氢燃料电池控制策略

氢燃料电池控制策略
氢燃料电池控制策略

目录

30KW车用氢燃料电池控制策略............................. 错误!未定义书签。目录. (1)

1控制策略的依据 (3)

230KW车用氢燃料电池控制策略 (4)

2.1P&ID (5)

2.2模块技术规范 (6)

2.3用户接口 ..................................................... 错误!未定义书签。

2.4系统量定义 (8)

2.5电堆电芯(CELL)电压轮询检测策略 (10)

2.5.1Cell巡检通道断线诊断处理................... 错误!未定义书签。

2.5.2Cell巡检通道断线诊断结果处理........... 错误!未定义书签。

2.6Cell电压测算.............................................. 错误!未定义书签。

2.7电堆健康度SOH评估 ............................... 错误!未定义书签。

2.7.1特性曲线电阻段对健康度的评估方法 .. 错误!未定义书签。

2.8ALARM和FAULT判定规则 (10)

2.9工作模式(CRM和CDR)策略 (11)

2.10电堆冷却液出口温度设定值策略 (11)

2.11空气流量需求量计算 (12)

2.12阳极氢气循环回路控制策略 ..................... 错误!未定义书签。

2.13阴极空气传输回路控制策略 (14)

2.14冷却液传输回路控制策略 ......................... 错误!未定义书签。

2.15阳极吹扫(Purge)过程 (17)

2.16防冻(Freeze)处理过程 (17)

2.17泄漏检查(LeakCheck)机理 (18)

2.17.1在CtrStat17下的LeakCheck (18)

2.17.2CtrState2下的泄漏检查 (19)

2.18注水入泵(Prime)过程 (19)

2.19状态及迁移 (19)

2.19.1状态定义 (19)

2.19.2状态迁移图 (20)

2.19.3状态功能 (21)

2.19.4迁移条件 .................................................. 错误!未定义书签。

2.20CAN通讯协议。........................................ 错误!未定义书签。3未确定事项 ....................................................... 错误!未定义书签。

1

1控制策略的依据

对于氢燃料电池,追求的指标有:能量密度、额定功率、最大峰值功率(保持有限时间)、最小稳定功率(小于该功率,功率输出波动大,长时间小于最小稳定功率下工作(包括开路),对电极有损伤))、效率(以氢气低燃值计算,净输出功率),生命周期、启动时间(从空闲到额定功率)、停机时间、环境要求(工作温度、存贮温度、湿度、海拔(主要是大气压力和密度变化对电堆其它指标的影响))等。

这些指标,都反映在氢燃料电池的输出特性曲线(极化曲线)上。对氢燃料电池的设计、实验上,就是使输出特性曲线反映的指标最好。

影响输出特性曲线的因素很多,对于质子交换膜氢燃料电池,主要反映在MEA的工艺上,继而派生出的因素有:阳极氢气的输入口压力(本文档中,所有压力是指绝对压力)、阳极中氢气的湿度,阴极空气的压力和流速、阴极空气的湿度,阳极和阴极的的压差、膜的温度,因流场气流的影响,流场入口端的湿度低于流场出口端的湿度,出现干端和湿端,影响指标,为了平衡湿度,采取入口气体增湿工艺,阳极采用将出口处湿度高的氢气通过回流泵直接送回入口,增加阳极气体入口处的湿度。因此氢气回流泵的流速也算一个因素。因质子交换膜氢燃料电池,在输出功率时会产生热量,为了达到稳定MEA的温度,就需要将热量消散掉。因此需要测试不同电流下的热量,用于

设计热源到冷却介质间的热阻(工艺设计中计算或测试)及冷却流道的工艺参数。因阳极在输出功率时,湿度会逐渐增大,会产生水以及氢气纯度会逐渐降低,到一定条件就需要将阳极的氢气置换(吹扫)一次。

对于电堆,通过实验和测试,绘制各个因素组合下的输出特性曲线。根据这些测绘出的输出特性曲线,综合出各个指标。根据指标,在输出特性曲线中,确定一个安全稳定工作区域。根据输出特性曲线的安全稳定工作区域,再确定各个因素以输出电流为横轴的工作区域。这些因数的工作区域,就是集成系统(模块)的技术规范(即电堆生产厂的《电堆集成手册》)。

根据《电堆集成手册》,设计电堆模块,根据电堆模块的工艺,形成《模块手册》。根据《模块手册》设计辅助系统工艺。最终形成《系统工艺流程图》(P&ID)。对于应用还需要《应用需求》。以上资源是控制策略的依据。

2氢燃料电池控制策略

控制策略内容包括:系统量定义,ALARM和FAULT判定规则,节电压巡检处理策略,电堆冷却液出口温度设定值策略,工作模式(CRM和CDR)策略,阳极氢气循环回路控制策略,阴极空气传输回路控制策略,冷却液传输回路控制策略,阳极氢气吹扫(Purge)过程,防冻(Freeze)处理过程,泄露检查(LeakCheck)过程、注水入泵(Prime)过程,冷启动过程,状态及迁移,CAN通讯协议。

2.1P&ID

1、阳极氢气子系统控制涉及的项:

氢气进气阀控制开关(S_H2Inlet)、氢气进气阀后的压力(P_H2Inlet)、氢气回流泵的运行控制开关(EN_H2RecirPump)、氢气回流泵的转速(n_H2RecirPump)、氢气回流泵驱动器PWM (PWM_H2RecirPump),氢气回流泵驱动器中的1个测量量(V_H2RecirPump)、氢气吹扫阀控制总开关(S_H2Purge)、氢气前吹扫阀控制开关(S_H2FrontPurge)、氢气后吹扫阀控制开关(S_H2BackPurge)、模块前后向水平倾斜角(θ_FB)、模块左右向水平倾斜角(θ_LR)。

2、阴极空气子系统控制涉及的项:

空压机驱动器PWM(PWM_AirBlower)、空压机的转速(n_AirBlower)、空气流量(Q_Air)。

3、冷却子系统控制涉及的项:

冷却液出口温度(T_CoolantOutlet)、冷却液泵运行控制开关(EN_CoolantPump)、冷却液泵驱动器PWM(PWM_CoolantPump)散热器风扇运行控制开关(EN_RadiatorFan)、散热器风扇驱动器(PWM_RadiatorFan)。

4、电气子系统控制涉及的项:

电堆节数(N_Cell,120)、电堆单节最小电压(MinV_Cell)、

最小电压的节号(No_MinV_Cell,0-119,0号在前端)、电堆单节最大电压(MaxV_Cell)、最大电压的节号(No_MaxV_Cell,0-119,0号在前端)、电堆单节平均电压(AvgV_Cell)、电堆计算的电压(V_Stack)、总线电压(V _Bus)、总线电流(I_Bus)、总线输出开关(EN_Bus)。

5、控制接口涉及的项:

