膜蒸馏脱盐技术-

膜蒸馏的现状及发展前景综述

膜蒸馏的现状及发展前景综述 刘凡10991306 环境科学 摘要 近年来,随着膜分离技术的快速发展,越来越多的膜运用到了实际生活和生产之中。膜蒸馏是在上个世纪八十年代初新发展起来的一种新型分离技术。是膜分离技术与传统蒸发过程相结合的新型膜分离过程它与常规蒸馏一样都以汽液平衡为基础,依靠蒸发潜热来实现相变。真空膜蒸馏是膜蒸馏四种操作方式中的一种具有膜通量大、分离系数高、设备简单、易于操作和实现等特点[1],能够被广泛应用于易挥发组分的脱除和海水、苦咸水淡化等方面。在国家提倡建设和谐社会的今天研发和利用膜蒸馏技术来实现海水淡化、节能减排和废水的综合利用具有重要的意义。其主要运用在冶金工业,有机废水,和海水淡化方面。本篇综述将就膜蒸馏的现状及前景进行整理和总结。 关键词:膜蒸馏废水处理海水淡化 Summarize of present situation and d evel opment prospects of membrane distillation Fanliu 10991306 Environmental science ABSTRACT In recent years, with the rapid development of membrane separation technology, more and more film applied to real life and production. Membrane distillation is a new type of separation technology that developed in the 1980s. It is the new type that combination of membrane separation technology and traditional evaporation procession. Like conventional distillation, membrane separation process is basis on the vapor liquid equilibrium, and depending on the implementation phase change latent heat of evaporation. Vacuum membrane distillation is one of the four kinds of membrane distillation operation mode with large flux, high separation factor, simple equipment, easy to operate and implement etc. that can be widely used in the removal of volatile components and seawater, brackish water desalination, etc. The state advocates the construction of a harmonious society today, develop and use the membrane distillation technology for desalination has the vital significance to achieve energy conservation, emission reduction and comprehensive utilization of wastewater. It’s mainly used in metallurgy industry, organic wastewater, and seawater desalination. This review will present situation and prospects of membrane distillation for sorting and summary. Key words: Membrane distillation Waste water treatment Seawater desalination 1膜蒸馏技术简介 膜蒸馏是在上个世纪八十年代初发展起来的一种新型分离技术,是膜分离技术与传统蒸发过程相结合的新型膜分离过程。它与常规蒸馏一样都以汽液平衡为基础,依靠蒸发潜热来实现相变。它以膜两侧的温差所引起的传递组分的蒸汽压力差为传质驱动力,以不被待处理的溶液润湿的疏水性微孔膜为传递介质。在传递过程中,膜的唯一作用是作为两相间的屏障,不直接参与分离作用。分离选择性完全由气——液平衡决定。膜蒸馏过程是热量和质量同时传递的过程。膜的一侧与热的待处理的溶液直接接触称为热侧,另一侧直接或间接地与冷的液体接触 称为冷侧。由于膜的疏水性,水溶液不会从膜孔中通过,但膜两侧由于挥发组分蒸气压差的存在,而使挥发蒸气通过膜孔从高蒸气压侧传递到低蒸气压侧,而其它组分则被

