作要抓细、抓严,善于对试验数据进行分析,建立样本档案,并且要不断积累经验,以便及时发现、了解设备缺陷,确保安全生产。 关键词:220kV;变压器故障;电气实验分析 一、电气试验分析 2010年10月25日,该主变进行了周期性预试,预试结果正常。2011年10月20日,该主变停止运行后,于10月28日进行了主变频谱试验、绕组电容量试验、低电压短路阻抗试验、直流电阻试验和绝缘电阻试验。 1.绕组电容量测试中高中对低地电容量变化达16%,低对高中电容量变化达13%,其余试验数据差异不大判断分析为2#主变中压侧绕组发生变形。 2.频谱试验中反映高压共同绕组部分三相一致性较好,中压、低压绕组的三相响应曲线差异性大,绕组极可能已发生局部变形现象。从绕组频响法变形试验结果及电容量变化量分析,基本判定变压器中压绕组存在严重变形情况。直流电阻值无异常,说明中压绕组虽然已严重变形,但尚未形成匝间短路。 3.2012年7月27日,在变压器油中乙炔的体积分数出现第1次跳变后进行油位、潜油泵检查,铁心接地电流监测,以及局部放电、高频局部放电试验,未发现明显放电信号。油箱液位检查,变压器本体油位一直指示在本体油箱60%位置,有载油位持续指示在储油柜50%位置,油位没有变化,对油枕进行红外测温,未见油位变化,排除分接开关油箱向本体油箱内漏引起油色谱超标的可能性;潜油泵启动检查,潜油泵手动运行1h并进行色谱分析,乙炔的体积分数没有明显变化,可以排除潜油泵绕组短路故障的可能;对该变压器铁心接地电流测试,为0.6mA,说明设备铁心没有多点接地的缺陷。2013年3月19日,对该变压器停电检修,检查高中压套管,进行例行试验和耐压及局部放电试验,均未发现异常。2013年5月,该变压器检修投入运行后乙炔的体积分数发生第2次跳变。对该变压器进行油位、潜油泵相关检查,并进行铁心接地电流监测,局部放电、高频局部放电试验,未发现异常。 4.变压器吊罩检查。2013年7月进行变压器吊罩检查。将变压器外罩吊开后,发现固定U相分接引线的支架与围屏表面发生局部放电故障。在U相中压侧围屏表面有树枝状放电痕迹,固定U相分接引线的支架上部、下部也有放电痕迹。在U相中压侧底部支架上发现掉落的胶垫残条,胶垫残条上有烧蚀痕迹。通过查找发现U相中压侧升高座底部法兰胶垫部分缺损,通过复原发现掉落的胶垫残条正是此处缺损的部分。法兰胶垫及掉落的残条。通过对变压器吊罩检查,认为变压器安装不良造成U相中压侧升高座底部法兰胶垫受力不均匀,导致部分胶垫挤压过度,在设备投入正常运行一段时间后,在设备启动或运行过程中,外界的轻微干扰造成挤压过度的U相中压侧升高座底部法兰胶垫残条掉落,恰好落到U相分接引线的支架上,与围屏表面搭连,造成局部瞬时放电故障。 二、常规试验检查 1.绝缘电阻试验。