燃料电池模块使能开关(EN_FC)、运行开关(S_Run)、CAN 总线。

2.2模块技术规范

额定功率(Pn):31kW

工作电流(I):0-500A

额定电流(In):495A

起动时间(t_Startup):≤20S

停止时间(t_Shutdown):≤5S

氢气气源压力(P_H2Supply):653-928kPa

电堆工作压力(P_StackOp):≤120kPa

氢气最大流量(MaxQ_H2):≤500LPM

氢气温度(T_H2):-10 – 46℃

空气流量(Q_Air):≤2500LPM

空气温度(T_Air):-10 – 46℃

存贮温度(T_Storage): -40 – 65℃

最小湿件温度(MinT_WettedComp):2℃

最大燃料电池模块内部温度(MaxT_FCPM): 55℃

相对湿度(RH):≤95%

海拔(AT):0 – 1600m

水平倾角(θ):±30°

阳极收集水量(Vol_AnodeWater):≤48mL/min

阴极收集水量(Vol_CathodeWater):≤64mL/min

热功率(P_Heater): ≤52kW

冷却液出口温度(T_CoolantOutlet):50 – 70℃

冷却液流量(Q_Coolant):≥75LPM

冷却液最大压力降(MaxDropP_Coolant): ≤35kPa

最大冷却液入口压力(MaxP_CoolantInlet):≤170kPa

CAN总线:CAN 2.0A/B Passive(Standard 11 bit) BPS 250 kb/s

2.3系统量定义

2.4电堆电芯(CELL)电压轮询检测策略

2.5ALARM和FAULT判定规则(S3EDAE3)

2.6工作模式(CRM和CDR)策略

工作模式分为CRM(Current Ramp Mode)和CDR(Current Draw Request)。

CRM模式,电流斜坡模式,是指负载电流以一定的斜率上升或下降。

CDR模式,电流请求模式,是指在CDA 限制下,负载电流通过通讯或模拟信号提供给FC控制器CDR值。

2.7电堆冷却液出口温度设定值(TCSP)策略

2.8空气流量需求量(QAR)计算

空气流量需求QAR 基本计算公式

QAR = 120 ×0.01657 ×α_Air ×I_Bus

注:120 为电堆的总Cell数,0.01657为单个Cell在I_Bus为1A 时,1分钟需要消耗的理论空气体积量(升)。

α_Air是α_In的函数,该函数为多段线性插值

FLOAT32 Interp_α_Air(FLOAT32 α_In )

α_Air_CRM = Interp_α_Air(I_Bus /In_Bus )

α_Air_CDR = Interp_α_Air(CDR / In_Bus )

A、在状态CS5(CRM)下的处理

1、过剩空气系数的处理

进入CS5状态头30秒:α_Air = α_Air_CRM

30秒后,先缺省α_Air = α_Air_CRM,在某个持续20秒的事件发生后,α_Air = α_Air_CRM + 0.8

2、CRM工作模式

I_Bus的200mS增量> 8A或≤8A持续时间未到10秒,则

QAR = 120 ×0.01657 ×α_Air ×(I_Bus +30)

I_Bus的200mS增量≤8A持续时间达10秒后,则

QAR = 120 ×0.01657 ×α_Air ×(I_Bus +10)

3、CDR工作模式

I_Bus的200mS增量> 10A,则

QAR = 120 ×0.01657 ×α_Air ×(I_Bus×1.2)

I_Bus的200mS增量≤10A,则

QAR = 120 ×0.01657 ×α_Air ×I_Bus

4、最小值处理

QAR结果小于50,则结果值为50。

B、在状态CS6(CDR)下的处理

α_Air =α_Air_CDR

1、I_Bus> CDR

QAR = 120 ×0.01657 ×α_Air ×(I_Bus×1.3)

2、I_Bus≤CDR

若CDR ≤(I_Bus+10)或CDR > (I_Bus+10)持续时间未到60秒,则

QAR = 120 ×0.01657 ×α_Air ×(CDR×1.2)

若CDR > (I_Bus+10)持续时间到60秒后,则

QAR = 120 ×0.01657 ×α_Air ×(I_Bus×1.2)

3、最小值处理

QAR结果小于50,则结果值为50。

C、在状态CS7下的处理

α_Air =α_Air_CRM

1、从CS6迁入

QAR = 120 ×0.01657 ×α_Air ×(CDR ×1.5)

2、从CS5迁入

QAR = 120 ×0.01657 ×α_Air ×(I_Bus×1.5)

2.9CDA计算

A、在状态CS5下的处理

α_Air =α_Air_CRM

在多机工作模式下:

CDA = 30 + Q_Air/(120×0.01657 ×α_Air )

在单机工作模式下:

CDA = 30 + Q_Air/(120×0.01657 ×α_Air )

B、在状态CS6下的处理

α_Air =α_Air_CDR

CDA = 30 + Q_Air/(120×0.01657 ×α_Air )

D、在状态CS7下的处理

1、从CS5或CS6迁入CS7时的I_Bus (I_Bus_56)≤30A

CDA = 5A

2、从CS5或CS6迁入CS7时的I_Bus(I_Bus_56)> 30A

CDA = I_Bus_56 –(t * 5 / 400)

2.10阳极氢气循环回路控制策略

2.11阳极氢气吹扫阀控制策略

在状态CS15,随氢气进气阀相反动作

在状态3,第1、2阶段开1秒关0.5秒,第3阶段开1秒关1秒

在状态5,开2秒,关时间先根据额定电流比插值基本时间,再根据氢气回流泵的参数作调整。

在状态7下,开2秒关5秒

在状态8、13下,常开。

其他状态下,常关。

2.12阴极空气传输回路控制策略

阴极空压机没有运行控制开关信号,只有PWM控制信号PWM_Air。

在状态CS3Step2下:

If(V_Bus> 30.0V) PWM_Air =0

If(V_Bus<= 30.0V) PWM_Air =25

在CS3Step3、CS8、CS9下:

QARn = 120 * 0.01657 * 1.9 * 495 = 1870(LPM)

If(Q_AIR

在CS 4Step1下

PWM_Air =50

在CS4Step2下:

PWM_Air=55

在状态CS5、CS6、CS7下:

包括2部分,基本部分PWM0_Air和调整部分PWM1_Air,PWM_Air的范围为10-100。

基本部分由氢气需求量插值求得。

FLOAT32 Interp_PWM0_Air(FLOAT32 QAR )

PWM0_Air =Interp_PWM0_Air( QAR )

表6 PWM0_Air -- QAR插值表

调整部分PWM1_Air计算过程:

Q_Air的调整为回差增量式控制回路(控制周期50mS),回差的下限为QAR,回差上限为在QAR的基础上增加1个QAR的百分比例α_QAR即QAR(1+α_QAR/100)。

以C语言描述:

α_QAR = 5。PWM1_Air = 0.