膜蒸馏过程探讨_吕晓龙

第30卷第3期膜科学与技术V o l.30N o.3 2010年6月M EM BR AN E SCI EN CE A ND T ECH N OL OG Y Jun.2010 专家论坛 膜蒸馏过程探讨 吕晓龙 (天津市中空纤维膜材料与膜过程重点实验室-省部共建国家重点实验室培育基地, 天津工业大学生物化工研究所,天津300160) 摘要:讨论了膜蒸馏涉及的膜材料特性.提出水膜阻力概念,认为疏水膜材料结构的优化与 膜蒸馏工艺有关.提出鼓泡膜蒸馏方法,在热流体中鼓入空气气泡,由气液两相流效应来强化 热流体的扰动.提出透气膜蒸馏方法,通过气体的吹扫夹带作用,使膜孔内水蒸气的传质由低 效的扩散转为高效的对流机理.提出曝气膜蒸发方法,利用不同温度的空气吸湿原理进行膜曝 气.将膜蒸馏过程与化学除硬度、超滤耦合,可除去结垢性钙镁离子;将膜蒸馏过程与气浮絮凝 过程耦合,可除去有机污染物,实现高倍率浓缩.提出多效膜蒸馏方法,膜组件兼有蒸发与换热 功能,使膜蒸馏过程中的水蒸气冷凝与原水加热过程耦合,可以实现低成本的膜蒸馏过程. 关键词:膜蒸馏;疏水膜;超疏水性;水膜阻力;膜过程;工艺耦合 中图分类号:T Q028.8文献标识码:A文章编号:1007-8924(2010)03-0001-10 在高收率海水淡化、工业循环冷却水和反渗透浓水的零排放、高效节能化工浓缩等领域,都涉及高盐度水的深度浓缩问题,尤其是高盐度难处理工业废水的排放问题日益被关注,其零液体排放是未来深度水处理技术的发展方向.膜蒸馏(membrane distillation,MD)是传统蒸馏工艺与膜分离技术相结合的一种液体分离技术,膜蒸馏过程是热侧液体的水分子蒸发汽化,穿过疏水膜的微孔,水相中非挥发性的离子和分子等溶质则不能透过疏水膜,从而实现溶液分离、浓缩或提纯的目的.膜蒸馏是有相变的膜过程,同时发生热量和质量的传递,传质的推动力为疏水膜两侧透过组分的蒸汽分压压差. 膜蒸馏过程的特征[1]:使用疏水性微孔膜,分离膜至少有一个表面与所处理的液体接触,且不能被所处理的液体润湿,传质推动力是液体中可汽化组分在膜两侧气相中的分压差.相对于其它的分离过程,膜蒸馏的优点主要有:(1)对液体中的离子、大分子、胶体等非挥发性溶质能达到100%的截留; (2)操作温度比传统的蒸(精)馏低;(3)操作压力远低于反渗透过程;(4)与传统的蒸馏设备相比,无蒸发器腐蚀问题,设备体积小,造价低.由于疏水膜材料与膜蒸馏工艺技术的进步,膜蒸馏技术日益显示出其在水处理领域高度浓缩方面的应用潜力,成为了膜领域中最被研究关注的热点方向之一,近年来有多篇综述性文章发表[2-5],在疏水膜材料[6-11]、膜蒸馏工艺[12-21]方面开展了深入研究,并且在水中有用物的回收浓缩[22-27]方面开展了膜蒸馏技术的实际应用研究,本课题组近年来也开展了一些相关研究工作[28-34]. 由于膜蒸馏是一个有相变的膜分离过程,在膜蒸馏的工艺设计上,必须考虑系统的保温与热能回收,否则运行费用较高.目前膜蒸馏技术还未能大规模工业化应用,主要是因为在疏水膜材料的亲水化渗漏、膜组件结构设计与干燥方法、膜蒸馏工艺流程优化与系统集成、蒸汽相变热回收、加热与废热利用方式等一系列膜蒸馏环节上均有待于提高.结合本课题组在膜蒸馏方面已开展的研究工作,本文就膜蒸馏过程的一些问题进行探讨. 收稿日期:2010-01-06 基金项目:863课题工业循环冷却水膜集成净化过程研究(2008AA06Z303);天津市重点基金课题废水浓缩减排与淡化再利用技术研究(09JCZDJC26300) 作者简介:吕晓龙(1964-),男,山西省忻州市人,博士,博士生导师,从事中空纤维分离膜制备与膜分离过程研究, E-mail:luxiao lo ng@https://www.360docs.net/doc/2412754405.html,

膜蒸馏技术的研究进展

膜蒸馏技术的研究进展 摘要:膜蒸馏是一种热驱动新型分离技术,自上世纪80年代才引起人们的重视。本文主要对膜蒸馏技术的过程机理、膜材料的选择、常见问题、以及应用进行了评述,并对以后膜蒸馏的发展做出了展望。 关键词:膜蒸馏;膜;应用;质量传递;热量传递 膜蒸馏是一种新型的非等温物理分离技术,以疏水性多孔膜两侧的蒸汽压差为推动力,使热侧蒸汽分子穿过膜孔后在冷侧冷凝富集,可看作是膜过程与蒸馏过程的集合。膜蒸馏过程区别于其他膜分离过程有如下的特点:膜是微孔膜;不能被所处理的液体浸润;只有蒸汽通过膜孔介质;膜孔内没有毛细冷凝现象发生。该分离技术不是膜过程与蒸馏过程的简单结合,它自身有许多优点。如,良好的化学稳定性;截留率高;较低的操作温度和压力,能有效利用地热工业余热等廉价能源;可与其他分离过程整合;可处理热敏性物质和高浓度废水等。因此,自膜蒸馏技术首次提出以来,一直受到了学者的广泛关注。 本文对进近几年来的膜蒸馏的最新研究进展,尤其是针对膜蒸馏理论的应用研究进行了概述。 1.膜蒸馏的分类 根据扩散到膜冷凝侧蒸汽冷凝方式的不同,膜蒸馏分为多种类型,如直接接触膜蒸馏(DCMD)、气隙膜蒸馏(AGMD)、气扫式膜蒸馏(SGMD)、真空膜蒸馏(VMD)。 (1)直接接触式膜蒸馏(DCMD)这种装置相对简单,两侧的液体直接与多孔膜的表面接触,蒸汽的扩散路径仅仅局限于膜的厚度。它是出现最早也是研究最广泛的膜蒸馏过程,但其热损耗也最大。由于有较大的渗透量,颇受研究者重视,较适用于主原料是水的情况,如海水或苦咸水脱盐或水溶液的浓缩,也有人用其浓缩水果汁、血液及废水处理等。 (2)气隙式膜蒸馏(AGMD)在冷凝面与膜表面之间有一停滞的空气隙存在,蒸汽穿过气隙后在冷凝面上冷凝。与前者相比,由于气隙的存在,减小了过程的热耗损,但是渗透通量低,结构复杂,且不适用于中空纤维膜,限制了商业推广。 (3)气扫式膜蒸馏(SGMD)结果与直接接触式膜蒸馏相似,不同之处在于,惰性气体将透过侧的蒸汽吹出,并在外部进行冷凝。这样可以减少热量损耗,加快传质。刘乾亮[1]等采用气扫式膜蒸馏法处理高浓度氨氮废水,重点考察了料液初始pH值、料液流量和吹扫气体流量等因素对处理效果的影响。结果表明:增大吹扫气体流量可促进氨氮的去除,有利于氨氮的传质和分离过程。 (4)真空膜蒸馏(VMD)的膜两侧气体压力差比其他膜蒸馏的膜两侧气体压力差大,因而比其他形式的膜蒸馏具有更大的蒸馏通量。宜于脱除水溶液中的挥发性溶质。唐娜[2]等采用PVDF中空纤维膜及PTFE微孔平板膜组件对反渗透海水淡化浓盐水的真空膜蒸馏过程进行了研究。连续运行的结果表明:温度是影响海水淡化浓盐水膜蒸馏过程的关键因素,对膜通量影响较大。 2.膜蒸馏组件

