常见的几种放电现象

常见的几种放电现象
常见的几种放电现象

常见的几种放电现象

一、接地放电

地球是良好的导体,由于它特别大,所以能够接受大量电荷而不明显地改变地球的电势,这就如同从海洋中抽水或向海洋中放水,并不能明显改变海平面的高度一样。如果用导线将带电导体与地球相连,电荷将从带电体流向地球,直到导体带电特别少,可以认为它不再带电。生产中和生活实际中往往要避免电荷的积累,这时接地是一项有效措施。

二、尖端放电

通常情况下空气是不导电的,但是如果电场特别强,空气分子中的正负电荷受到方向相反的强电场力,有可能被“撕”开,这个现象叫做空气的电离。由于电离后的空气中有了可以自由移动的电荷,空气就可以导电了。空气电离后产生的负电荷就是电子,失去电子的原子带正电,叫做正离子。

由于同种电荷相互排斥,导体上的静电荷总是分布在表面上,而且一般说来分布是不均匀的,导体尖端的电荷特别密集,所以尖端附近空气中的电场特别强,使得空气中残存的少量离子加速运动。这些高速运动的离子撞击空气分子,使更多的分子电离。这时空气成为导体,于是产生了尖端放电现象。

三、火花放电

当高压带电体与导体靠得很近时,强大的电场会使它们之间的空气瞬间电离,电荷通过电离的空气形成电流。由于电流特别大,产生大量的热,使空气发声发光,产生电火花,这种放电现象叫火花放电。

火花放电在生活中常会遇到。干燥的冬天,身穿毛衣和化纤衣服,长时间走路之后,由于摩擦,身体上会积累静电荷,这时如果手指靠近金属物品,你会感到手上有针刺般的疼痛感,这就是火花放电引起的,如果事先拿一把钥匙,让钥匙的尖端靠近其他金属体,就会避免疼痛。在光线较暗的地方试一试,在钥匙尖

端靠近金属体的时候,,不但会听到响声,还会看到火花。在一些工厂或实验室里,存在大量易燃气体,工作人员要穿一种特制的鞋,这种鞋的导电性能很好,能够将电荷导入大地,避免电荷在人体上的积累,以免产生火花放电,引起火灾。

浅谈放电现象

浅谈放电现象 淄博赛区 山东省淄博市桓台县实验中学2007级9班桑迪 指导教师王建国

摘要: 由身边的摩擦起电及火花放电现象引起思考,联想到所学物理知识,寻找资料进行研究。了解了摩擦起电、火花放电现象的物理本质和相关知识,在此浅谈。 关键词: 摩擦起电静电现象静电应用静电用途及危害气体介质击穿火花放电现象静电放电现象放电现象消除及防止 正文: 秋冬季节,在脱毛衣时,会听到噼里啪啦的细小的声音,在暗处还可以看到一些细小火花。与人见面握手时,手指刚一接触到对方,就会感到指尖针刺般刺痛。更有甚者说,在化纤被子里,使劲打几个滚,用指头在被子里一划,就出现一串“火”。这就是生活中常见的火花放电现象(或“静电放电现象”)。 要看透现象说本质,所以要说火花放电现象,就得先说说摩擦起电和静电感应。众所周知,物质都是由分子构成,分子是由原子构成,原子中有带负电荷的电子和带正电荷的质子构成。在正常状况下,一个原子的质子数与电子数量相同,所以对外表现出不带电的现象。但是电子环绕于原子核周围,一经外力即脱离轨道,离开原来的原子而侵入其他的原子。原子因缺少电子数而带有正电现象,称为阳离子;原子因增加电子数而呈带负电现象,称为阴离子。若在分离的过程中电荷难以中和,电荷就会积累使物体带上静电。摩擦起电是物体与其它物体接触后分离带上的静电。静电感应是导体因受外电场的影响而在表面不同的部分出现正负电荷的现象,靠近带电体的一端出现与它异号的电荷,另一端出现与它同号的电荷。(与磁化类似。)当带电体被移开时,导体上的电荷将恢复原来不带电的状态。 静电产生过程 有了静电,便可能出现静电现象。静电现象包括许多大自然例子,像塑胶袋与手之间的吸引、似乎是自发性的谷仓爆炸、在制造过程中电子元件的损毁等等。静电现象是由点电荷彼此相互作用的静电力产生的。库伦定律专门描述静电力的物理性质。在氢原子内,电子与质子彼此相互作用的静电力超大于万有引力,静电力的数量级大约是万有引力的数量级的39 倍! 2.310

电弧产生现象原因及特点

电弧产生现象原因及特点 电弧产生现象原因及特点 在有触点电器中,触头接通和分断电流的过程中往往伴随着气体放电现象---电弧的产生及熄灭,电弧对电器具有一定的危害。 电弧属于气体放电的一种形式。气体放电分为自持放电与非自持放电两类,电弧属于气体自持放电中的弧光放电。试验证明,当在大气中开断或闭合电压超过10V、电流超过100MA的电路时,在触头间隙(或称弧隙)中会产生一团温度极高、亮度极强并能导电的气体,称为电弧。由于电弧的高温及强光,它可以广泛应用于焊接、熔炼、化学合成、强光源及空间技术等方面。对于有触点电器而言,由于电弧主要产生于触头断开电路时,高温将烧损触头及绝缘,严重情况下甚至引起相间短路、电器爆炸,酿成火灾,危及人员及设备的安全。所以从电器的角度来研究电弧,目的在于了解它的基本规律,找出相应的办法,让电弧在电器中尽快熄灭。 我们借助一定的仪器仔细观察电弧,可以发现,除两个极(触头)外,明显的分为3个区域,即近阴极区、近阳极区及弧柱区。