PWM0_Air =Interp_PWM0_Air( QAR );

voidFunc_PWM1_Air(void)

{

If(Q_Air>QAR(1+α_QAR/100))

{

If(PWM_Air> 10)

PWM1_Air -= ABS(Q_Air - QAR)*0.01/100;

// 0.01/100为减增量

}

If(Q_Air

{

If(PWM_Air> 10)

PWM1_Air += ABS(Q_Air - QAR)*0.1/100;

//0.1/100为加增量

}

//PWM1_Air上下限调整

if(PWM1_Air > (100 – 0.0 - PWM0_Air))

PWM1_Air = (100 – 0.0 - PWM0_Air);

If(PWM1_Air < (10 – 0.0 - PWM0_Air))

PWM1_Air = (10 – 0.0 - PWM0_Air);

}

PWM_Air =PWM0_Air + PWM1_Air + 0.0;

// 0.0 为PWM1_Air的0位偏置

// PWM_Air做10,100的上下限调整

If(PWM_Air>100) PWM_Air = 100;

If(PWM_Air<10)PWM_Air = 10

在状态CS13下:

C语言表示

If(MinV_Cell> 0.6V)

{

QARn = 120 * 0.01657 * 1.9 * 495 = 1870(LPM) If(Q_AIR

}

Else

{

If(V_Bus> 30) PWM_Air = 0;

If(V_Bus<= 30) PWM_Air = 25

}

在除上述状态外的状态下:

PWM_Air = 0

2.13阳极吹扫(Purge)过程

阳极吹扫(置换)过程,是在状态CS15下进行。

在阳极吹扫过程中,冷却子系统和空气子系统都停止运行。

进行3次吹扫过程。

吹扫过程如下:

第1步:

吹扫阀关闭,进气阀打开,进行2秒,在此过程中,若P_H2IN<40psig,则吹扫失败。

第2步:

进气阀关闭,吹扫阀打开,进行58秒。

在此过程中,若P_H2IN<10psig在58秒内,则过程结束;若超过58秒,则吹扫失败。若MinV_Cel>0.3V,则运行回流泵。

2.14防冻(Freeze)处理过程

防冻处理在状态CS13下进行,为了在冻冰温度下停机,防止阴极和阳极出现冻冰。

处理过程总进行180秒(3分钟),

氢气进气阀、氢气吹扫阀常开。

冷却子系统关闭。

阴极空气子系统,空压机控制如下:

If(MinV_Cell> 0.6V)

{

QARn = 120 * 0.01657 * 1.9 * 495 = 1870(LPM)

If(Q_AIR

}

Else

{

If(V_Bus> 30) PWM_Air = 0;

If(V_Bus<= 30) PWM_Air = 25

}

若PWM_Air为100时,Q_Air<600LPM持续时间到30秒,则产生防冻处理故障,则迁移到FAULT状态(CS10),处理失败;

若收到CAN命令Standby,则迁移到CS2,认为过程成功;过程时间到,则认为过程成功,迁移到CS14。

2.15泄漏检查(LeakCheck)机理

泄漏露检查是指模块中氢气子系统的进气阀、质子膜、吹扫阀的泄漏检查。

泄漏检查在控制状态2和控制状态17进行。

2.15.1在CtrStat17下的LeakCheck

在此状态下做氢气子系统泄漏检查时,冷却子系统和空气子系统不工作。

使用600秒跑表,总定时到时未结束泄漏检查,则定为失败,置位LeakCheck Fault 标志Fault_LeakCheck。

按下面步骤进行:

第1步:0-5秒

将H2进气阀打开5秒;

第2步:5-180秒

在此阶段,关H2进气阀,若H2进口压力P_H2IN<5psig,则定为失败,置位LeakCheck Fault 标志Fault_LeakCheck。

第3步:180-185秒

将H2进气阀打开5秒。

第4步:>185秒

在此阶段开始,关闭H2进气阀。

若V_Stack< 10V或者时间>470秒,则进入第5步。

若V_Stack> 10V、时间<470秒且P_H2IN<5psig,则进行5秒补气并采样P_H2IN。

第5步:

该阶段,单独计时,5秒内补气并采样P_H2IN,120秒后,用当前P_H2IN减去5秒内的采样值,若差值>36psig,则泄漏检测失败;若<=36psig,则泄漏检查成功。

2.15.2C trState2下的泄漏检查

若控制状态2是从控制状态5、6、7、8迁入,则进行泄漏检查。

其方法与CtrState17差不多,只是将第1、2阶段合为1个阶段了,省掉第1步的进气。因控制状态5,6,7,8中,H2进气阀一直开着

2.16注水入泵(Prime)过程

在注水入泵过程中,只开冷却液泵。

2.17状态及迁移

2.17.1状态定义

状态的划分和定义,根据在系统中的作用不同分为3级。

第一级为系统状态(SysState,简称SS),从总体功能上向用户(Customer)描述系统的简略工作状态。

第二级为控制状态(CtrState,简称CS),即该系统的实际状态,用于系统功能的详细定义和工作状态。

第三级为第二级的过程状态,用于描绘第二级状态的不同阶段(Step)。

表4 状态定义表

2.17.2状态迁移图

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

直接能量平衡控制策略

直接能量平衡控制策略 直接能量平衡控制策略是基于火力发电厂而提出的机炉协调控制策略,是为电站单元机组协调控制而设计的一种先进的控制方案。其从能量平衡的概念出发,将锅炉和汽机作为一个有机紧密联系的整体来控制,它以锅炉跟随为基础,将汽机的能量需求作为锅炉指令,在锅炉燃料调节器入口直接同锅炉的热量信号比较,使机、炉之间的能量供求关系得到快速平衡,进而简洁且有效地实现机炉一体化协调控制。 直接能量平衡策略中,能量需求信号是基于汽机对能量的要求计算出来的,这个能量要求称为"能量平衡信号",它代表了在任何工况下汽机对蒸汽的需求量。"能量平衡信号"随着汽机调节阀的开度变化而变化,即使在故障或手动调节时,计算的结果也是正确的。能量平衡是通过直接控制输入炉膛的能量使之与能量需求信号相匹配而实现的,送入锅炉炉膛的能量通过对锅炉放热量的连续计算确定,直接能量平衡由燃料控制调节器维持。 能量平衡信号采用PS×P1/PT表示, 其中P1为汽机调节级压力,直接反映的是进汽流量也就是机组负荷 PT为机前压力即主汽门前压力 PS为机前压力设定值 P1/PT与汽机调节阀开度成正比,无论什么原因引起的调节阀开度变化,该值都能作出灵敏的反映,所以无论在静态或动态,PS×P1/PT可以表征定压运行或滑压运行等不同运行工况下汽机的能量输入(即汽机对锅炉的能量需求)。 输入能量必须同能量需求相匹配,输入的燃料量如采用给粉机转速等直接测量,易受制粉系统延迟,煤质变化等诸多因素的影响,在直接能量平衡控制策略中,采用热量信号P1+CdPb/dt作为燃料量反馈, 其中C为汽包锅炉的蓄热系数, Pb为锅炉汽包压力,其微分信号代表了锅炉蓄热量变化。 热量信号提供了一个在稳态和动态工况下都适用的燃料量工程测量方法。协调控制系统将能量平衡信号和热量信号直接引入锅炉燃料调节器入口,进入燃料调节器入口的能量偏差信号为: ef=PS×P1/PT-(P1+CdPb/dt) =P1×(PS-PT)/PT-CdPb/dt =ΔPT×P1/PT-CdPb/dt 式中:ΔPT=PS-PT为机前压力偏差。 在静态工况下,dPb/dt=0,有ef=ΔPT×P1/PT。燃料调节器的积分作用总是消除调节器入口偏差,使ef最终等于零。由于机组带负荷后,P1/PT恒不等于零,这就必须使ΔPT=0,即使机前压力PT等于给定值PS。可见,系统的燃料调节器具有保持机前压力PT等于给定值的能力,而无需另加压力校正调节器。 在动态工况下,汽包压力的微分信号具有防止PT过调,使过程稳定的作用。例如,由于锅炉内扰作用使PT增高时,ΔPT=PS-PT成为负值,dPb/dt将为正值,燃料调节器入口的偏差信号为负值,使燃料量输入减少,校正PT的上升。当PT开始回降时,dPb/dt变为负值,使燃料量得以增加,防止PT出现过调。直接能量平衡协调控制系统同时还设有能量平衡信号的动态前馈:(PS×P1/PT)×[d(PS×P1/PT)/]dt,用以补偿机前压力设定值变化或负荷变化时锅炉蓄能的变化和机、炉动态响应的差异。定压运行时,动态前馈补偿了负荷变化时要求改变汽包压力所需的锅炉蓄能变化。负荷不变时,则补偿机前压力定值提高所需的锅炉附加蓄能。而在滑压运行时,更要补偿负荷和机前压力二者同时变化时,要求汽包压