膜蒸馏法浓缩反渗透浓水的试验研究

膜蒸馏法浓缩反渗透浓水的试验研究 孙项城1 ,王 军1,侯得印1,王宝强2,栾兆坤 1(1.中国科学院生态环境研究中心,北京100085;2.中国矿业大学化学与环境工程 学院,北京100083)摘 要: 采用直接接触式膜蒸馏法浓缩处理反渗透浓水,系统研究了未经预处理、酸化预处 理和阻垢预处理后的反渗透浓水在膜蒸馏浓缩过程中产水电导率、产水通量和膜污染的变化规律。 试验结果表明,在三种膜蒸馏试验中,膜蒸馏的脱盐率均稳定。未经预处理的反渗透浓水在膜蒸馏过程中产水通量下降迅速,膜表面CaCO 3污染是其主要原因。酸化预处理在一定程度上延缓了膜蒸馏浓缩过程产水通量的衰减,但随着浓缩过程的进行,仍然有沉积物在膜表面形成,导致通量下降。经阻垢预处理后膜蒸馏浓缩过程的膜通量比较稳定。这是因为阻垢预处理在一定程度上预防了难溶盐在膜表面的沉积,减缓了膜污染。对经阻垢预处理后的反渗透浓水保持浓缩倍数为3,在112h 的长周期运行中产水电导率稳定在5μS /cm 以下,且产水通量下降缓慢,至试验结束时产水 通量为13.9kg /(m 2 ·h ),较初始通量只下降了10.9%。 关键词:膜蒸馏;反渗透浓水;膜污染;阻垢;浓缩中图分类号:X703文献标识码:A 文章编号:1000-4602(2011)17-0022-05 基金项目:国家高技术研究发展计划(863)项目(2009AA063901);国家自然科学基金资助项目(20907066) Study on Concentration of Reverse Osmosis Concentrate by Membrane Distillation SUN Xiang-cheng 1,WANG Jun 1,HOU De-yin 1,WANG Bao-qiang 2,LUAN Zhao-kun 1 (1.Research Center for Eco-Environmental Sciences ,Chinese Academy of Sciences ,Beijing 100085,China ;2.School of Chemical and Environmental Engineering ,China University of Mining and Technology ,Beijing 100083,China ) Abstract : Direct contact membrane distillation (MD )was applied in concentration of reverse os-mosis (RO )concentrate.RO concentrates without pretreatment ,with acidification pretreatment and anti-scalant pretreatment were employed as the feed of MD concentration process to investigate the differences in permeate conductivity ,permeate flux and membrane fouling.The results show that in all the MD processes ,the salt rejection rate is stable.When reverse osmosis concentrate is used directly as feed ,the permeate flux is diminished rapidly ,and CaCO 3scaling is the major reason of permeate flux decline.A-cidification pretreatment prevents permeate flux decline to some extent.However ,with increasing of con-centration factor ,the flux declines seriously ,this is also caused by scaling in MD process.Antiscalant pretreatment can relieve permeate flux decline by reducing deposition of insoluble salts on membrane sur-face.A 112h continuous MD desalination experiment of RO concentrate with antiscalant pretreatment was carried out with concentration factor at constant 3,the permeate conductivity is less than 5μS /cm , 第27卷第17期2011年9月 中国给水排水 CHINA WATER &WASTEWATER Vol.27No.17Sep.2011