近阴极区的长度约等于电子的平均自由行程。在电场力的作用下正离子向阴极运动,造成此区域内聚集着大量的正离子而形成正的空间电荷层,使阴极附近形成高电场强度。正的空间电荷层形成阴极压降,其数值随阴极材料和气体介质的不同而有所变化,但变化不大,约在10-20V之间。 近阳极区的长度约等于近阴极区的几倍。在电场力的作用下自由电子向阳极运动,它们聚集在阳极附近而且不断被阳极吸收而形成电流。在此区域内聚集着大量的电子形成负的空间电荷层,产生阳极压降,其值也随阳极材料而异、但变化不大,稍小于阴极压降。由于近阳极区的长度比近阴极区的长,故其电场强度较小。 阴极压降与阳极压降的数值几乎与电流大小无关,在材料及介质确定后可以认为是常数。 弧柱区的长度几乎与电极间的距离相同。是电弧中温度最高、亮度最强的区域。因在自由状态下近似圆柱形,故称弧柱区。在此区中正、负电粒子数相同,称等离子区。由于不存在空间电荷,整个弧区的特性类似于一金属导体。每单位弧柱长度电压降相等。其电位梯度E。也为一常数,电位梯度与电极材料、电流大小、气体介质种类和气压等因素有关。 电弧按其外形分为长弧与短弧。长短之别一般取决于弧长与弧径之比。把弧长大大超过弧径的称为长弧。长弧的电压是近极压降(阴极压降与阳极压降)与弧柱压降之和。若弧长小于弧径,两极距离极短(如几毫米)的电弧称为短弧。此时两极的热作用强烈,近极区的过程起主要作用。电弧的压降以近极压降为主,几乎不随电流变化。 电弧还可按其电流的性质分为直流电弧和交流电弧。

尖端放电

火焰为何不偏向尖端? 刘毅平(江苏省苏州实验中学江苏215011) 关键词:电风尖端放电 摘要:中学物理中有一个有趣的尖端放电实验,即:利用“电风”将蜡烛的火焰吹向一边,本文作一解释。 我们知道在静电学中,导体带电时,导体表面突出和尖锐的地方,电荷分布比较密集,使其附近形成很强的电场。导体尖端附近空气中残留的正负离子在强电场的作用下发生剧烈的运动,并与空气中的气体分子碰撞,将空气分子电离成许多新的正负离子,那些与尖端带同种电荷的离子,受到排斥,远离尖端,形成“电风”。与尖端带异种电荷的离子受到吸引,奔向尖端,与尖端上的电荷中和,这相当于导体从尖端失去电荷,这就是尖端放电。利用尖端放电现象,我们可以做尖端放电吹蜡烛的实验。 对这一实验的一般解释是:跟尖端带同种电荷的离子受到排斥而飞向远方,吹动火焰朝背离尖端的方向偏移。结果,学生就产生疑问:那为什么不说异种离子受到吸引飞向尖端,将火焰朝尖端方向吹呢?吹动火焰的到底是电子,还是从空气中电离出来的离子?如果尖端是带负电的话,那从尖端跑出来电子可以理解,但如果尖端带的是正电,那么还会有电子跑出来吗? 可见,以上解释并不充分,也难以让人满意。本人以为,在尖端放电现象中,的确存在正、负两种离子朝相反方向运动,吹动蜡烛火焰的主要是与尖端上带同种电荷的离子。问题是与尖端上带异种电荷的离子的确在向尖端飞去呀!难道它对蜡烛火焰没有影响?其实,两种离子对火焰都有影响,只不过与尖端带同种电荷的离子起主导作用罢了。原因是,在尖端放电现象中,尖端的电场最强,与尖端带同种电荷的离子在强电场的作用下,加速飞向蜡烛火焰,形成的“电风”强;而与尖端带异种电荷的离子由于离尖端较远,受到尖端电场的作用较弱,故形成的反向“电风”较弱,所以,蜡烛火焰才被吹响远离尖端的方向! 本人以实验证实了以上观点:我用J1206—1型电子感应圈做此实验,直接用感应圈上的尖针对着蜡烛火焰。一次使尖针带正电荷,蜡烛火焰被吹向背离尖端方向,说明火焰主要是受到正离子的作用;另一次是使尖针带负电,蜡烛火焰仍然被吹向背离尖端方向,说明火焰主要是受到负离子(电子)的作用;可见,火焰被吹响远离尖端的方向是同时受两种离子共同作用的结果! Email:syzxlyp@https://www.360docs.net/doc/252668245.html,

放电、击穿及闪络三个术语的含义

电缆故障测试和电缆预防性试验中 放电、击穿及闪络三个术语的含义 放电这是一个笼统的概念,泛指在电场作用下,绝缘材料由绝缘状态变为导电状态的跃变现象。这种跃变现象可能呈“贯通状”发生在电极间,即其中的绝缘材料完全被短接而遭到破坏,此时电极间的电压迅速下降到甚低至或接近零值;跃变现象也可能发生在电极间的局部区域,使其中的绝缘材料局部被短接,其余部分仍有良好的绝缘性能,电极间电压仍能维持一定的数值。前者称为破坏性放电,后者称为局部放电。 破坏性放电和局部放电可以发生在固体、液体、气体电介质及其组合介质中,换句话说,“放电”一词可以用于所有电介质及其组合中。 然而,放电发生在不同电介质及其组合中时又有特殊的称呼。当在气体或液体电介质中,电极间发生的破坏性放电称为火花放电,如在空气间隙、油间隙发生的破坏性放电,确切的说应该是火花放电。可见,火花放电这个词仅限用于气体和液体电介质中。 在固体电介质中发生破坏性放电时,称为击穿。击穿时在固体电介质中留下痕迹,使固体电介质永久失去绝缘性能。如绝缘纸板击穿时,会在纸板上留下一个孔。可见击穿这个词仅限用于固体电介质中。当在气体或液体电介质中沿固体绝缘表面发生破坏性放电现象,称之为闪络。常见的是沿气体与固体电介质交界面发生的闪络。如沿绝缘子串表面、沿套管表面的破坏性放电称之为闪络。所以闪络这个词仅限用于特殊条件的放电现象。 电缆做预防性试验时,由于电缆局部介质绝缘下降,导致电缆相间或对钢铠的电压迅速下降到甚低至或接近零值,这时薇安表迅速上升,该现象表明电缆存在绝缘问题,需要找出电缆绝缘故障的准确位置,快速修复电缆,电缆修复后,再次进行预防性试验,直至电缆符合运行标准即可。