氢燃料电池控制策略培训课件

氢燃料电池控制策略

目录 30KW车用氢燃料电池控制策略 ............................ 错误!未定义书签。目录 (2) 1控制策略的依据 (4) 230KW车用氢燃料电池控制策略 (5) 2.1P&ID (6) 2.2模块技术规范 (7) 2.3用户接口 ................................................... 错误!未定义书签。 2.4系统量定义 (9) 2.5电堆电芯(CELL)电压轮询检测策略 (11) 2.5.1Cell巡检通道断线诊断处理 .................. 错误!未定义书签。 2.5.2Cell巡检通道断线诊断结果处理........... 错误!未定义书签。 2.6Cell电压测算............................................. 错误!未定义书签。 2.7电堆健康度SOH评估............................... 错误!未定义书签。 2.7.1特性曲线电阻段对健康度的评估方法.. 错误!未定义书签。 2.8ALARM和FAULT判定规则 (11) 2.9工作模式(CRM和CDR)策略 (12) 2.10电堆冷却液出口温度设定值策略 (12) 2.11空气流量需求量计算 (12) 2.12阳极氢气循环回路控制策略 .................... 错误!未定义书签。

2.13阴极空气传输回路控制策略 (15) 2.14冷却液传输回路控制策略 ........................ 错误!未定义书签。 2.15阳极吹扫(Purge)过程 (18) 2.16防冻(Freeze)处理过程 (18) 2.17泄漏检查(LeakCheck)机理 (19) 2.17.1在CtrStat17下的LeakCheck (19) 2.17.2CtrState2下的泄漏检查 (19) 2.18注水入泵(Prime)过程 (20) 2.19状态及迁移 (20) 2.19.1状态定义 (20) 2.19.2状态迁移图 (21) 2.19.3状态功能 (22) 2.19.4迁移条件 ................................................ 错误!未定义书签。 2.20CAN通讯协议。........................................ 错误!未定义书签。3未确定事项 ..................................................... 错误!未定义书签。

燃料电池测试系统购置

高功率燃料电池测试系统技术参数高功率燃料电池测试系统,用于25cm2或50cm2质子交换膜燃料电池单电池性能及耐久性研究。详细的技术文件如下: 一、测试系统的所有部件、数据采集与控制、电脑及显示器在一个主机箱中。 二、测试仪器可靠性要求 无故障运行10000小时 三、电子负载 1、最大功率:≥100W; 2、最大电流:≥120A,精度:±0.3% 所选量程,分辨率:1mA 3、电池电压测量范围:-5V~+5V,精度:±1mV;分辨率:1mV 4、最低保护电压:0.3V。 四、加载控制方式:即可电流控制,又可电压控制。 五、气体供应 1、质量流量控制器: 最大流量:H2≥2NLPM,精度:±1%;Air≥5NLPM,精度:±1%,可按过量系数控制流量。 2、带有干气旁通(Bypass)功能,带有氮气吹扫(Purge)功能 六、背压控制 1、程控自动化阴阳极进出口压力控制,电脑控制自动加背压。 2、压力控制范围:≥300KPa(表压),控制稳定性:±5KPa 3、可以监测(电脑显示)阴极和阳极的进出口压力。 七、温度控制 1、最高电池温度:≥110℃,控制精度:±1℃ 2、最高气体温度:≥90℃,控制精度:±1℃,从加湿器到测试电池间的胶管有加热和保温功能,避免水气凝结。 3、露点温度控制范围:室温—90℃,精度:±1℃ 八、热交换器:有 九、交流阻抗:要求带有交流阻抗测试模块,电压控制模式测EIS,频率扫描范围:高频大于10kHz,低频小于等于0.01mHz,电流最大量程:≥±5A

十、带有恒电位仪,N2和Air自动切换,测试CV、LSV。N2流量计量程越高越好,建议和Air共用流量计。 十一、安全:带有氢气报警器,设有氢气泄露报警和仪器错误报警,在报警情况下自动化关闭电子负载、启动氮气吹扫。带有过电压、电流等保护。 十二、电脑和软件: 1、电脑全自动控制 2、可编程进行程序控制测试, 3、语言:英语或中文 4、数据收集记录:至少可以电脑记录以下参数:运行时间、电池温度、阴阳极气体进出口的温度和湿度、阴阳极加湿温度、阴阳极进出口压力、阴阳极气体流量,电池电流、电压及其标准偏差,所有数据记录设定值和测量值。 十三、保修期 一年。