膜蒸馏技术

膜蒸馏的研究现状及进展 李小然,尚小琴 (广州大学化学化工学院,广东广州510006) 摘要:膜蒸馏是20世纪八十年代才引起人们重视的新型膜分离技术。是一种以蒸汽压差为推动力的新型分离技术。本文主要对膜蒸馏的机理、用膜、传热机理、影响因素、过程优化、进行了讨论,同时介绍了膜蒸馏在海水淡化、超纯水的制备、水溶液的浓缩与提纯、共沸混合物的分离、废水处理治理等中的应用,并在此基础上提出了膜蒸馏的发展方向。 关键词:膜蒸馏;分离技术;机理;应用;发展 Research status and progress of membrane distillation LiXiaoRan,Shang XiaoQin (School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006) Abstract:Membrane distillation is a new type of membrane separation technology in the eighty's of twentieth Century.Is a kind of new separation technology with the steam pressure difference as the driving force.In this paper, the mechanism of membrane distillation、membrane、heat transfer mechanism、influencing factors、process optimizationis discussed,At the same time, it introduces the membrane distillation in seawater desalination, preparation of ultra - pure water, water solution concentration and purification, total of azeotropic mixture separation, waste water treatment, etc. in the application, and based on this, proposed the development direction of the membrane distillation. Key words:membrane distillation;isolation technique;mechanism;application;development 1膜蒸馏技术的原理 膜蒸馏是膜技术与蒸馏过程相结合的分离过程。膜的一侧与热的待处理溶液直接接触(称为热侧),另一侧直接或间接地与冷的水溶液接触(称为冷侧),热侧溶液中易挥发的组分在膜面处汽化通过膜进入冷侧并被冷凝成液相,其他组分则被疏水膜阻挡在热侧,从而实现混合物分离或提纯的目的[1]。膜蒸馏过程必须具备以下特征以区别于其它膜过程[2]:①所用的膜为微孔膜;②膜不能被所处理的液体润湿;③在膜孔内没有毛细管冷凝现象发生;④只有蒸汽能通过膜孔传质; ⑤所用膜不能改变所处理液体中所有组分的气液平衡;⑥膜至少有一面与所处理的液体接触;⑦对于任何组分该膜过程的推动力是该组分在气相中的分压差。 2膜蒸馏的分类 根据扩散到膜冷凝侧蒸汽冷凝方式的不同,膜蒸馏分为多种类型,如直接接触膜蒸馏(DCMD)、气隙膜蒸馏(AGMD)、气扫式膜蒸馏(SGMD)、真空膜蒸馏(VMD),如图1所示。DCMD结构简单,渗透量较大,颇受研究者重视,较适用于主原料是水的情况,如海水或苦咸水脱盐或水溶液的浓缩,也有人用其浓缩水果汁、血液及废水处理等[3-6]。AGMD具有热效率高及从水溶液中脱除挥发

膜蒸馏

膜蒸馏技术 在海水淡化中的应用

引言 据国家海洋局发布的《2014年全国海水利用报告》指出,2014年全国海水淡化共实现增加值14亿元,比上年增长12.2%;海水淡化国际合作取得新进展,亚太脱盐协会秘书处落户我国。全国已建成海水淡化工程总体规模不断增长,截至2014年底,全国已建成海水淡化工程112个,产水规模达到日产92.69万t,最大海水淡化工程规模为日产20万t。在已建成的海水淡化工程中,淡化海水用作工业用水的工程规模为每天58.73万t,占总工程规模的63.35%[1]。随着海水淡化技术在全国范围内的推广,我国水资源短缺问题将得到很好的解决。作为海水淡化的潜在技术之一,近年来膜蒸馏(Membrane distillation,MD)技术得到了学术研究者和工业界的广泛重视,在膜蒸馏工艺、膜蒸馏材料等方面取得了显著的进展[2]。 传统意义上的膜蒸馏过程,是利用疏水膜两侧可透过组分的蒸汽分压差,使热侧料液的水分子蒸发汽化,透过疏水膜孔以实现传质,液体则在界面张力的作用下不能透过疏水膜,从而实现料液的分离与浓缩目的。膜蒸馏过程存在有热相变的过程,膜蒸馏分离过程中会同时存在传热过程和传质过程,膜通量的主要控制因素则是热传导过程。根据冷侧挥发组分蒸汽冷凝方法或排除方法不同, 可分为: 直接接触膜蒸馏(DCMD) 、空气隙膜蒸馏(AGMD) 、吹扫气膜蒸馏( SGMD) 和真空膜蒸馏(VMD) 。最早用于膜蒸馏的膜材料有纸、胶合板、玻璃纤维、赛璐玢、尼龙和硅藻土等, 其中大部分用硅树脂、特氟龙或防水剂处理以得到所需要的疏水性。随着膜蒸馏分离技术的不断发展及新型膜制造技术的不断涌现, 用于膜蒸馏的膜材料也推陈出新, 上世纪80 年代早期制备的空隙率高达80%、厚度为50μm 的膜材料, 比起Findley 在20 世纪60 年代用的膜, 渗透率提高了100倍。从膜的理化性质和商业化来考虑, 现在膜材料用得较多的有聚四氟乙烯( PTFE) 、聚