在大短路电流作用下,初始机械损伤的基本形式是变压器绕组变形,它们发展的典型方式是变形引起局部放电,匝、股间短路,整段主绝缘放电或完全击穿导致主绝缘破坏,测量变压器的绝缘电阻是变压器出口近区短路后一项必要的检测项目。在测量绝缘电阻中,严格执行了Q/CSG 114002-2011规程标准。采用2 500 V摇表,绝缘电阻值与前一次的测量结果进行了比较,无明显差别。 2.直流电阻试验。由于大电流冲击,电流流过薄弱环节,会造成分接开关、套管引线接头、将军帽与线圈引出线之间接触不良。如果未能及时发现处理,任其发展会使接触不良点发热熔化而烧断,进而烧坏变压器。接触不良,匝间和股间短路可通过测量绕组直流电阻来发现。对该变压器试验数据进行分析,直流电阻试验的结果没有明显异常,220 kV侧绕组直流电阻的三相不平衡率和变化率与往年试验数据较一致,由此初步确定低压绕组出现轻微的损伤。 3.气相色谱分析。确定目标后,需进一步核实。对近区短路这类突发性故障,因为由于故障突然,产气快,一部分气体来不及溶解于油中就进入气体继电器。为此对气体继电器的气体进行了色谱分析,并且根据气体继电器中气体颜色初步确定一下故障的大致情况。试验结果表明,各种气体含量未发现异常,其中甲烷(CH4)、乙烯(C2H4)相比以前有微量的增加,根据气体组份与内部故障特征关系,异常类型为过热或绝缘不良,但各项数据都在合格范围以内,可认为试验人员的测试误差,故不足以明确故障性质。 三、缺陷的判定及处理 1.缺陷的判定。近区短路后,绕组受到巨大电动力作用产生位移变形,绕组变形或位移后,即使没有立即损坏,也会留下严重故障隐患。通过绕组变形试验发现的差异,结合常规试验中直流电阻及气相色谱分析发现的微小变动,综合各个数据进行科学分析后,断定该变压器低压绕组B相存在轻微变形。 2.处理结果。变压器绕组变形后,要根据变压器的故障严重程度来决定能否继续运行,且运行时间的长短取决于变形的严重程度和部位。一是绝缘距离发生改变,固体绝缘受到损伤、击穿,导致突发性绝缘故障,甚至在正常运行电压下,因为局部放电而使绝缘击穿。二是绕组机械强度下降,其积累效应使绕组再一次遭受近区短路电流冲击时,将承受不住巨大电动力作用而发生损坏事故。为此根据本变压器故障性质,结合正值夏季用电高峰期,提出低压绕组受到近区短路冲击后有轻微变形,但不影响主变的运行。在制定了相关的技术安全措施和监视手段后,报上一级部门批准后主变顺利投运。运行期间特别执行了重点巡视、加强监测、减少负荷等。 四、处理措施及效果 1.处理措施。(1)对变压器U相中压侧围屏放电部分进行局部切割,并进行修补,对中压侧分接引线等部分进行绝缘处理。(2).更换变压器U相中压侧升高座底部法兰胶垫。(3)对变压器油箱进行滤油处理,直到绝缘油中特征气体的体积分数为零为止。 2.处理效果。2013年7月3日变压器检修投运后,通过油色谱在线监测装置对主变压器的油色谱数据进行监测在变压器投运半个月后,