直接能量平衡

编者导读:本文以某电厂 2 ×300MW 机组DEB 设计和运行情况为背景,阐述并分析了采用直接能量平衡策略的技术原理、工程实现、过程实际响应以及运行效果。结果表明:DEB 协调控制策略的控制目标直接、明确活,而且具有适应性强、稳定性好等特点。 0 前言大型火力发电机组由于机组容量大、运行参数高,若运行操作不当将对机组本身甚至电网的安全带来很大的危害,故对自动控制的要求和依赖越来越高。发电机组自动控制的最终目标是安全快速地满足电网的负荷需求并保证电力品质,由于组成火力发电机组的锅炉和汽轮机对负荷响应特性的差异很大,所以在设计机组级控制时必须充分考虑这两个对象的不同特性,使锅炉和汽轮机协调地运转,以机组实际最大能力来满足电网的要求。 协调控制系统CCS (Coordinated Control System )的任务是协调锅炉和汽轮机两个不同的工艺系统共同来满足电力负荷需求。因此,协调控制系统的设计应将锅炉和汽轮机作为一个整体来考虑,使机组在实际能力下,能最大限度地满足电网要求的发电数量(功率)和质量(频率),确保发电机组安全、稳定、经济地运行,这是协调控制的基本要求。协调控制系统在理论上可以有许多方法来实现,但对于一个特定的发电机组来说,当主设备和工艺系该选择一种最适合该机组特定条件的技术方案作为控制系统设计的基本策略。随着分散控制系统(DCS )熟,为火电机组实现复杂的协调控制创造了技术和物质的基础。本文阐述的是DEB 直接能量平衡控制系统制策略以及机组在协调控制方式下的实际负荷响应情况,采用的系统硬件是MAX1000 分散控制系统。 1 DEB 原理分析[1] 直接能量平衡(Direct Energy Balance ;DEB )协调控制系统是由美国原Leeds & Northrup 公司创立的美国metsoMAX 公司继承此项技术,上海自动化仪表股份有限公司通过技术引进获得使用许可)。其著名的表式中P TS 为机前压力设定值;P 1 为汽机一级压力;P T 为机前压力;P D 为汽包压力;C b 为锅炉蓄热左边是汽机的能量需求信号,等式的右边是锅炉的热量信号。 DEB 实质上是以锅炉跟随为基础的协调控制,汽机侧控制功率,同时以汽机的能量需求作为锅炉负荷指令炉的热量信号相平衡,而满足这种平衡的控制手段是调节输入锅炉的燃料量,因此在燃料调节器入口代表燃料

质子交换膜燃料电池控制策略研究

质子交换膜燃料电池控制策略研究 质子交换膜燃料电池与其他种类电池的差别就是,质子交换膜燃料电池的出现以使用清洁、对环境无污染、效率高为特点,是一种很有价值的发明,就我国目前的情况来看,质子交换膜燃料电池在我国的各个领域中已经被接纳。在进行研究质子交换膜燃料电池的最终目的就是为了让质子交换膜燃料电池的效率更高而且更加的稳定。这就需要对质子交换膜燃料电池的性质进行研究,让质子交换膜燃料电池的特性可以控制。在本文中进行了质子交换膜燃料电池自身特点以及质子交换膜燃料电池的分类的介绍,也简述了质子交换膜燃料电池电池控制策略。 标签:燃料电池;质子交换膜;策略与研究 随着世界经济的共同发展,在发展中已经产生了对环境的严重的破坏,这就让全世界开始共同对环境的保护、资源的高效率的利用进行了研究。而可持续发展与绿色环保节能减排也已经成为了当下的主流话题。这就让经济的发展在向可持续发展的方向进行着,在我国虽然已经逐渐开始了可再生能源与清洁能源的使用,但这种改变对于我国对石油、煤矿、天然气等不可再生能源的使用情况并没有做出多大的改善,虽然我国的资源丰富但由于人口众多,但由于人均的资源量很少,针对于现在的不可再生能源的使用速度,到本世纪末这些不可再生能源就会逐渐地面临枯竭的现象。而燃料电池的发电技术的出现,由于其优越的自身特性,让其可以成为我国改变现状的方式之一。 一、燃料电池特点 随着科技的逐渐发展,出现了与化学电池不同工作原理的燃料电池。燃料电池的出现后产生了很大的影响,原因就是燃料电池的燃料与电能的转化效率是极其优秀的,对于能量之间的相互转换损失很小。而且还能对自身产生的热量进行二次的利用,当开始电能的转化时,对于环境的污染几乎没有,也不会产生大量的垃圾,在整个生产的过程中水是唯一的产物。在燃料电池开始运行时,对于电能的输出很好,而且燃料电池在运行的过程中只有很小的声音,本身可以长久的使用,稳定性极佳。在燃料电池运行的过程中,内部没有机械构件,只有水与其他在转化。燃料电池的构造很简单,出现问题时维修方便,而且燃料电池的组装分很多的模块,在进行安装时方便。燃料电池的主要燃料就是氢气,氢气的价格便宜,而且氢气的来源广泛,可以在短时间内收集燃料。燃料电池对于环境可以迅速的适应,而且燃料电池的功率大、对于工作性能可以快速的适应,周围的环境就算有水存在也不会有很大的影响。 二、研究现状与存在问题 对于燃料电池的燃料氢气而言,氢气的本身可以当作能源使用。燃料电池在使用的途径上有便携式的能源、小型移动电源、车载电源等,可以在教学、汽车、科研、计算机等多种的领域进行应用,还可以充当紧急电源,而且在特殊的情况

氢燃料电池电堆系统控制方案

AIR OUT AIR IN H2IN DI-WEG IN DI-WEG OUT 图1 1号电堆模块系统图 H2PURGE1 24V H2PURGE2

WEXPT 图2 车用1号电堆系统系统图

表1 模块附件表:

表2 车载系统附件表:

2.1 模块 ●冷却液与压缩空气热交换器 因冷却液的温度适应电堆要求,该热交换器的作用,一是压缩空气温度过高时降温(起中冷器作用),二是压缩空气温度较低时加热。考虑到要适应低温环境,最好采用。 ●氢气入口压力调整器 电堆的氢气入口压力调整,由PT-H3、EPV-H4、PT-H4组成,通过程序采集压力和控制比例阀来实现。为了控制准确和简单管路,将PT-H2、EV-H2、PT-H3、EPV-H4、PT-H4做到一个阀组(manifold)上。 ●阳极压力保护 为防止氢气入口压力调整器失效,而使阳极产生高压毁坏电堆。采用安全阀SRV-H5保护。 ●外增湿器 外增湿器采用膜增湿器,用电堆的出口湿空气来增湿电堆得入口干空气。具体是否采用,要看电堆的需求。 ●氢气循环 氢气循环,一是使阳极的氢气的湿度均匀,二是加热入口的氢气。 ●氢气吹扫(排放)阀 氢气吹扫阀,是用1个还是在电堆氢气出口的2端各用1个。 要看电堆的阳极结构,因氢气回流后,多少会有一些液态水,若

不能及时吹扫掉,会影响水平较低段的节电池性能,也不利于防冻处理。 ●电堆空气出口压力 电堆出口压力,采用电磁比例阀EPV-A6和电堆出口压力表PT-A5形成回路来控制。为防止憋压,比例阀为常开阀。 ●电堆高压输出正负极对结构接地(搭铁)绝缘电阻检测 电堆高压输出正负极对结构接地的绝缘电阻小时,会危害电堆的安全。在模块中需要加入检测单元。绝缘电阻的要求,单节电池为1200欧,150节为180千欧。 ●电机调速器的电源 因空压机的功率一般大于1kW,采用电堆的高压电源,在启动或停止的过程中需要外电源供电。启动和停止时由预充电电源PS-HV6供电。 氢气循环泵,因功率一般小于500W,且只在电堆工作时运行,采用外部24VDC单独供电。 ●节电池电压巡检单元 节电池电压巡检单元,与电堆的结构做到一起,自带MPU,与模块控制器采用通讯联系(CAN和RS485)。这样会使检测电缆最短,提高可靠性和美观。 ●模块控制器 控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成后,沿用