【CN109647208A】一种节能膜蒸馏海水淡化系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910106211.6 (22)申请日 2019.02.02 (71)申请人 自然资源部天津海水淡化与综合利 用研究所 地址 300192 天津市南开区航海道55号 (72)发明人 邢玉雷 王付杉 王鑫 孙靖  刘洪锟 王琪 谢春刚  (74)专利代理机构 天津一同创新知识产权代理 事务所(普通合伙) 12231 代理人 陆艺 (51)Int.Cl. B01D 61/36(2006.01) B01D 61/58(2006.01) C02F 1/04(2006.01) C02F 1/06(2006.01) C02F 1/08(2006.01)C02F 103/08(2006.01) (54)发明名称一种节能膜蒸馏海水淡化系统(57)摘要本发明公开了一种节能膜蒸馏海水淡化系统,包括换热器,原料水泵,产品水泵,浓盐水排放泵,真空泵,冷凝水排出泵,N个带有加热元件的膜组件,N个闪蒸罐;多个带有加热元件的膜组件串联构成“多效膜蒸馏”,多个闪蒸罐串联构成“多级闪蒸”;将多效膜蒸馏与多级闪蒸过程耦合,前效膜蒸馏产生的二次蒸汽作为后效膜蒸馏加热蒸汽,并且产生的高温淡水逐级闪蒸,闪蒸蒸汽用于料液加热,这样有效地回收了汽化潜热和输出流体显热,实现了能量的梯级利用,提高了系统热效率;带有加热元件的膜组件“蒸汽冷凝-料液加热-渗透汽化”过程“准同步”设计,料液依靠重力势能从前效向后效自流,各效无需循环泵,降低了膜蒸馏过程电能消耗,节能效果显 著。权利要求书1页 说明书4页 附图1页CN 109647208 A 2019.04.19 C N 109647208 A

膜蒸馏分离技术研究进展

膜蒸馏分离技术研究进展 吴国斌3 戚俊清 吴山东 (郑州轻工业学院材料与化工学院) 摘 要 综述了膜蒸馏技术的基本原理与膜蒸馏形式、研究历史与现状、传质机理与模型以及最新应用情况,并对其存在的问题和应用前景作了分析。 关键词 膜蒸馏 分离 研究进展 理想膜 应用前景 1 引言 膜分离是近20年迅速发展的重要的化工操作单元,其应用已从早期的脱盐发展到化工、食品、医药、电子等工业的废水处理、产品分离和生产高纯水等。膜蒸馏(M D)提出于1967年,20世纪80年代开始发展,至今已在不少领域取得可喜的研究成果,尤其在水溶液的分离中更具有优越性,特别是近些年来适合膜蒸馏用的疏水膜的研制成功,使膜蒸馏过程的开发和应用得到了进一步的发展。 111 膜蒸馏基本原理及形式 膜蒸馏是膜技术与蒸发过程相结合的膜分离过程,其所用的膜为不被待处理的溶液润湿的疏水微孔膜。膜的一侧与热的待处理的溶液直接接触(称为热侧),另一侧直接或间接地与冷的水溶液接触(称为冷侧)。热侧溶液中易挥发的组分在膜面处汽化,通过膜进入冷侧并被冷凝成液相,其他组分则被疏水膜阻挡在热侧,从而实现混合物分离或提纯的目的。膜蒸馏是热量和质量同时传递的过程,传质的推动力为膜两侧透过组分的蒸汽压差。因此,实现膜蒸馏必须有两个条件:(1)膜蒸馏必须是疏水微孔膜;(2)膜两侧要有一定的温度差存在,以提供传质所需的推动力。 根据膜下游侧冷凝方式的不同,膜蒸馏可分为四种形式[1]:直接接触膜蒸馏(DC M D)、气隙式膜蒸馏(A G M D)、吹扫气膜蒸馏(SG M D)和真空膜蒸馏(VM D)。 112 膜蒸馏技术的研究历史及现状 早在20世纪60年代就开始了较系统的膜蒸馏研究。美国的Bodell[2]于1963年申请了膜蒸馏技术专利,专利中他将膜蒸馏描述为“一种将不可饮用含水流体转化为可饮用水的装置和技术”;同时,他还指出可用抽真空的方式将渗透蒸汽从装置中移走来提高效率,但受到当时技术条件的限制,他并没有给出所用膜的结构和孔径的大小,只说该膜仅能被蒸汽透过而不能被水透过,并未给出结果和定量分析。 1964年,美国的W eyl[3]发现采用空气填充的多孔疏水膜可在蒸汽压系统内从含盐水中回收去离子水,这种可提高脱盐效率的发现于1967年被授予美国专利。W eyl建议,将热的溶液与冷的渗透物与膜直接接触以消除气隙,采用厚312mm、孔径9Λm、孔隙率42%的PT FE膜,W eyl当时获得了1kg (m2?h)的通量,但距当时的反渗透5175kg (m2?h)的通量有较大的差距,因此60年代后期人们对膜蒸馏的兴趣逐渐减弱。 1971年F indley[4]第一个将膜蒸馏的研究成果公开发表,尽管F indley的实验装置和步骤相当粗糙,但还是定性地确定了膜空隙中空气的存在、膜的厚度、导热热损失和孔隙率对膜蒸馏的影响,并且预言若能找到低价位、耐高温、长寿命的理想膜,不但可以用来处理海水,而且这种膜蒸馏也一定是一种非常经济的蒸发方法。此外,科学家们在过程及组件设计方法上也一直在做着研究并且努力使其商业化[5],但由于膜材料、水通量等方面的原因还不能保证它占据诸多应用领域,因而一直难以商业化。由于其商业化的最大阻碍 3吴国斌,男,1981年3月生,硕士研究生。郑州市,450002。