2020变压器行业趋势及存在的问题

2020年变压器行业趋势及存在的问题 2020年

目录 1.变压器行业前景趋势 (5) 1.1来看高端制造 (5) 1.2分析智能制造 (6) 1.3关注绿色制造 (6) 1.4输变电网用变压器 (6) 1.5配网及民用变压器 (7) 1.6新能源发电用变压器 (7) 1.7核能发电用变压器 (7) 1.8细分化产品将会最具优势 (8) 1.9呈现集群化分布 (8) 1.10行业发展需突破创新瓶颈 (9) 2.变压器行业现状 (11) 2.1变压器行业定义及产业链分析 (11) 2.2变压器市场规模分析 (13) 2.3变压器市场运营情况分析 (13) 3.变压器行业存在的问题 (16) 3.1质量观念不强 (16) 3.2一些厂家的研发、设计能力不足 (16) 3.3材料以次充好 (16) 3.4交货不及时现象普遍 (17)

3.5市场反应慢,客户经常抱怨 (17) 3.6原料上涨快,人工成本高,企业生存空间受到压挤 (18) 3.7使用廉价原材料,导致产品质量不过关 (18) 3.8行业服务无序化 (19) 3.9供应链整合度低 (19) 3.10产业结构调整进展缓慢 (19) 3.11供给不足,产业化程度较低 (20) 4.变压器行业政策环境分析 (21) 4.1变压器行业政策环境分析 (21) 4.2变压器行业经济环境分析 (21) 4.3变压器行业社会环境分析 (21) 4.4变压器行业技术环境分析 (22) 5.变压器行业竞争分析 (23) 5.1变压器行业竞争分析 (23) 5.1.1对上游议价能力分析 (23) 5.1.2对下游议价能力分析 (24) 5.1.3潜在进入者分析 (24) 5.1.4替代品或替代服务分析 (25) 5.2中国变压器行业品牌竞争格局分析 (25) 5.3中国变压器行业竞争强度分析 (25) 6.变压器产业投资分析 (26)

变压器短路事故分析

变压器短路事故分析 变压器事故时有发生,而且有增长的趋势。从变压器事故情况分析来看,抗短路能力不够已成为电力变压器事故的首要原因,对电网造成很大危害,严重影响电网安全运行。 变压器经常会发生以下事故:外部多次短路冲击,线圈变形逐渐严重,最终绝缘击穿损坏;外部短时内频繁受短路冲击而损坏;长时间短路冲击而损坏;一次短路冲击就损坏。变压器短路损坏的主要形式有以下几种: 1、轴向失稳。这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形。 2、线饼上下弯曲变形。这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。 3、绕组或线饼倒塌。这种损坏是由于导线在轴向力作用下,相互挤压或撞击,导致倾斜变形。如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。 4、绕组升起将压板撑开。这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。 5、辐向失稳。这种损坏主要是在轴向漏磁产生的辐向电磁力作用

下,导致变压器绕组辐向变形。 6、外绕组导线伸长导致绝缘破损。辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。这种变形通常伴随导线绝缘破损而造成匝间短路,严重时会引起线圈嵌进、乱圈而倒塌,甚至断裂。 7、绕组端部翻转变形。端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使绕组导线向内翻转,外绕组向外翻转。 8、内绕组导线弯曲或曲翘。辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。

变压器烧毁的原因与解决措施

编号:SM-ZD-11603 变压器烧毁的原因与解决 措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

变压器烧毁的原因与解决措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 配电变压器在运行一段时间后总会出现这样那样的问题,重要的如何减少配电变压器的故障时间和延长配电变压器的运行时间,因此,对变压器烧毁的原因进行分析是十分重要也是有意义的,还有就是要求管理人员工作要认真细致,这样就一定能有效避免变压器烧毁事故的发生。下面主要从变压器烧毁的原因以及解决方法进行分析。 1、变压器烧毁的原因 (1) 配电变压器高、低压两侧无熔断器。有的虽然已经装上跌落式熔断器和羊角保险,但其熔断件多是采用铝或铜丝代替,致使低压短路或过载时,熔断件无法正常熔断而烧毁变压器。 (2) 配电变压器的高、低压熔断件配置不当。变压器上的熔断件普遍存在着配置过大的现象,严重过载时,烧毁变压器。

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

配电变压器烧毁原因及对策

配电变压器烧毁原因及对策 摘要:针对农村配电变压器烧毁故障率高的现象,着重分析了配电变压器烧毁故障的几种类型及主要原因,提出了一些具体的判断方法和防范措施,为防止和减少配电变压器烧毁故障提供借鉴。 关键词:配电变压器故障短路 在电力系统中,配电变压器是供电部门管理数量最大的设备之一,与用电客户关系最为密切,由于配电变压器的安装配置点多面广,基本上都安装在室外和野外,因此对配电变压器的日常管理主要靠周期巡视检查和检修,工作量大而繁琐,如果管理不到位,就会引发设备事故和人身触电事故,而且还会造成一定的社会影响。本文对配电变压器烧毁故障的类型和原因深入分析,并提出一些预防措施,供今后在配电变压器的运行管理中参考。 1配电变压器烧毁原因 配电变压器烧毁在各供电公司都是比较常见的设备事故。大部分烧毁原因分为3大类:一是雷击过电压;二是低压短路;三是配电变压器过负荷。我局2008年结合安全大巡查活动,对造成配电变压器烧毁的情况进行了深入分析。通过对烧毁配电变压器现场测试并进行技术分析,得出如下原因: 1.1 配电变压器保护配置不合适 配电变压器高、低压侧无熔断器,有的虽装上跌落式熔断器,但采用铝丝或铜丝替代熔线,致使低压短路或过载时熔丝无法正常熔断而烧毁配电变压器。配电变压器的高、低压熔体配置容量过大,从而造成配电变压器严重过载时烧毁配电变压器。 1.2 负荷管理不到位 由于农村照明线路偏多,大多采用单相供电,加上施工中接电随意性和管理不到位,造成配电变压器负荷不平衡,长期运行使某相绕组绝缘老化而烧毁。 1.3 绝缘胶垫老化 由于配电变压器中的绝缘胶珠、胶垫老化龟裂而引起渗油,长时间的运行导致绝缘受潮后其性质下降而放电短路,烧毁配电变压器。 1.4 短路故障 无论是单相接地短路还是相间短路,由于配电变压器低压绕组阻抗很小,将会产生很大的短路电流。特别是近距离短路故障,短路电流数值可达配电变压