常见的几种放电现象

常见的几种放电现象 一、接地放电 地球是良好的导体,由于它特别大,所以能够接受大量电荷而不明显地改变地球的电势,这就如同从海洋中抽水或向海洋中放水,并不能明显改变海平面的高度一样。如果用导线将带电导体与地球相连,电荷将从带电体流向地球,直到导体带电特别少,可以认为它不再带电。生产中和生活实际中往往要避免电荷的积累,这时接地是一项有效措施。 二、尖端放电 通常情况下空气是不导电的,但是如果电场特别强,空气分子中的正负电荷受到方向相反的强电场力,有可能被“撕”开,这个现象叫做空气的电离。由于电离后的空气中有了可以自由移动的电荷,空气就可以导电了。空气电离后产生的负电荷就是电子,失去电子的原子带正电,叫做正离子。 由于同种电荷相互排斥,导体上的静电荷总是分布在表面上,而且一般说来分布是不均匀的,导体尖端的电荷特别密集,所以尖端附近空气中的电场特别强,使得空气中残存的少量离子加速运动。这些高速运动的离子撞击空气分子,使更多的分子电离。这时空气成为导体,于是产生了尖端放电现象。 三、火花放电 当高压带电体与导体靠得很近时,强大的电场会使它们之间的空气瞬间电离,电荷通过电离的空气形成电流。由于电流特别大,产生大量的热,使空气发声发光,产生电火花,这种放电现象叫火花放电。 火花放电在生活中常会遇到。干燥的冬天,身穿毛衣和化纤衣服,长时间走路之后,由于摩擦,身体上会积累静电荷,这时如果手指靠近金属物品,你会感到手上有针刺般的疼痛感,这就是火花放电引起的,如果事先拿一把钥匙,让钥匙的尖端靠近其他金属体,就会避免疼痛。在光线较暗的地方试一试,在钥匙尖

端靠近金属体的时候,,不但会听到响声,还会看到火花。在一些工厂或实验室里,存在大量易燃气体,工作人员要穿一种特制的鞋,这种鞋的导电性能很好,能够将电荷导入大地,避免电荷在人体上的积累,以免产生火花放电,引起火灾。

中国古代对电现象的认识

中国古代对电现象的认识 我国古代对电的认识,是从雷电及摩擦起电现象开始的。早在3000多年前的殷商时期,甲骨文中就有 了“雷”及“电”的形声字。西周初期,在青铜器上就已经出现加雨字偏旁的“電”字。 王充在《论衡·雷虚篇》中写道:“云雨至则雷电击”,明确地提出云与雷电之间的关系。在其后的古代典籍中,关于雷电及其灾害的记述十分丰富,其中尤以明代张居正(1525~1582)关于球形闪电的记载最为精彩,他在细致入微的观察的基础上,详细地记述了闪电火球大小、形状、颜色、出现的时间等,留下了可靠而宝贵的文字资料。 在细致观察的同时,人们也在探讨雷电的成因。《淮南子·坠形训》认为,“阴阳相薄为雷,激扬为电”,即雷电是阴阳两气对立的产物。王充也持类似看法。明代刘基(1311~1375)说得更为明确:“雷者,天气之郁而激而发也。阳气困于阴,必迫,迫极而迸,迸而声为雷,光为电”。可见,当时己有人认识到雷电是同一自然现象的不同表现。 尖端放电也是一种常见的电现象。古代兵器多为长矛、剑、戟,而矛、戟锋刃尖利,常常可导致尖端放电发生,因这一现象多有记述。如《汉书·西域记》中就有“元始中(公元3年)……矛端生火”,晋代《搜神记》中也有相同记述:“戟锋皆有火光,遥望如悬烛”。避雷针是尖端放电的具体应用,我国古代地采用各种措施防雷。古塔的尖顶多涂金属膜或鎏金,高大建筑物的瓦饰制成动物形状且冲天装设,都起到了避雷作用。如武当山主峰峰顶矗立着一座金殿,至今已有500多年历史,虽高耸于峰巅却从没有受过雷击。金殿是一座全铜建筑,顶部设计十分精巧。除脊饰之外,曲率均不太大,这样的脊饰就起到了避雷针作用。每当雷雨时节,云层与金殿之间存在巨大电势差,通过脊饰放电产生电弧,电弧使空气急剧膨胀,电弧变形如硕大火球。其时雷声惊天动地,闪电激绕如金蛇狂舞,硕大火球在金殿顶部激跃翻滚,蔚为壮观。雷雨过后,金殿经过水与火的洗炼,变得更为金光灿灿。如此巧妙的避雷措施,令人叹为观止。 我国古人还通过仔细观察,准确地记述了雷电对不同物质的作用。《南齐书》中有对雷击的详细记述:“雷震会稽山阴恒山保林寺,刹上四破,电火烧塔下佛面,而窗户不异也”。

实验10观察电容器充放电现象

观察电容器的充、放电现象 基础打磨 1.(2019年江西10月联考)如图所示,关于平行板电容器的充、放电,下列说法正确的是()。 A.开关接1时,平行板电容器充电,且上极板带正电 B.开关接1时,平行板电容器充电,且上极板带负电 C.开关接2时,平行板电容器放电,且上极板带正电 D.开关接2时,平行板电容器放电,且上极板带负电 2.(2019年海南11月月考)下列电容器相关知识描述正确的是()。 A.图1为电容器充电示意图,充完电后电容器上极板带正电,两极板间的电压U等于电源的电动势E B.图2为电容器放电示意图,若电容器上极板带电荷量为+Q,则放电过程中通过电流表的电流方向从右向左,流过的总电荷量为2Q C.图3为电解电容器的实物图和符号,图4为可变电容器及其符号,两种电容使用时都严格区分正负极 D.图5中的电容器上有“5.5 V1.0 F”字样,说明该电容器只有两端加上5.5 V的电压时电容才为1.0 F 3.(2019年安徽模拟)(多选)电流传感器可以像电流表一样测量电流,可以捕捉到瞬间的电流变化,相当于一个理想电流表。用如图1所示的电路来研究电容器的放电过程。实验时将开关S拨到1端,用直流电压为8 V的电源给电容器充电,待电路稳定后,将电流传感器打开,再将开关S拨到2端,电容器通过电阻R放电。以S拨到2端时为t=0时刻,电流传感器测得的电流I随时间t的变化图象如图2所示,根据题意,下列说法正确的是()。 A.由I-t图象可知,电容器在全部放电过程中释放的电荷量约为3.2×10-3 C