LS-DYNA中的能量平衡

LSDYNA中的能量平衡time........................... 4.99735E-03 time step...................... 4.45000E-06 kinetic energy................. 3.80904E+09 internal energy................ 5.15581E+09 spring and damper energy....... 1.00000E-20 hourglass energy .............. 1.34343E+08 system damping energy.......... 0.00000E+00 sliding interface energy....... 1.72983E+07 external work.................. 4.54865E+09 eroded kinetic energy.......... 0.00000E+00 eroded internal energy......... 0.00000E+00 total energy................... 9.11649E+09 total energy / initial energy.. 1.09716E+00 energy ratio w/o eroded energy. 1.09716E+00 global x velocity.............. -6.63878E+01 global y velocity.............. 3.44465E+02 global z velocity.............. -1.86129E+04 time per zone cycle.(nanosec).. 11286 GLSTAT(参见*database_glstat)文件中报告的总能量是下面几种能量的和: 内能 internal energy 动能 kinetic energy 接触(滑移)能 contact(sliding) energy 沙漏能 houglass energy 系统阻尼能 system damping energy 刚性墙能量 rigidwall energy GLSTAT中报告的弹簧阻尼能”Spring and damper energy”是离散单元(discrete elements)、安全带单元(seatbelt elements)内能及和铰链刚度相关的内能(*constrained_joint_stiffness…)之和。而内能”Internal Energy”包含弹簧阻尼能”Spring and damper energy”和所有其它单元的内能。因此弹簧阻尼能”Spring and damper energy”是内能”Internal energy”的子集。由SMP5434a版输出到glstat文件中的铰链内能”joint internal energy”跟*constrained_joing_stiffness不相关。它似乎与*constrained_joint_revolute(_spherical,etc)的罚值刚度相关连。这是SMP 5434a之前版本都存在的缺失的能量项,对MPP 5434a也一样。这种现象在用拉格朗日乘子(Lagrange Multiplier)方程时不会出现。与*constrained_joint_stiffness相关的能量出现在jntforc文件中,也包含在glstat文件中的弹簧和阻尼能和内能中。回想弹簧阻尼能”spring and damper energy”,不管是从铰链刚度还是从离散单元而来,总是包含在内能里面。在MATSUM文件中能量值是按一个part一个part的输出的(参见*database_matsum)。沙漏能Hourglass energy仅当在卡片*control_energy中设置HGEN项为2时才计算和输出。同样,刚性墙能和阻尼能仅当上面的卡片中RWEN和RYLEN分别设置为2时才会计算和输出。刚性阻尼能集中到内能里面。

燃料电池测试系统的基本理论

燃料电池测试系统的基本理论 随着全球对能源需求的增长及人类对环境要求的提高。各个国家对燃料电池的研究和开发H益增多。燃料电池测试系统不仅存燃料电池系统的研发阶段十分重要,即使是在其投入使用之后对于维持电池的正常工作也是不可或缺的。强大的测试能力能够提供对燃料电池可靠的监控。提供灵活的结构,具备了这种能力,科学界能够很方便地设计他们的系统,以跟踪燃料电池技术进步。以下是对燃料电池测试系统的相关介绍。 1、测试目的 虽然研究、开发、制造和应用部分的总目标各有不同。它们对于燃料电池的检测和躲视项目要求却是相似的。对丁研发部门,测试要求足确定输出能量、使用寿命和电池组的耐用性。在设计验收阶段,主要任务是优化设计以备大规模生产.以及在不降低效率的情况下降低电堆总成本。对丁生产应用.要求燃料电池符合规范要求。而在实际使用中,监测电池的寿命和工作状态是非常重要的。好在这些不同的任务对电池测试系统的要求都差不多。 2、测试系统的主要特点 ①隔离。燃料电池测试系统先要进行各种需要信号调理的测鼍。然后原始信号才能有数据采集系统数字化。大容最电堆具有数百个单电池。从而电压测量要求数白.伏的共模抑制。因此.测试不仅必须具有多个每个通道都能读取l—10V的通道.而

且必须保持电堆的每一个和最后一个电池之间高达数百伏的隔离。 ②数据采集系统必须能够扩展。由于燃料电池测试系统的通道数目可以从100个到1000多个.所以数据采集系统必须能够扩展。并且这些系统也要求可以进行信号的衰减和放大。 ③模块化。对于今天的测试系统,模块化也是必需的。因为测试系统必须能够随着生产及验证技术的变革而变革。 ④标定。任何测试系统都应该进行标定以确保测量有效和准确。 3、测试的主要性能参数 燃料电池测试系统需要精确的监测和控制成百上千次测量.范同从燃料和氧化剂的流量、温度、压力和湿度到燃料电池组的输出电压和电流。测试燃料电池的性能是很重要的,而监测影响性能的变量更为重要,但最重要的足控制这些变量参数,安全运行也是至关重要的。所以监测控制的主要参数有: (1)电压。在有负载的情况下,单电池的输出电压会从开路电压的1V左右降到O.6V左右.知道了每个单电池的电压就可以更近的了解电堆的健康情况。如果哪个单电池显示出不同电压,就表明此电池有问题,或者温度不正常,或者电极被淹。测试单电池或电堆的电压就可以正确操作、测试和设计燃料电池。

项目施工各专业协调管理策略

项目施工各专业协调管 理策略 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

项目施工各专业协调管理策略从工程技术、施工管理的角度来看一个高质量、高标准的建筑工程,各专业之间的协调与配合是至于关重要和不容忽视的。一个混乱的管理不但影响项目工程质量,更将增加项目成本。 一、各专业的施工协调管理十分必要 施工中各专业协调的好坏直接关系到工程的质量与成本。 先看看施工中各专业协调问题的实例: 某住宅工程分包水电的安装队在埋设开关线时没有注意到门的开启方向,结果待门安装好后,发现开关的位置正好在门后边,使用起来十分不便,不得已只好把粉刷好的墙面凿开,重新埋管、改线路。 另一个是某甲方人员按电梯生产厂家提供的电梯尺寸,让设计院设计电梯井施工图。而设计人员也没有多问,就按原尺寸进行设计,结果电梯运到现场后发现,电梯轿厢尺寸比电梯井的尺寸大了200毫米,这时大家才又翻图纸核对,发现设计人员把电梯厂家标注的净空尺寸当成电梯井的轴线尺寸,但此时发现已没有办法,只好将电梯轿厢改小。 在工程施工过程中,出现这样问题的例子并不少见,像消防、煤气安装等,由于是有关部门指定的专业施工队,与土建及其他专业队之间配合往往会出现一些问题这些问题到了工程主体完工时才被发现已很难处理。不得已只好改线路、打楼板,把一栋好好的建筑搞得乱七八糟,面目全非,因此带来了种种问题和隐患。 很多建筑物,就其各专业本身,建筑的外形、使用功能、结构形式、安全合理性等,不论在设计还是在施工方面的质量都能得到很好的控制和保证。但各专业工程施工中的交叉配合与协调工作经常处理得不尽如人意。到了工程施工的后期,由于这些问