面向应用的膜蒸馏过程再探讨_吕晓龙

第31卷 第3期膜 科 学 与 技 术V o l.31 N o.3 2011年6月M EM BRAN E SCI EN CE A ND T EC HN O LOG Y Jun.2011 面向应用的膜蒸馏过程再探讨 吕晓龙 (中空纤维膜材料与膜过程国家重点实验室培育基地, 天津工业大学生物化工研究所,天津300160) 摘 要:讨论了膜蒸馏涉及的膜材料特性和应用中面临的问题.膜蒸馏过程实质属于传热控 制过程,研究膜蒸馏过程的重点在于研究膜蒸馏过程中热量的传递与回收.吸收膜蒸馏传质过 程无相变热损失,疏水膜兼具有传质与导热双重作用.采用曝气膜蒸馏工艺对反渗透浓水进行 了连续高倍率浓缩,膜组件没有发生亲水化和膜污染问题,说明曝气膜蒸馏工艺在高盐度、易 结垢的废水深度浓缩方面具有较好的应用潜力.水膜阻力本质是气体穿过多孔膜表面的气/液 两相界面所需克服的界面张力,除了与膜材料本体特性、膜表面结构等因数有关外,还与气体 传输方向有关.与传统中空纤维膜相比,设计的异形中空纤维多孔膜,断裂强力有很大的提高. 将热泵技术与减压膜蒸馏过程耦合,热泵制热系数COP与蒸发器流速、冷凝器流速和膜蒸馏 通量之间存在显著相关性. 关键词:膜蒸馏;疏水膜结构;汽化热回收;疏水膜干燥 中图分类号:TQ028.8 文献标识码:A 文章编号:1007-8924(2011)03-0096-05 由于疏水膜材料与膜蒸馏工艺技术的进步,膜蒸馏技术日益显示出其在水处理领域高度浓缩方面的应用潜力.目前膜蒸馏技术还未能大规模工业化应用,主要是因为在疏水膜材料的亲水化渗漏、膜组件结构设计与干燥方法、膜蒸馏工艺流程优化与系统集成、蒸汽相变热回收、加热与废热利用方式等一系列膜蒸馏环节上均有待于提高.结合本课题组在膜蒸馏方面已开展的研究工作,本文在前文[1]的基础上,就膜蒸馏过程在应用中面临的一些问题进一步进行探讨. 1 关于膜蒸馏过程 1.1 吸收膜蒸馏 按照疏水膜透过侧蒸汽的不同收集方式,常见的有4种膜蒸馏工艺过程:直接接触膜蒸馏(DC-M D)、空气隙膜蒸馏(AGMD)、减压膜蒸馏(VMD)和气扫膜蒸馏(SGM D).该4种过程均存在气化潜热丧失问题,致使能耗高.近年来,又提出了渗透膜蒸馏(Osmotic distillation,简称OM D),主要用于果汁、红酒等物料的浓缩操作[2-5].在一定的温度下,当疏水性分离膜两侧温度相同时,在疏水性分离膜两侧形成了水分子液态—气态—液态的两相平衡,不会发生水分子在疏水性分离膜两侧的传递.但当疏水性分离膜另一侧为对水分子有高度吸收作用的某种吸收剂时,由于化学位差的作用,气态水分子则被吸收进入吸收剂中,完成水分子的传质过程.对于传热过程而言,水分子在膜的料液侧吸热汽化,扩散通过疏水性分离膜的膜孔后,在膜的吸收液侧液化,在膜的另一表面释放出相变热,通过分离膜的热能传导回输作用,保持热能平衡.传质驱动力为水分子在疏水性分离膜两侧不同液体表面的蒸汽分压差,传质速度与膜面温度和吸收液的吸收能力(水合能 收稿日期:2010-12-10 基金项目:“863”课题工业循环冷却水膜集成净化过程研究(2008A A06Z303);天津市重点基金课题废水浓缩减排与淡化再利用技术研究(09JCZD JC26300) 作者简介:吕晓龙(1964-),男,山西省忻州市人,博士,博士生导师,从事中空纤维分离膜制备与膜分离过程研究. 〈luxiaolong@https://www.360docs.net/doc/2412754405.html,〉