B.由I-t图象可知,电容器在全部放电过程中释放的电荷量约为3.2 C C.此电容器的电容约为4.0×10-4 F D.此电容器的电容约为0.4 F 能力提高 4.(2019年河北10月联考)用下列器材测量电容器的电容:一块多用电表,一台直流稳压电源,一个待测电容器(额定电压16 V),定值电阻R1=100 Ω,定值电阻R2=150 Ω,电流传感器、数据采集器和计算机,单刀双掷开关S,导线若干。实验过程如下: 实验次数实验步骤 第1次①将电阻R1等器材按照图1正确连接电路,将开关S与1端连接,电源向电容器充电 ②将开关S掷向2端,测得电流随时间变化的i-t曲线如图2中的实线a所示 第2次③用电阻R2替换R1,重复上述实验步骤①②,测得电流随时间变化的i-t曲线如图3中的某条虚线所示 说明:两次实验中电源输出的直流电压恒定且相同 请完成下列问题: (1)第1次实验中,电阻R1两端的最大电压U= V。利用计算机软件测得i-t曲线和两坐标轴所围的面积为90 mA·s,已知电容器放电时其内阻可以忽略不计,则电容器的电容C= F(结果均保留2位有效数字)。 (2)第2次实验中,电流随时间变化的i-t曲线应该是图3中的虚线(选填“b”“c”或“d”),判断依据 是。 思维拓展 5.(原创)如图是用高电阻放电法测电容的实验电路图。其原理是测出电容器在充电电压为U时所带的电荷量Q,从而求出其电容C。该实验的操作步骤如下: ①按电路图接好实验电路; ②接通开关S,调节电阻箱R的阻值,使微安表的指针接近满刻度。记下这时的电压表读数U0=6.2 V和微安表读数I0=490 μA; ③断开开关S并同时开始计时,每隔5 s或10 s读一次微安表的读数i,将读数记录在预先设计的表格中; ④根据表格中的12组数据,以t为横坐标,i为纵坐标,在坐标纸上描点(图中用“×”表示)。

35kV开关设备的异常放电现象分析与解决措施

35kV开关设备的异常放电现象分析与解决措施 [摘要]文章提出了55kV空气绝缘开关设备在运行中常见的几种异常放电现象问题,对其产生的原因进行了分析,并提出了相应的解决措施。[关键词]35kV空气绝缘开关设备异常放电现象解决措施引言上海捷星电器制造有限公司是一家专业生产高低压开关设备的企业。对以往生产的35kV空气绝缘开关设备,在运行中出现的异常放电现象,一直困扰着公司的设计和质检人员。由于在35kV 开关设备中的异常放电现象往往是在设备运行一、二年以后才逐渐发生,而在出厂检查的工频耐压试验中往往发现不了,因此,不能’给公司以足够的重视,也使得此问题长期以来未得到很好的解决。后来作者对此问题通过咨询专家和公司内共同分析和验证,最后找出了原因,并找到了相应的解决措施。下面针对几例异常放电现象问题,作一些问题汇总、分析原因和解决措施。1、几例异常放电问题 1.1 35kV高压设备在设计和制造时空气绝缘距离基本上按照规范要求,为什么在工频耐压当中还是会出现放电现象 1.1.1原因分析一是铜排加工粗糙有尖角和毛刺(见图1),导致悬浮电位的产生。工频耐压时,悬浮电压提高,在高电场作用下就产生放电。如把导体放到电场中,由于静电感应的结果,在导体中会出现感应电荷,电荷在导体表面的

分布情况,决定于导体表面的形状。导体表面弯曲(凸出面)愈大的地方,所聚集的电荷就愈多,比较平坦的地方,电荷聚集的就少。在导体尖端的地方(母排和元器件的毛刺),由于电荷密集,电场很强,使空气分子发生电离而形成大量的自由电子和离子,在一定的条件下即可导致空气击穿,而发生“尖端放电”现象。下面是铜排加工存在毛刺,在触头盒内放电现象(见图2)。二是穿墙套管的安装孔和绝缘隔板上使用的金属螺栓布置不当等制造工艺上的缺陷,也会引起“尖端放电”现象。如穿墙套管的安装孔采用数控冲床加工,即用圆柱形冲头根据安装孔的尺寸,在钢板上依次冲一周而成(击冲),两个相邻冲痕间就会出现尖角及毛刺,冲头越大,两冲痕的间距越大,则尖角也越大,此尖角和毛刺与该部位的起始放电电压有很大关系。若在运行电压下存在放电,就会对有机绝缘造成损伤,最终导致击穿,这也是为什么开关设备穿墙套管在法兰根部容易发生绝缘故障的原因。因此,认真处理好穿墙套管的安装孔的加工工艺是很重要的。 1.1.2解决措施制造过程中必须全面修整导体和柜体内壁上尖角、毛刺,调整螺栓位置。同时,质检人员必须严格把关,尽可能使电场均匀分布。 1.235kV 主母排和柜间穿墙套管相交处,为什么出现轻微火花放电1.2.1原因分析主母排和套管内侧处存在放电,原因是主母排和套管间存在空气间隙(见图3),形成了很高的电位差

尖端放电现象以及尖端尺寸对放电的影响

尖端放电现象以及尖端尺寸对放电的影响 要求:通过查阅资料,解释尖端放电现象。建立不同尖端放电模型,研究电场分布及能量分布图,进行比较,得出结论。 例如:建立如下模型仿真其放电情况 小组成员:XXX XXX XXX

尖端放电现象以及尖端尺寸对放电的影响 原理解释 处于静电平衡状态的导体,导体内部没有电荷,电荷只分布在导体的外表面(这是因为,假设导体内部有电荷,导体内部的场强就不可能为零,自由电荷就会发生定向移动,导体也就没有处于静电平衡状态);在导体表面,越尖锐的位置,电荷的密度(单位面积的电荷量)越大,凹陷的位置几乎没有电荷(关于这一点,不妨设想一个极端情况的例子:一枝缝衣针,带电后由于同种电荷相互排斥,电荷自然要被“挤”到针的两端)。 导体尖端的电荷密度很大,附近的场强很强,空气中残留的带电粒子在强电场的作用下发生剧烈的运动,把空气中的气体分子撞“散”,也就是使分子中的正负电荷分离。这个现象叫做空气的电离(ionization)。中性的分子电离后变成带负电的自由电子和失去电子而带正电的离子。这些带点粒子在强电场的作用下加速,撞击空气中的分子,使它们进一步电离,产生更多的带电粒子。那些所带电荷与导体尖端的电荷符号相反的粒子,由于被吸引而奔向尖端,与尖端上的电荷中和,这相当于导体从尖端失去电荷。这个现象叫做尖端放电。 避雷针是利用尖端放电避免雷击的一种设施。它是一个或几个尖锐的金属棒,保持与大地的良好接触。当带电的雷雨云接近建筑物时,由于静电感应,金属棒出现与于云层相反的电荷。通过尖端放电,这些电荷不断向大气释放,中和空气中的电荷,达到避免雷击的目的。 尖端放电会导致高压设备上电能的损失,所以高压设备中导体的表面应该尽量光滑。夜间高压线周围有时会出现一层绿色光晕,俗称电晕,这是一种微弱的尖端放电。 电场矢量分布图