氢燃料电池控制策略

目录 30KW车用氢燃料电池控制策略............................. 错误!未定义书签。目录. (1) 1控制策略的依据 (3) 230KW车用氢燃料电池控制策略 (4) 2.1P&ID (5) 2.2模块技术规范 (6) 2.3用户接口 ..................................................... 错误!未定义书签。 2.4系统量定义 (8) 2.5电堆电芯(CELL)电压轮询检测策略 (10) 2.5.1Cell巡检通道断线诊断处理................... 错误!未定义书签。 2.5.2Cell巡检通道断线诊断结果处理........... 错误!未定义书签。 2.6Cell电压测算.............................................. 错误!未定义书签。 2.7电堆健康度SOH评估 ............................... 错误!未定义书签。 2.7.1特性曲线电阻段对健康度的评估方法 .. 错误!未定义书签。

2.8ALARM和FAULT判定规则 (10) 2.9工作模式(CRM和CDR)策略 (11) 2.10电堆冷却液出口温度设定值策略 (11) 2.11空气流量需求量计算 (12) 2.12阳极氢气循环回路控制策略 ..................... 错误!未定义书签。 2.13阴极空气传输回路控制策略 (14) 2.14冷却液传输回路控制策略 ......................... 错误!未定义书签。 2.15阳极吹扫(Purge)过程 (17) 2.16防冻(Freeze)处理过程 (17) 2.17泄漏检查(LeakCheck)机理 (18) 2.17.1在CtrStat17下的LeakCheck (18) 2.17.2CtrState2下的泄漏检查 (19) 2.18注水入泵(Prime)过程 (19) 2.19状态及迁移 (19) 2.19.1状态定义 (19) 2.19.2状态迁移图 (20) 2.19.3状态功能 (21) 2.19.4迁移条件 .................................................. 错误!未定义书签。 2.20CAN通讯协议。........................................ 错误!未定义书签。3未确定事项 ....................................................... 错误!未定义书签。

燃料电池测试系统

燃料电池测试系统 燃料电池测试催化剂测试实验室自动化材料测试 brand innovative solutions by TesSol, Inc. 为客户提供最好的仪器和服务是我门的宗旨 高品质,高精度,仪器服务期长 模块化结构,以太网通信,安装操作简单 模块化结构以及以太网通信,使仪器将来升级/扩展简单,一次投资,长期回报 低阻电子负载,无需放电增强器 FCPower软件用户友好界面,操作简单 软件允许用户用VBScript等编程语言编写脚本,满足自己特殊测试需要 免费软件升级,免费终生客户支持 软件还兼容控制很多第三方设备 Fideris已经为顾客提供了15年优质服务,而且还将一直继续下去 模块化设计 完整的测试系统 模块完美结合成为系统 电子负载模块 温度控制模块 气体液体控制模块 其它模块,如加湿器,背压控制等等 完全客户化设计,为您提供满足您的特殊需要的测试仪器。而且购买后也可以简单做到仪器扩展/升级,避免了仪器资源浪费 TesSol制造并为用户提供Fideris品牌系列的测试仪器。在燃料电池、催化剂、感应片、材料以及很多其它紧密相关的领域,Fideris系列仪器代表了在研究、质量控制、以及产品测试方面最为创新的实验解决方案。Fideris系列仪器包括:一体化测试系统、气体供给系统、液体供给系统、气体液体混合供给系统、液体供给液压系统、压力控制监测系统、温度控制监测系统、压力控制监测系统、电子负载系统、加湿器系统、气体加热线、辅助输入输出系统、架构模块式系统以及第三方设备等。 Fideris系列仪器采用FCpower软件为用户提供方便直观的电脑控制以及数据处理平台。FCpower软件为燃料电池研究者提供了最为灵活、最为强大的燃料电池测试平台。软件包含了对所有接入仪器的设定、控制、安全报警以及数据收集和处理等方面。 Fideris的燃料电池测试系统是专门为燃料电池测试而设计。我们的燃料电池试验站已经在世界范围内应用于燃料电池以及子系统(从小于1瓦到高于10万瓦)测试,包含所有化学材料类型(PEMFC质子交换膜燃料电池、SOFC固态氧化物燃料电池等等)、所有类型(微型、小型、大型)以及多种燃料类型(氢、天然气、柴油、汽油、重整油等等)。

微电网协调运行控制策略_本科论文

XX大学 本科学位论文题目:微电网协调运行控制策略 摘要

本文主要通过进行了理论研究、仿真平台搭建,研究微电网综合协调控制策略,,仿真结果分析,为后续微电网的深入研究奠定了基础。 本文设计了PQ 控制器、基于下垂特性的V/f 控制器,并对逆变器输出滤波器进行了设计。同时,针对PI 控制器的不足,利用模型预测控制方法设计了微网中分布式微电源逆变器的PQ 模型预测控制策略和基于下垂特性的V/f 模型预测控制策略, 并在MATLAB/Simulink 中建立了仿真模型,对单个微电源分别采用PI 控制和MPC 控制时的不同场景进行了分析,证明了MPC 控制器的效果。 最后,建立了微电网的模型,用风力发电机组、光伏以及蓄电池三种微电源的模型代替直流电压源,并设计相应的控制策略,在MATLAB/Simulink 中,搭建了整个系统的模型,分别在风机和光伏阵列出口处配置蓄电池,用于平抑并网功率并在孤岛下提高电压和频率支撑,仿真结果验证了控制策略的可行性。 关键词:微电网;综合协调控制;风光储;逆变器;模型预测控制

Study on the Coordination Control Strategy of Wind-Solar-Storage Micro-grid Abstract This paper mainly studies the micro-grid integrated and coordinated control strategies, and, by theoretically analyzing, simulation platform construction, and simulation results analyzing, laid the foundations for subsequent in-depth study of micro-grid. In this paper, a PQ controller, a V/f controller based on droop characteristic and the inverter output filter has been designed. Meanwhile, considering PI controller’s insufficiency, the Model Predictive Control strategy was used to design the converter’s PQ model predictive control strategy and V/f model predictive control strategy based on droop characteristics, and the simulation model was established in MATLAB/Simulink. Then, by simulating a single micro-source respectively using PI controller and MPC controller in different scenes and by afterward analyzing and comparing, the effectiveness of MPC controllers was proved. After single micro-source’s integrating strategy research, the model of micro-grid with multiple micro-sources was built, and through the simulating and analyzing under 3 conditions: the micro-grid operation mode switching, cutting or adding load in island mode, cutting a micro-source in island mode, it is found that the micro-source MPC controller designed in this thesis achieved a sound power control behavior under the aforementioned three conditions. Meanwhile, both the micro-grid’s voltage and frequency were within the required range of the system, which proves the effectiveness of control strategies. Last, the wind-solar-storage micro-grid model was built, which used a wind power generation system, a photovoltaic cell and a storage battery to replace DC voltage sources, along with the design of corresponding control strategies. The whole model of the system was then built in MATLAB/Simulink, in which a storage battery was placed respectively in the outlet of wind power generation system and the export of PV array column, for stabilizing grid power and offer voltage and frequency support in island mode. The simulation results validated the feasibility of the control strategies. Key Words: Micro-grid;Integrated coordination control;Wind-Solar-Storage;Converter;Model Predictive Control