关于变压器烧毁的事故分析示范文本

关于变压器烧毁的事故分 析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

关于变压器烧毁的事故分析示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 致:重庆华德机械制造有限责任公司领导 来电收到,我公司对贵公司配电房2号变压器因短路 烧毁事件深表关切,接电后立即展开了事故分析工作,我 公司调阅所有的来图档案、技术部的设计资料和采购部采 购元器件的资料及产品合格证都显示符合设计院设计的图 纸要求(以上图纸合格证等贵公司工程部都有资料),况 且配电柜已经运行了3个多月了,可以排除因元器件质量 原因而造成短路的可能性。 现根据现场具体情况分析可能是由于谐波造成的瞬间 系统电压升高,再加上设计院选用的电流互感器是BH- 0.66的,电流互感的电压偏低,这样反复的系统电压瞬间升 高,造成了电流互感器的绝缘下降而引起的。当然这只是

分析,另外,根据我们了解,现场配电房是无人值班的,而且配电房门始终开着,任何人都能随便进入,所以也不排除现场其它因素或者小动物进入造成事故的可能性。 不管怎样,我公司将会积极配合贵公司做好事故的排查分析工作,并全力做好事故后的处理和善后工作。 谢谢 上海一电集团有限公司 20xx年7月8日 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

全国110kV及以上等级电力变压器短路损坏事故统计分析_金文龙

全国110kV及以上等级 电力变压器短路损坏事故统计分析 金文龙 陈建华 国家电力公司安全运行与发输电部,100031北京 李光范 王梦云 薛辰东 国家电力公司电力科学研究院,100085北京清河 STATISTICS A ND ANALYSIS ON POWER TRA NFORMER DAMAGES CAUSED BY S HORT-CIRCUIT FAULT I N110kV A ND HIGHER VOLTAGE CLASSES Jin Wenlong Chen Jianhua Department of Safety Operatio n,Genera tion and Tra nsmissio n,Sta te Pow er Co rpora tion of China Beijing,100031China Li Guang fa n Wang Meng yun Xue Chendong Electric Pow er Resea rch Institute,State Pow er Co rpo ra tion o f China Beijing,100085China ABSTRAC T According to the information on transformer faults provided by major electric pow er companies in China from1990to1998,the statistics and analysis on the trans-former damages caused by short-circuit faults in110kV and higher voltage classes are carried out.The general situation of high capacity pow er transformer damage caused by short-circuit is summarized,the feature and regular patterns of these faults are put forw ard.The result of analysis can be used as a good guidance of improving pow er transformer se-cure operation and provides an objective foundation for the manufacturers of high capacity anti-break-down transformers in China. KEY W ORDS pow er transformer;short-circuit fault;dam-age of transformer 摘要 根据1990~1998年全国各网省(市)电力公司提供的变压器事故统计数据,对全国110kV及以上电压等级变压器的短路损坏事故进行分析,总结了全国大型电力变压器的短路事故特点和规律,为运行部门提高设备安全运行管理水平、变压器制造厂提高设备抗短路能力,提供了依据。 