大学物理尖端放电演示实验

实验名称:尖端放电 演示内容:演示尖端放电原理的应用:避雷针。 仪器装置:高压电源、模拟避雷针装置。 【实验原理】 当避雷针演示仪接通静电高压电源后,绝缘支架上的两个金属板带电了。在极板间电压超过1万伏时,由于导体尖端处电荷密度大于金属球处,所以金属尖端附近形成了强电场,在强电场的作用下,空气分子被电离,致使极板和金属尖端之间处于连续的电晕放电状态,即尖端放电现象。而金属球与极板间的电场不能达到火花放电的数值,故金属球不放电。在实际应用中,尖端导体与大地相连接,云层中的电荷通过导体与大地中和,因而避免了人身和物体遭到雷电等静电的伤害。如高层建筑物顶端都安有高于屋顶物体的金属避雷针。 【实验操作与现象】 1.将静电高压电源正、负极分别接在避雷针演示仪的上下金属板上,把带支架的金属球放在金属板两极之间。接通电压,金属球与上极板间形成火花放电,可听到劈啪声音,并看到火花。若看不到火花,可将电源电压逐渐加大。演示完毕后,关闭电源。 2.用带绝缘柄的电工钳将带支架的顶端呈圆锥状(尖端)的金属物体也放在金属板两极之间,此时金属球和尖端的高度一致。接通静电高压电源,金属球火花放电现象停止了,但可听到丝丝的电晕放电声,看到尖端与上极板之间形成连续的一条放电火花细线。若看不到放电火花细线,将电源电压提高。演示完毕后,关闭电源。 【注意事项】 1.由于电源电压较高,关闭电源后,不能完全充分放电,故每一步演示后都应取下电源任一极与另一极接头相碰触人工进行放电,以确保仪器设备和操作者的安全。 2.晴天演示电源电压应降低些,阴天演示电源电压应提高些。 3.静电高压电源是用一号电池供电,改变电池伏数(即改变电池电压输出电

高电压复习题

一、填空题 1、气体中带电粒子消失的方式有:受电场力的作用流入电极、和三 种方式。 2、带电质点的电离方式有、、和。 3、影响气体间隙击穿电压的主要因素有、和。 4、电介质极化的基本形式有、、和等四种。 5、大型电气绝缘高电压试验通常包括,和。 6、分布参数导线波过程中,导线上的电压为和的叠加。 7、变压器绕组中发生波过程,当末端接地时,最高电位出现在,末端不接地时,最高电位出现在。 8、气体中带电粒子消失的方式有:受电场力的作用流入电极、和三种方式。 9、影响气体间隙击穿电压的主要因素有、和。 10、衡量输电线路防雷性能的主要指标是和___________。 11、无损极化包括和___________极化。 12、固体介质的击穿形式主要有、和三种形式 13、分布参数导线波过程中,导线上的电压为和的叠加。 14、有避雷线的线路遭受直击雷一般三种情况:雷电绕过避雷线击于导线、和 。 15、变压器绕组遭受过电压作用的瞬间,绕组各点的电位按绕组的_____分布,最大电位梯度出现在_____。 16、输电线路单位长度的电感和电容分别为L0和C0,则波速大小为____________,波阻抗为。 17、避雷线对导线的屏蔽作用使导线上的感应电压___________。 18、国家标准中的标准雷电冲击电压波形参数为______ 19、进线段保护是指在临近变电所________km的一段线路上加强防雷保护措施。 20、变电所中限制雷电侵入波过电压的主要措施是安装___________。 21、根据巴申定律,在某一PS值下,击穿电压存在________值。 22、当导线受到雷击出现冲击电晕以后,它与其它导线间的耦合系数将________。 23、用西林电桥测量tanδ时,常用的接线方式中__________接线适用于被试品接地的情况。 24、普通阀式避雷器有火花间隙和__________两部分组成。 25、变压器入口电容是绕组对地电容C与匝间电容K的___________。 26、解释均匀电场中低气压、短间隙的放电现象用__________理论。 27、在极不均匀电场中,放电是从曲率半径较__________的电极开始的。 28、保护旋转电机用避雷器应选用的型号是__________型。 29、冲击电压波的波形由_____时间和波尾时间决定。 30、雷击塔顶时,导线上的耦合电压与雷电流极性相______。 二、选择题 1、解释电压较高、距离较长的间隙中的气体放电过程可用( )。 A.流注理论 B.汤逊理论 C.巴申定律 D.小桥理论 2、沿面放电电压与同样距离下的纯空气间隙的放电电压相比总是( ) A.高 B.低 C.相等 D.不确定

几个有趣的尖端放电实验

几个有趣的尖端放电实验 我们知道在静电学中, 导体带电时,导体表面突出和尖锐的地方,电荷分布比较密集,使其附近形成很强的电场。导体尖端附近空气中残留的正负离子在强电场的作用下发生剧烈的运动,并与空气中的气体分子碰撞,将空气分子电离成许多新的正负离子,那些与尖端带同种电荷的离子,受到排斥,远离尖端,形成“电风”。与尖端带异种电荷的离子受到吸引,奔向尖端,与尖端上的电荷中和,这相当于导体从尖端失去电荷,这就是尖端放电。利用尖端放电现象,我们可以完成几个有趣的实验。 (1)可以这样使水带电 实验装置如图1所示,将缝衣针固定在有机玻璃棒上,玻璃棒用夹子固定在铁架台上,针下方放一只盛满清水的塑料盆,塑料盆放在绝缘板上针尖端距水面约5cm~10cm,用导 线将针与感应起电机的一极相连,再将一根导线一端与验电器相连,另一端裸露部分插入水中。转动起电机,由于针的尖端放电,使水带上同种电荷,验电器箔片逐渐张开。 (2)模拟静电除尘 实验装置如图2所示,取圆形铝板一块固定在绝缘支座上(绝缘支座可用玻璃棒固定在底座上制成,在中学物理实验室中易找到,本文后几个实验中均用到绝缘支座),将缝衣针装上塑料棒后固定在铁架台上,调节铝板与针尖端间距6cm~8cm,用导线将铝板和缝衣针分

别与感应起电机相连,将点燃的蚊香放在铝板和针之间。让起电机起电,使铝板和缝衣针带 电,蚊香烟被铝板吸附,若停止起电,烟又袅袅上升。 (3)旋转的风车 取两个易拉罐,剪一部分铝皮,将铝皮碾压平整,剪出一直径约8cm的圆,再剪成图3a样式的风车,尽量使叶片对称,在其中心处打一小孔,嵌上子母扣作支撑轴承,取缝衣针固定于绝缘支座上,针尖端顶在子母扣的凹坑处,实验装置如图3b所示。实验时,用导线将针与起电机一极相连,转动起电机,起电后,由于叶轮的尖端放电,在反冲作用下,风车 旋转起来。 (4)电风驱动的纸杯 取一个一次性的薄纸杯,在杯底中心处打一小孔,嵌上子母扣作支撑轴承。取自行车辐条一根,一端挫尖,另一端固定于小木块上,尖端顶在子母扣的凹坑里,再取两片大些的易拉罐铝皮,碾压平整,分别剪成长约10cm,宽约4cm的长方形,而后剪成排针状,将两