氢燃料电池电堆系统控制方案

氢燃料电池电堆系统控制方案 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

燃料电池发动机系统控制策略

车载燃料电池发动机系统及控制策略开发 一:目的 制定本控制策略的目的是通过合理的控制,稳定燃料电池发动机的性能并有效的提升燃料电池发动机的寿命。燃料电池发动机是为了备用电源使用,同时兼顾车用状态,所以在系统开发及控制策略主要以备用电源应用环境为主体,同时兼顾汽车级应用状态,由于车载燃料电池系统应用环境相对备用电源系统要复杂多变,所以结合燃料电池在车上实际应用制定最佳系统配置条件。但是同时也兼顾备用电源的应用场合。 二:系统初步框图

三:总体控制方案: 燃料电池发动机的开机,关机及运行,可以看做是一个循环过程,需要实现自检、吹扫、湿度控制、加减载控制、散热控制,故障检测和保护等一系列功能。在满足此条件的基础上进行燃料电池系统级的开发。 1:待机自检: 待机自检查看燃料电池系统发动机自身的状态是否准备就绪,包括电源供给、电磁阀状态、传感器状态,设备通讯等,因为传感器自身会有波动,所以划定其合理的波动范围来确定其是否正常工作 2.开机策略:(略) 3.运行控制策略: 运行中需要控制加载、空压机转速、散热、氢气循环泵、尾排阀。主要从以下几个方面进行考虑: 1:电堆模块的操作条件 2:发动机系统中加入了氢气循环泵,氢气循环泵的控制 3:为提升寿命,对加载速率的要求:加载≯?A/s,减载≯?A/s。(根据电堆条件确定) 4:尾排及分水阀的动作时间,氢气利用率控制。 5:加减载控制策略: 实现加载≯?A/s,减载≯?A/s 的目标,同时也要具备车载情况下的加减载控制能力。 其中空入压力受湿度、环境温度、自身的精度等的影响比较大,经常会出现加载不上而形成死循环的状况。车载发动机是恒功率加载,而燃料电池发动机希望是恒电流加载,并能控制加载速率,因此,为实现恒

燃料电池发动机智能测试平台

燃料电池发动机智能测试平台 本文建立了基于NI集成软硬件环境燃料电池发动机测试平台。该平台可以实现燃料电池发动机及其辅助系统的测试与控制、燃料电池发动机系统参数测量、为燃料电池发动机提供多种工况环境,甚至系统控制策略的评价。利用NI开发套件建立了一个内嵌专家系统的智能软件平台,不仅确保了测试平台的工作安全性,同时也可以对系统的潜在故障进行诊断。此外,由于该测试平台的高速采样,使得燃料电池发动机动态特性参数的准确性得到保证,本系统利用这些参数自动生成包括燃料电池发动机动态模型的测试报告。测试平台功能要求燃料电池发动机的本质是一个电化学的反应堆,能够对外输出电能,。燃料电池发动机可分为4个部分:空气系统、氢气系统、循环水系统和燃料电池堆。一个完整的燃料电池发动机测试平台需要为测试对象提供参数可调的燃料和温度控制,以及合适的负载;并且能够对测试过程中的数据进行相应的处理,为测试对象做出评价,以及为进一步的优化设计提出合理化的建议。 图1 燃料电池工作原理示意图 对燃料电池进行的测试主要有三个:测试燃料电池发动机在不同工况下的功率输出特性,以达到优化整车动力系统配置的目的;通过测量燃料电池发动机的工作参数,建立和验证其数学模型或控制模型,用来优化燃料电池发动机的控制策略;通过测试不同的辅助系统对燃料电池的影响,达到燃料电池发动机的最佳匹配。测试平台的构成基于上述的功能要求,本文建立了智能化的燃料电池发动机测试平台。的系统的结构框图。 图2 系统结构 按照工作性质整个平台可分为执行、测控以及数据处理三个部分: 1、执行部分该部分主要为了满足系统功能的需要配置的各种制冷、加热、加湿、水处理等大型设备,由冷冻机、换热器、蒸汽锅炉、循环水泵、阀门等组成。 2、测量与控制部分该部分主要为了测量和控制平台的特性参数和燃料电池的工作状态。主要由数据采集装置、调节装置、信号调理放大等部分组成。 3、数据处理部分在测试的过程中,系统需要为用户提供相关的瞬时测试信息;测试结束后,系统必须为用户生成完整的测试报告,以评价燃料电池发动机的性能。由于系统中执行部分主要利用化工工业和制冷技术等方面的成熟的产品,该部分的内容不属于本文的重点,故本文主要就系统的测量、控制和数据处理方面的内容进行介绍。为了实现平台的功能,需要测量的量共计86个,类型各有不同,并且信号类型众多,显然快速、精确、可靠的测量是一个繁琐的工作。在参数测量的同时,系统需要完成控制功能,由于控制对象的复杂性,要达到良好的控制效果一直都是燃料电池测试平台开发的难点。开发环境选择鉴于系统中传感器信号和控制信号类型众多,同时为了达到系统设计的目的,必须采用高速率的数据采样,因而选用了NI公司的测试环境。首先,NI公司的硬件环境和软件环境操作简便,LabView的图形化编程界面及其优异的图形控件使得测试平台的编程过程变得简单,尤其是其软硬件系统的无缝结合,极大提高了编程效率与可靠性。其次,数据测试系统配置方便,可靠性高。数据采集结构的开放性,使得数据采集系统的使用只是简单的外围传感器信号配置,同时PXI总线的优越性能使得数据采集的信号多样性、速度和精度要求高等难题能够迎刃而解。再次,NI开发套件工具包配置齐全,使得测试平台开发中的控制算法的实现、数据的图形显示、数据采集工作的实现、在线数据处理、测试报告的生成以及远程协作控制等变得只是工具包的调用和系统参数的配置。基于上述的优点,以及考虑到开发时间以及人力等综合成本的因素,本系统中采用了NI公司的数据采集系统以及软件开发环境。测试平台硬件系统构建本系统硬件采用了NI公司的DAQ系统来实现温度、湿度、压力和流量等数据的采集;利用模拟量输出单元来控制相应的调节设备;利用

相关文档
最新文档