可逆气态膜-多效膜蒸馏-精馏过程脱除水相氨氮副产氨水

2015年9月 CIESC Journal September 2015第 66卷 第9期 化 工 学 报 V ol.66 No.9 可逆气态膜-多效膜蒸馏-精馏过程脱除水相氨氮副产氨水 王雲1,秦英杰1,2,郝兴阁1,李海庆1,崔东胜2,刘立强2,刘晶2 (1天津大学化工学院,天津300072;2洁海瑞泉膜技术(天津)有限公司,天津300300) 摘要:可逆气态膜-多效膜蒸馏-精馏耦合工艺可用于脱除料液或废水中的氨氮并得到高纯浓氨水。考察了磷酸二 氢铵为可逆吸收剂时气态膜法脱氨效果和多效膜蒸馏-精馏法吸收完成液再生效果。实验结果表明:可逆气态膜总 传质系数K 和单程氨氮脱除率η分别可达13.9 μm ·s ?1和97.5%,废水氨氮值可降至5 mg·L -1以下;吸收完成液 经多效膜蒸馏预浓缩后再经精馏再生可同时得到浓度为5%~18%的氨水。该耦合过程电耗极小的同时蒸汽耗量为 28~40 kg·m -3废水,约为单纯精馏过程的1/5。此外气态膜脱氨和多效膜蒸馏预浓缩过程有效地阻止了废水中挥发 性杂质进入浓氨水产品。该过程对气态膜和膜蒸馏用微孔疏水膜组件的稳定性要求苛刻,长期操作试验显示聚四 氟乙烯膜能够满足此要求。 关键词:可逆气态膜;多效膜蒸馏;氨;蒸馏;膜;吸收;再生;节能 DOI :10.11949/j.issn.0438-1157.20150901 中图分类号:TQ 028.8 文献标志码:A 文章编号:0438—1157(2015)09—3588—09 Reversible gas membrane process-multiple effect membrane distillation-distillation process for removing ammonia from aqueous solution and producing aqueous ammonia WANG Yun 1, QIN Yingjie 1, 2, HAO Xingge 1, LI Haiqing 1, CUI Dongsheng 2, LIU Liqiang 2, LIU Jing 2 (1School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072, China ; 2PureSea Spring Membrane Technology Co . Ltd , Tianjin 300300, China ) Abstract : The integrated process of reversible gas membrane process (RGM)-multiple effect membrane distillation (MEMD)-distillation can be used to remove ammonia from aqueous solution and to get highly purified and concentrated aqueous ammonia as by-product. The performance of ammonium dihydrogen phosphate as reversible absorbent in the RGM process and the performance of regeneration process of the used absorption solution by using MEMD- distillation were studied. The experimental results showed that the mass transfer coefficient and ammonia removal rate of RGM process could be up to 13.9 μm ·s ?1 and 97.5% respectively when polytetrafluoroethylene (PTFE) hollow fiber membrane contactor was used, ammonia content in the aqueous feed could be reduced to <5 mg ·L ?1. By using MEMD-distillation coupled system, the used absorption solution could be regenerated and a concentrated aqueous ammonia solution of 5%—18% was produced as by-product. The integrated process has extremely low energy consumption. While the power consumption is very low, the thermal consumption is steam of 28—40 kg ·m ?3 aqueous solution, which is less than 1/5 of the traditional distillation (steam stripping) process. Furthermore, this integrated process effectively avoids the pollution from the volatile 2015-06-11收到初稿,2015-06-20收到修改稿。 联系人:秦英杰。第一作者:王雲(1989—),男,硕士研究生。 基金项目:国家海洋局海洋战略性新兴产业专项成果转化及产业化 项目(cxsf2014-29)。 Received date : 2015-06-11. Corresponding author : Prof. QIN Yingjie, yjqin@https://www.360docs.net/doc/2412754405.html, Foundation item : supported by the Marine Strategic Emerging Industries Special Achievements Transformation and Industrialization Projects, the State Oceanic Administration (cxsf2014-29).