气体放电现象及其应用

气体放电的研究报告 一、气体放电基本理论 仁气体放电的定义 气体放电是人们在自然界与日常生活中常常碰到的现象,如闪电、日光灯等,它一般是指在电场作用下或其他激活方法使气体电离,形成能导电的电离气体。气体放电是产生低温等离子体的主要途径。所谓的低温等离子体是区别于核聚变中高温等离子体而言的。低温等离子体物理与技术在经历了一个由20世纪60年代初的空间等离子体研究向80年代和90 年代以材料及微电子为导向的研究领域的重大转变之后,现在已经成为具有全球影响的重要课题,其发展对于高科技经济的发展及传统工业的改造有着巨大的影响。 2、气体放电的基本理论 气体放电的经典理论主要有汤森放电理论和流注放电理论等° 1903年,为了解释低气压下的气体放电现象,汤森(J?S. Townsend)提出了气体击穿理论,引入了三个系数来描述气体放电的机理,并给出了气体击穿判損。汤森放电理论可以解释气体放电中的许多现象,如击穿电压与放电间距及气压之间的关系,二次电子发射的作用等。但是汤森放电解释某些现象也有困难,如击穿形成的时延现象等:另外汤森放电理论没有考虑放电过程中空间电荷作用,而这一点对于放电的发展是非常重要的。电子雪崩中的正离子随着放电的发展可以达到很鬲的密度,从而可以明显的引是电场的畸变,进而引起局部电子能量的加强.加剧电离。针对汤森放电理论的不足「940年左右,H.Raether及Loeb、Meek 等人提出了流注(Streamer) 击穿理论,从而弥补了汤森放电理论中的一些缺陷,能有效地解释离气压下,如大气压下的气体放电现象,使得放电理论得到进一步的完弄。近年来,随着新的气体放电工业应用的不断涌现及实验观测技术的进一步发展,将放电理论与非线性动力学相结合,利用非线性动力学的方法来研究气体放电中的各种现象成为乞体放电研究中的重要内容。 3、气体放电的主要类型 通常,低气压.低温等离子体是在广100Pa的气体中进行直流、射频或微波放电产生的,而大气压下产生低温等离子体的主要方式有电晕放电.电弧放电和介质阻挡放电(DBD) o 比较而言,电晕放电比较微弱且产生的活性粒子效率较低而难以应用于工业生产。电弧放电则与此相反,由于产生的能量密度过高,导致电子与离子的能量较大足以损伤比较脆弱的工件。与此不同的是,介质阻挡放电能比较容易的产生非平衡等离子体,且等离子体的温度.密度适中。 应该说,从目前来看介质阻挡放电是主要的一种大气压放电的实现形式。介质阻挡放电是有绝缘介质插入放电空间的一种放电系统。由于介质的存在,可以限制电流的增长,使放电不至于形成火花放电或电弧放电。依赖于放电气体的种类、介质的属性及外加电压的幅值与频率,介质阻挡放电可以呈现三种不同的放电模式,即丝状放电、均匀放电与斑图放电。介质阻挡放电在大气压下通常表现为丝状放电,其放电能量大部分集中于放电细丝中,这限制了其工业应用前景。为此研究人员采用多种方法来提高其均匀性。近年来基于介质阻挡放电原理来产生低温等离子体,尤其是大气压下均匀辉光放电(APGD)的研究受到国内外关注。通常激励介质阻挡放电的电源是工频或高频交流电源,随着脉冲电源技术的发展,近年来脉冲鬲压也被用于激励介质阻挡放电,并被证明能较好地改昙均匀性并提鬲放电效率。

锂电池自放电现象

自放电的分类: 从自放电对电池的影响,可以将自放电分为两种:损失容量能够可逆得到补偿的自放电;损失容量无法可逆补偿的自放电。按照这两种分类,我们可以大约轮廓性的给出一些自放电的原因。 自放电的原因: 1.造成可逆容量损失的原因:可逆容量损失的原因是发生了可逆放电反应,原理跟电池正常放电反应一致。不同点是正常放电电子路径为外电路、反应速度很快;自放电的电子路径是电解液、反应速度很慢。 2.造成不可逆容量损失的原因:当电池内部发生了不可逆反应时,所造成的容量损失即为不可逆容量损失的。所发生不可逆反应的类型主要包括: A:正极与电解液发生的不可逆反应(相对主要发生于锰酸锂、镍酸锂这两种易发生结构缺陷的材料,例如锰酸锂正极与电解液中锂离子的反应: LiyMn2O4+xLi++xe-→Liy+xMn2O4等); B:负极材料与电解液发生的不可逆反应(化成时形成的SEI膜就是为了保护负极不受电解液的腐蚀,负极与电解液可能发生的反应为: LiyC6→Liy-xC6+xLi++x等); C:电解液自身所带杂质引起的不可逆反应 (例如溶剂中CO2可能发生的反应:2CO2+2e-+2Li+→Li2CO3+CO;