关键词 变压器 短路事故 统计分析 1 前言 通过历年对全国电力变压器运行情况和事故的统计分析,发现因外部短路故障引起的设备损坏事故逐年增多。截止1996年底,全国110kV及以上等级电力变压器因外部短路故障造成损坏的事故达到事故总数的50%。扼制此类事故的上升势头,已成为提高电力变压器安全运行水平的关键。 本文统计的因短路事故造成损坏的变压器共有145台。包括:各网省电力公司报送的1990~1996年全国110kV及以上等级事故变压器中因外部短路损坏的变压器124台;由19个网省(市)电力公司于1998年8~10月报送的110kV及以上等级的短路损坏变压器21台(实际上报数为62台,但其中41台变压器在1990~1996年报送样本中已出现过)。 按各网省电力公司历年上报的数据,全国110kV及以上等级变压器在1990~1996年期间,共发生事故409台次,事故总容量为32306MV A;其中因短路损坏的变压器共124台次,容量8432.6MV A。 1990~1996年间变压器短路损坏事故台次和容量见图1、图2。图3为1990~1996年间变压器短路损坏事故占总事故的百分比。 图1 1990~1996年间每年变压器短路损坏台次 Fig.1 Transf ormer damaged by short-circuit between1990and1996(by sets) 自1990年以来,110kV及以上等级变压器的短路损坏事故明显增多。从最初每年两三台到1995、1996年的29台。到1996年,全国110kV及以上电压等级变压器的短路损坏事故台次已经占统计总事故台次的50%。因外部短路引起变压器损坏的事故已成 第23卷第6期1999年6月 电 网 技 术 Po we r System T ech no lo gy V ol.23N o.6 Jun. 1999 DOI:10.13335/j.1000-3673.pst.1999.06.021

变压器产品价格分析报告

深圳中企智业投资咨询有限公司

产品价格分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/2410334392.html, 1

目录 产品价格分析 (3) 第一节一、变压器绝缘材料产品价格特征 (3) 第二节二、国内变压器绝缘材料产品当前市场价格评述 (3) 第三节三、影响国内市场变压器绝缘材料产品价格的因素 (4) 第四节四、主流厂商变压器绝缘材料产品价位及价格策略 (4) 第五节五、变压器绝缘材料产品未来价格变化趋势 (5) 2

产品价格分析 第一节一、变压器绝缘材料产品价格特征 我国变压器绝缘材料生产企业上百家,大部分企业规模较小。国内变压器绝缘材料产品市场上进出口品牌并存,价格不一。变压器绝缘材料不同品牌价格差别较大。一方面进口产品过高的价格令普通消费者望而却步,一方面质低价廉的产品又不能适应中层消费者的需求。消费者呼唤适合中国市场的品牌引领消费。 变压器绝缘材料行业上游原材料主要是纸浆、石油、化工、纺织等,原材料在整个生产成本中占比较大。部分原材料价格波动较大,多数公司直接原材料占生产成本的比例超过70%,原材料价格的波动将影响变压器绝缘材料公司生产成本进而影响变压器绝缘材料公司的盈利水平。 近几年来,国内变压器绝缘材料行业生产成本不断上涨,造成部分中小企业经营困难,国内生产成本提高主要有四个方面的原因:一是原材料价格上涨比较明显,媒体报道得也比较多;二是企业用工成本的上涨,可以说全国不少地方劳动力成本都在上升;三是像能源比如煤、电等资源价格上涨,影响企业生产经营;四是企业融资成本上升,比如由于利率上调,中小企业贷款利率上浮提高,中小企业通过民间借贷的利率也在上升,所以整个融资成本是上升的。 原材料价格上涨、能源和资源成本的大幅上涨、用工成本的增加,以及企业管理费用的提高等是变压器绝缘材料产品价格上涨的主要原因。也就是说产品价格的上涨很大部分原因是由成本推动的,假如变压器绝缘材料产品价格上涨,只是原材料价格上涨在产业链上的传导。 通常原材料涨价的成本应该通过产业链向下传导,这支持了变压器绝缘材料产品价格上涨,但最终决定价格涨跌的关键是供求关系。一些本来应该提价的产品价格提不上去,正是因为这些产品本身产能增加,竞争很激烈,价格上涨乏力。 第二节二、国内变压器绝缘材料产品当前市场价格评述图表1:2011-2014年我国变压器绝缘材料市场价格指数分析 3