膜蒸馏_结晶技术的研究现状和发展前景

第7卷第3期环境污染治理技术与设备 Vol.7,No.32006年3月Techniques and Equi pment for Envir on mental Polluti on Contr ol Mar.2006 膜蒸馏2结晶技术的研究现状和发展前景 郭宇杰1  栾兆坤1  陈 静2  范 彬 13 (11中国科学院生态环境研究中心,北京100085;21中国矿业大学化学与环境工程学院,北京100083) 摘 要 膜蒸馏2结晶工艺是一种新的回收纯物质方法,尤其从废水中分离出晶体。对于膜蒸馏2结晶技术进行了综 述,介绍了膜蒸馏2结晶技术的优点,以及工艺控制的关键技术。概述了膜蒸馏2结晶的起源和国内外研究现状,指出了膜蒸馏2结晶在高浓度无机盐废水中应用的优势,预测其在该方向上很好的发展前景。 关键词 膜蒸馏2结晶 膜蒸馏 高浓度无机盐废水 结晶 中图分类号 X506 文献标识码 A 文章编号 100829241(2006)0320019206 The presen t situa ti on and prospects of m em brane d istill a ti on 2cryst a lli za ti on techn i que Guo Yujie 1  Luan Zhaokun 1  Chen J ing 2  Fan B in 1 (11Research Center f or Eco 2Envir onmental Sciences,Chinese Acade my of Sciences,Beijing 100085; 21School of Che m ical and Envir onmental Engineering,China University of M ining and Technol ogy,Beijing 100083) Abstract Me mbrane distillati on 2crystallizati on is a new method of recovering materials es pecially fr om waste water .The technique of me mbrane distillati on 2crystallizati on is intr oduced in this paper .The advantages and the sticking points in operati on are als o described .The origin and the p resent situati on of me mbrane distil 2lati on 2crystallizati on are su mmarized fr om full and accurate literatures .It is pointed that app licati on of this tech 2nique in high concentrati on inorganic salt waste water has p r om ising p r os pect . Key words me mbrane distillati on 2crystallizati on;me mbrane distillati on;high concentrati on inorganic salt waste water;crystallizati on 资助项目:国家“863”高技术研究发展计划资助项目(2002AA601310)收稿日期:2004-12-25;修订日期:2005-09-22 作者简介:郭宇杰(1973~),女,博士研究生,主要从事膜分离技术 研究工作。 3通讯联系人,E 2mail:fanbin@rcees .ac .cn 1 膜蒸馏 1.1 膜蒸馏的起源及优点膜蒸馏是一种用疏水性微孔膜将2种不同温度的溶液分开,利用膜孔两侧气相中的组分的分压差为传质驱动力,从而完成传质的一种膜分离技术。20世纪60年代Findley 首先在其专利中描述了这种分离技术,但由于没有合适的膜材料,70年代陷入低潮。80年代之后,随着膜材料工业的发展,膜的开孔率达到80%,厚度仅为50μm ,膜的通量提高 了100倍,膜蒸馏又开始引起人们的重视[1,2] 。随后科研人员在膜材料的制作[3~5] 、膜组件的优化 [6,7] 、传质传热的机理及数学模型的建立 [8~10] 等 进行了详细深入的研究,取得了较大的进展。与传统的分离过程相比,膜蒸馏具有如下优势[2,3,11]:(1)膜蒸馏在常压下操作,比其他压力驱动的膜分离过程对设备和膜的机械性能要求低;(2)操作温度远低于溶液的正常沸点,相对于常规 的蒸馏过程,可以采用非金属设备,既节约能耗,也降低了设备成本,减小了腐蚀;(3)所采用的疏水性 微孔膜一般为聚丙烯(PP )、聚四氟乙烯(PTFE )和 聚偏氟乙烯(P VDF )等,具有极好的化学稳定性,耐 酸碱、 抗氧化,很难溶胀或溶解;(4)疏水性微孔膜的完好的疏水性可以很好地抵抗亲水性物质的污染,而且易于清洗;(5)能够完全截留溶液中非挥发 性物质,理论上可以达到100%的截留率。 1.2  膜蒸馏的主要应用范围膜蒸馏的基本过程为在料液侧得到非挥发性物质的浓缩液,同时在馏出液侧得到高纯度的挥发性 物质。在最初阶段,开发膜蒸馏的主要目的是用于海

相关文档
最新文档