溶剂中O2发生的反应:1/2O2+2e-+2Li+→Li2O)。 类似的反应不可逆的消耗了电解液中的锂离子,进而损失了电池容量。 D:制成时杂质造成的微短路所引起的不可逆反应。这一现象是造成个别电池自放电偏大的最 主要原因。空气中的粉尘或者制成时极片、隔膜沾上的金属粉末都会造成内部微短路。生产 时绝对的无尘是做不到的,当粉尘不足以达到刺穿隔膜进而使正负极短路接触时,其对电池 的影响并不大;但是当粉尘严重到刺穿隔膜这个“度”时,对电池的影响就会非常明显。由于 有是否刺穿隔膜这个“度”的存在,因此在测试大批电池自放电率时,经常会发现大部分电池 的自放电率都集中在一个不大的范围内,而只有小部分电池的自放电明显偏高且分布离散, 这些应该就是隔膜被刺穿的电池。 最后需要说明的是,锂离子电池内部发生的副反应是非常复杂的,文武虽然查了些资料,但 由于水平有限精力有限,暂时只能分析道这个程度,大家凑合着看吧。 自放电的测试方法: 1.测量电池搁置一段时间后的容量损失:自放电研究的本初目的就是研究电池搁置后的容量 损失。但是,以下原因造成测试容量损失在实施上困难重重:A.充电过程中的不可逆程度过大,即使充电后马上进行放电,放电容量/充电容量值都很难保证在100%±0.5%以内。如此 大的误差,就要求测试之间的搁置时间必须非常长。而这很显然不符合日常生产的需求。B. 测试容量时需要大量电力和人力物力,过程复杂且增加了成本。基于以上两个考虑,一般不 会将“测量搁置后放电容量对比之前充电容量的损失”来作为电池的自放电标准。 2.测量一段时间内的K值:衡量自放电程度的一个非常重要的指标K值=△OCV/△t。K值常 见单位为mV/d,当然这跟厂子自己的标准(或者厂子老大的个人喜好)、电池本身的性能、测量条件等有关。测量两次电压计算K值的方法更为简便且误差更小,因此K值是衡量电池自放电的常规性方法。以下文字可能会将K值与自放电混用,请大家注意。 自放电及K值的影响因素: 1.正负极材料、电解液种类、隔膜厚度种类:由于自放电很大程度上是发生于材料之间,因 此材料的性能对自放电有很大的影响。但是材料的各个具体参数(比如正负极的粒径、电解 液的电导率、隔膜的孔隙率等)对自放电的影响到底有多大、有影响的原因是什么?这一问 题不是研究的重点。一是问题本身太过复杂,二是对量产、搞研究皆没有太大意义。不过好

4.1自然界的_电现象教案.pdf

八(下)教案4章1节自然界的电现象 教学目标 (1)知道摩擦起电、接触起电是常见的静电现象。 (2)知道在摩擦起电和接触起电过程中,电荷只是在物体间发生转移,电荷的总量是守恒的。 (3)知道火花放电和尖端放电是发生在大气中的电中和现象。 教学重点难点 重点摩擦起电和接触起电,用验电器对电荷进行检测。 尖端放电和火花放电现象,用尖端放电和火花放电解释一些放电现象。 难点摩擦起电和接触起电的机理。 尖端放电和火花放电现象。 (二)教具 塑料捆扎带一段,手帕一块,玻璃棒一根,橡胶棒一根,毛皮一块,水槽,橡皮管, 塑料丝,碎纸屑若干,韦氏起电器,尖端放电装置。 教学过程 引入:刘德华闪电演唱会(激发学生的兴趣) 大家可能很想知道这其中的秘密,这其实就是静电现象,静电现象存在于生活、生产 中,是自然界中常见的现象。引入课题:第3章第1节自然界的电现象(板书) 学生动手:完成活动 1 演示1:完成活动2(学生上台操作) (结论) 物体具有吸引轻小物体的性质是因为物体带了电。 一、摩擦起电 1、用摩擦的方法使物体带电的现象叫摩擦起电。(板书) 演示2:完成活动 3 结论:在科学上规定:用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。 2.自然界中存在着两种电荷:正电荷和负电荷。同种电荷互相排斥,异种电荷互相吸引。 解释:学生活动1的实验现象 想一想:为什么两种不同物体相互摩擦后会使它们带电呢? (flash课件电学--摩擦起电实质:演示) 解析要解释这个现象,需要从原子结构谈起。我们知道任何物质的原子都是由带正电 的原子核和带负电的电子构成,通常原子核所带的正电荷数等于核外电子所带的负电荷数, 所以原子对外不带电。但不同的原子的原子核对电子的束缚能力并不相同,当两种不同物体相互摩擦时,对核外电子束缚能力较弱的物体容易失去核外的一部分电子而带正电,对核外电子束缚能力较大的物体俘获这些电子对外而带负电。因此两种不同物体相互摩擦后会使它 们带上异种电荷。(师生共同分析:培养抽象思维能力) 二、电荷守恒 1.两种不同的物体在摩擦过程中,对电子束缚能力较弱的物质的原子失去—部分电子 带正电。对电子束缚能力较强的物质的原子得到这部分电子带负电。 2.摩擦起电的实质是电荷的分离和转移。 例2 用毛皮摩擦橡胶棒,橡胶棒为什么带负电?你知道毛皮带什么电?

电晕放电及其危害

电晕放电及其危害 1 气体放电的基本形式 在电力系统中,气体(主要是空气)是一种运用得相当广泛的绝缘材料,如架空线、母线、变压器的外绝缘、隔离开关的断口处等。在通常情况下,由于宇宙射线及地层放射性物质的作用,气体中有少量带电质点,它们在强电场作用下,沿电场方向移动时,在间隙中会有电导电流。因此,气体通常不是理想的绝缘材料,但当电场较弱时,气体电导极小,可视为绝缘体。 当气体间隙上电压提高至一定值后,可在间隙中突然形成一传导性很高的通道,此时称气体间隙击穿(也可叫气体放电)。气体间隙击穿后,可依电源功率、电极形式、气体压力等具有不同的放电形式。在低气压、电源功率较小时,放电表现为充满整个间隙的辉光放电形式;在高气压下,常表现为火花或电弧放电形式;在极不均匀电场中,会在局部电场较强处先开始放电,称为电晕放电。除使用纯空气间隙作绝缘外,电力系统中还有许多处在空气中的固体绝缘,如输电线路的绝缘子,电机定子绕组槽外部分的绝缘等,所以还会遇到气体沿固体表面放电的情况(也称沿面闪络)。 2 电晕放电现象 当在电极两端加上较高但未达击穿的电压时,如果电极表面附近的电场(局部电场)很强,则电极附近的气体介质会被局部击穿而产生电晕放电现象。这里气体的气压约为Pa。当电极的曲率半径很小时,由于其附近的场强特别高,很容易发生电晕放电。在通常的情况下,都是研究在曲率半径很小电极处的电晕放电。电晕放电现象可在很多场合下观察到,例如,在高压传输线和同轴圆筒所包围导线的表面,或在针形不规则导体的附近以及在带有高电压的导体表面等处。 根据空间电荷场的相对重要性和阴极提供电子过程的性质区分了汤生放电、辉光放电和弧光放电。在汤生放电中,空间电荷场对外加电场的影响很小,而在辉光和弧光放电中,它却起着重要的作用。在汤生和辉光放电中,次级电子的提供过程,如光子、正离子和亚稳态原子过程所产生的作用不很明显,而弧光则是借助于十分有效的次级过程如场致发射和热离子发射而工作。冈此,自持汤生或辉光放电的燃点电压或阴极位降值都要超过气体电离电位一个数量级的大小,而自持弧光放电的阴极位降十分接近于气体的电离电位。电晕放电电压降比辉光放电压降大(千伏数量级),但放电电流更小(微安数量级)。且往往发生在电极间电场分布不均勾的条件下。若电场分布均匀,放电电流又较大,则发生辉光放电现象;在电晕放电状况下如提高外加电压,而电源的功率又不够大,此时放电就转变成火花放电;若电源的功率足够大时,则电晕放电可转变为弧光放电。 在电晕放电中,一般说来,电极的几何构形起着重要作用。电场的不均匀性把主要的电离过程局限于局部电场很高的电极附近,特别是发在曲率半径很小的电极附近或大或小的薄层中,气体的发光也只发生在这个区域里,这个区域称为电离区域,或称之为电晕层或起晕层。在这个区域之外,由于电场弱,不发生或很少发生电离,电流的传导依靠正离子和负离子或电子的迁移运动,因此电离区域之外的区域被称为迁移区域或外围区域。若两极中仅有一个电极起晕,则放电的迁移区域中基本上只有一种符号的带电粒子,在此情况下,电流是单极性的。 形成电晕所需电场不均匀的程度与气体的种类有很大关系。在负电性的气体中(如气压为Pa的空气),当电极为球——平面几何构形,电极间隙为球半径时可建立电晕放电;与此相反,若充以非负电性气体,则不会产