大型电力变压器短路事故统计与分析_王梦云

大型电力变压器短路事故统计与分析王梦云 凌 愍(电力工业部电力科学研究院,北京100085) 摘要:针对1991~1995年110kV及以上电压等级变压器的事故情况,统计分析了因外部短路引起电力变压器损坏事故的主要原因,提出了减少这类事故的措施。 关键词:变压器 短路 事故 统计 分析 Statistics and Analysis on Short-Circuit Faults of Large Power Transformers Wang Mengyun and Ling Min Elect ric Power Research Insti tute,Ministry of Electric Pow er,Beijing100085 Abstract: Based on the faults of110kV pow er transformers and above occur red in 1991~1995,the main reasons of faults caused by ex ter nal short-circuit are analyzed s tatistically in this paper,and th e steps taken to decrease th ese faults are presented. Key words: Transformer,Short-circuit,Fault,Statistics,Analysis 1 前言 电力变压器在电力系统中运行,发生短路是人们竭力避免而又不能绝对避免的,特别是出口(首端)短路,巨大的过电流产生的机械力,对电力变压器危害极大。因此,国家标准GB1094和国际标准IEC76均对电力变压器的承受短路能力作出了相应规定,要求电力变压器在运行中应能承受住各种短路事故。然而,近五年来对全国110kV及以上电压等级电力变压器事故统计分析表明,因短路强度不够引起的事故已成为电力变压器事故的首要原因,严重影响了电力变压器的安全、可靠运行。 本文就因外部短路造成电力变压器损坏事故的情况作一统计分析,进而提出了减少这一类事故的措施,试图以此促进制造厂对电力变压器产品的改进和完善,同时促使运行部门进一步提高运行管理水平。2 大型电力变压器短路事故情况根据1991~1995年的 不完全统计,全国110kV及以上电压等级电力变压器共发生事故317台次,事故总容量为25348.6MV A。以台数计的平均事故率为0.83%,以容量计的平均事故率为 1.10%。在这些事故中,因外部短路引起电力变压器损坏的有93台次,容量为6677.6MV A,分别占同期总事故台次的29.3%,占总事故容量的26.3%(详见表1)。 由表1不难看出,电力变压器短路强度不 表1 1991~1995年全国电力变压器短路事故 台次及容量统计 第34卷 第10期1997年10月 变压器 TRANSFORM ER Vol.34 No.10 Octo ber 1997