气体放电作业

气体放电理论分析就引用 1、引言: 气体中流通电流的各种形式统称气体放电,处于正常状态并隔绝各种外电离因素的气体是完全不导电的,但空气中总会有来自空间的各种辐射,总会有少量带电质点,一般情况下每立方厘米空气中有约500-1000对离子。气体放电等离子体作为物质的第四态,其物性及规律与固态、液态、气态的各不相同。气态放电等离子体是由电子、各种离子、原子组成的,远比气体、液体、固体复杂,其中发生着大量各不相同的基本过程。气体放电时等离子体物理的一个重要组成部分,气体放电现象时通过气体以后由电离了的气体表现出来的。研究气体放电的目的是要了解这种电离了的气体在各种条件下的宏观现象及其性质,同时研究其中所发生的的微观过程,并进一步把这两者联系起来,由表及里地掌握气体放电的机理。由此可见气体放电现象的主要任务是研究各种气体放电现象的物理过程及其内在规律。在自然界和人们的日常生活中经常会碰到气体放电现象,犹如大气的电离层、太阳风、日冕和闪电等都是自然界的气体放电现象。现在对气体放电的类型进行分类阐述并对其应用前景进行研究探讨。 2、气体放电的分类 在不同的物理条件下,由于占主导地位的基本物理过程不同,会产生各种不同形式的气体放电现象。按维持放电是否必须有外界电离源把放电分为非自持放电和自持放电;按放电参量是否随时间变化分为稳态放电和非稳态放电;可根据阴极的工作方式分为冷阴极放电和热阴极放电;可按工作气压的高低分为低气压放电、高气压放电和超高压放电;根据以哪一种基本过程占优势以及电子离子在放电过程中运动的特点为依据可以分为:

辉光放电:辉光放电充满整过电极空间,电流密度较小,一般为1mA/cm2 -5mA/cm2,整个空隙仍呈上升的伏安特性,处于绝缘状态。 电晕放电:高场强度电极附近出现发光的薄层,电流值也不大,整个空隙仍处于绝缘状态。 刷状放电:由电晕电极伸出的明亮而细的断续放电通道,电流增大,但此时间隙仍未被击穿。 火花放电:贯通两电极的明亮而细的断续的放电通道,间隙由一次次火花放电间歇地被击穿。 气体放电过程描述框图:

几个有趣的尖端放电实验

几个有趣的尖端放电实验 2007年10月23日 06:50 几个有趣的尖端放电实验 我们知道在静电学中,导体带电时,导体表面突出和尖锐的地方,电荷分布比较密集,使其附近形成很强的电场。导体尖端附近空气中残留的正负离子在强电场的作用下发生剧烈的运动,并与空气中的气体分子碰撞,将空气分子电离成许多新的正负离子,那些与尖端带同种电荷的离子,受到排斥,远离尖端,形成“电风”。与尖端带异种电荷的离子受到吸引,奔向尖端,与尖端上的电荷中和,这相当于导体从尖端失去电荷,这就是尖端放电。利用尖端放电现象,我们可以完成几个有趣的实验。 (1)可以这样使水带电 实验装置如图1所示,将缝衣针固定在有机玻璃棒上,玻璃棒用夹子固定在铁架台上,针下方放一只盛满清水的塑料盆,塑料盆放在绝缘板上针尖端距水面约 5cm~10cm,用导线将针与感应起电机的一极相连,再将一根导线一端与验电器相连,另一端裸露部分插入水中。转动起电机,由于针的尖端放电,使水带上同种电荷,验电器箔片逐渐张开。 (2)模拟静电除尘 实验装置如图2所示,取圆形铝板一块固定在绝缘支座上(绝缘支座可用玻璃棒固定在底座上制成,在中学物理实验室中易找到,本文后几个实验中均用到绝缘支座),将缝衣针装上塑料棒后固定在铁架台上,调节铝板与针尖端间距6cm~8cm,用导线将

铝板和缝衣针分别与感应起电机相连,将点燃的蚊香放在铝板和针之间。让起电机起电,使铝板和缝衣针带电,蚊香烟被铝板吸附,若停止起电,烟又袅袅上升。 (3)旋转的风车 取两个易拉罐,剪一部分铝皮,将铝皮碾压平整,剪出一直径约8cm的圆,再剪成图3a样式的风车,尽量使叶片对称,在其中心处打一小孔,嵌上子母扣作支撑轴承,取缝衣针固定于绝缘支座上,针尖端顶在子母扣的凹坑处,实验装置如图3b所示。实验时,用导线将针与起电机一极相连,转动起电机,起电后,由于叶轮的尖端放电,在反冲作用下,风车旋转起来。 (4)电风驱动的纸杯 取一个一次性的薄纸杯,在杯底中心处打一小孔,嵌上子母扣作支撑轴承。取自行车辐条一根,一端挫尖,另一端固定于小木块上,尖端顶在子母扣的凹坑里,再取两片大些的易拉罐铝皮,碾压平整,分别剪成长约10cm,宽约4cm的长方形,而后剪成排针状,将两个排针用塑料夹固定在绝缘支座上,整个实验装置如图4所示。排针尖距纸杯约1cm,两个排针的尖端指向纸杯的切线方向,实验时,用两根导线分别将

相关文档
最新文档