干式变压器烧损原因分析及改造建议

干式变压器烧损原因分析及改造建议 针对一台单相干式变压器烧损情况,经过现场调查、报警信息、试验数据以及电压电流等进行综合分析,结果表明变压器一次侧匝间绝缘存在问题,导致变压器烧损,并结合设备运行情况提出预防干式变压器烧损的改造建议。 标签:干式变压器、匝间绝缘、改造建议 1.前言 目前干式变压器广泛应用于铁路、电力、工厂等电气系统中,干式变压器的结构简单,主要由硅钢片组成的铁芯和环氧树脂浇筑的线圈组成,铁芯和绕组不浸渍在绝缘油中,采用自然空气冷却或强迫空气冷却,具有体积小、噪音低、运行效率高,便于人员维护等优点。干式变压器已经成为电力系统中重要设备之一,安全可靠运行对于安全供电具有重要意义。但是干式变压器也出现过多起自燃烧损的案例,下面结合一起实际案例进行分析说明,并针对干式变压器燃烧的预防改进措施进行交流。 2.一起干式变压器烧损案例及原因分析 2017年09月01日发现铁路变电所亭内一台运行的单相干式变压器烧损,自用电系统已倒切至备用变压器运行。该干式变压器型号是DC9-30/27.5,投入运行时间11年,未进行过大修。对事故现场进行调查分析: 变压器本体现象:发现该干式变压器X端高压线圈的上半部分碳化较严重,下半部分完好,用锤子敲打碳化表面,碳化层即脱落,露出绕组发现导线已熔断,未发现强烈放电击穿痕迹。X端低压线圈上半部分出现火燎痕迹和碳化现象,下半部分完好,用锤子敲打碳化层表面,碳化层脱落后未露出绕组,绕组表面仍有绝缘层,也未发现强烈放电痕迹。A端高压线圈的上半部分靠X端侧存在火燎痕迹并明显碳化,其他侧无碳化现象,用锤子敲掉碳化层后未出现绕组,绕组表面仍有绝缘层。变压器连接设备现象:该干式变压器高压侧熔断管未熔断,测试状态正常,容量为5A。对变压器器身及周边进行检查,未发现动物攀爬痕迹,所以排除了动物短接引线的可能性。对变压器一二次引线及电缆进行检查,未发现短路现象。报警信息及电压电流情况:调取该变压器进线电压曲线,电压值正常,无明显波动;调取交流柜监测装置报文,发现在6时10分33秒849毫秒出现交流I路过电压(交流I路指的是该干式变压器低压馈出);6时11分22秒147毫秒交流I路过电压复归;6时11分22秒148毫秒交流I 路停电;6时11分22秒149毫秒交流I路停电复归;6时11分22秒724毫秒交流I路停电;6时11分22秒724毫秒交流I路停电复归;6时11分22秒724毫秒交流I路过电压;6时11分24秒938毫秒交流II路运行。 通过现场调查掌握的信息,进行该干式变压器烧损的原因分析:运行环境分析:现场环境温湿度是20℃35%,天气晴朗,运行环境满足干式变压器正常运行环境要求,也不存在雷击情况。进线电源分析:事故发生前后,该干变压器一次侧电压正常,不存在一次侧电压异常波动对变压器的影

配电变压器烧毁的原因及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 配电变压器烧毁的原因及预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2035-82 配电变压器烧毁的原因及预防措施 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 烧毁的原因 配电变压器高、低压两侧无熔断器,有的虽然已经装上跌落熔断器和羊角保险,但其熔断件多是采用铝或铜丝代替,致使低压短路或过载时,熔断件无法正常熔断而烧毁变压器。 配电变压器的高、低压熔断件配置不当。变压器上的熔断件普遍存在着配置过大的现象,从而造成配电变压器严重过载烧毁变压器。 由于农村照明线路较多,大多数又是采用单相供电,再加上施工中跳线的随意性和管理上的不到位,造成配变负荷的偏相运行。长期的使用,致使某相线圈绝缘老化而烧毁变压器。 私自调节分接开关。由于冬夏两季的用电负荷差

异大,电压的高低变化大,因而有些农村和企业的电工不经电力修试部门试验调整而私自调节分接开关,造成配变分接开关不到位,接触不良而烧毁。 分接开关质量差,结构不合理,压力不够,接触不可*,外部字轮位置与内部实际位置不完全一致,引起星形动触头位置不完全接触,错位的动、静触头使两抽头之间的绝缘距离变小,并在两抽头之间的电势作用下发生短路或对地放电,短路电流很快就会把抽头线匝烧毁,甚至导致整个绕组损坏。 渗油是变压器最为常见的外表异常现象。由于变压器本体内充满了油,各连接部位处都有胶珠、胶垫防止油的渗漏。经过长时间的运行,会使变压器中的某些胶珠、胶垫老化龟裂而引起渗油,从而导致绝缘受潮后性能下降,放电短路,烧毁变压器。 配电变压器的高、低压线路大多数是由架空线路引入,由于避雷器投运不及时或没有安装10kV避雷器。造成雷击时烧毁变压器。 一些配电变压器没有配置一级保护,或者是配置

相关文档
最新文档