王思民-2014.7-启动子与转录因子(基因表达调控蛋白)

王思民-2014.7-启动子与转录因子(基因表达调控蛋白)
王思民-2014.7-启动子与转录因子(基因表达调控蛋白)

启动子与转录因子/基因表达调控蛋白生命活动丰富多彩、千变万化。但是万变不离其宗,不管如何变化都围绕着中心法则展开。核酸作为遗传物质指导蛋白质的表达,表达产生的一些特殊蛋白(如转录因子、调控蛋白)反过来又对DNA 指导合成蛋白质的过程进行调控。对基因表达调控的研究一直是生物学研究热点,涉及到生命活动的各个过程,也是各类信号通路研究无法绕过的部分。

当面对某个基因表达调控研究时,第一个想到的研究对象是什么?没错,就是基因的启动子。通过启动子区域对基因表达进行调控是最直接有效的手段,所以也是研究基因表达调控的重点。现在的基因数据库信息丰富,拿到基因及其启动子序列非常简单。那么问题又来了,拿到启动子序列以后,下一步怎么找相关的调控蛋白/转录因子呢?生物信息学方法预测?你会得到很多可能的目标调控蛋白/转录因子,还要做实验一个一个验证。凝胶迁移(EMSA),染色质免疫共沉淀(ChIP)?只能针对已知能与启动子结合的调控蛋白/转录因子,而且还需要相应探针/抗体,对于大量筛选无能为力。

美国Signosis的转录因子(结合启动子)微孔板芯片检测试剂可以方便、高效地解决这一问题。该方法专门用于筛查与特定DNA序列(通常是含有转录因子结合位点的启动子序列)相互作用的调控蛋白/转录因子,获得目的基因的启动子序列后,使用该方法可以筛查48/96种常见的调控蛋白/转录因子与启动子序列结合情况。该方法利用转录因子与特定DNA序列结合的特点,针对每一种转录因子设计

相应的生物素标记探针;当混合探针与核蛋白样本共同孵育时,探针与相应的转录因子结合形成转录因子/探针复合物;除去游离的探针,收集转录因子/探针复合物;分离复合物中的DNA探针,探针的量与

转录因子含量呈正相关。在探

针混合物中同时加入启动子片

段,如果DNA序列中含有转录

因子结合位点,就会与生物素

标记的探针竞争性结合转录因

子,转录因子与相应探针形成

的复合物减少。通过比较有无

目的基因启动子片段中转录因

子探针检测差异,可以分析出

与无目的基因启动子片段相互

作用的转录因子种类。

这种方法可以简单、快速地在48/96种常见转录因子筛选出与目的启动子片段相互作用的调控蛋白/转录因子,从而进一步探索目的基因的表达调控。待筛选的调控蛋白/转录因子都是在生命活动中起重要通的调控蛋白/转录因子,大大方便了后续的基因表调控、信号通路及其它方面的研究。

转录调节位点和转录因子数据库介绍_张光亚

10生物学通报2005年第40卷第11期 2003年即Watson和Crick发表DNA双螺旋结构50周年,宣布了人类基因组计划的完成,与此同时,其他许多生物的基因组计划已完成或在进行中,在此过程中产生的大量数据库对科学研究的深远影响是以前任何人未曾预料到的。然而遗憾的是,许多生物学家、化学家和物理学家对这些数据库的使用甚至去何处寻找这些数据库都只有一个比较模糊的概念。 基因转录是遗传信息传递过程中第一个具有高度选择性的环节,近20年来对基因转录调节的研究一直是基因分子生物学的研究中心和热点,因此亦产生了大量很有价值的数据库资源,对这些数据库的了解将为进一步研究带来极大便利,本文对其中一些数据库进行简要介绍。 1DBTSS DBTSS(DataBaseofTranscriptionalStartSites)由东京大学人类基因组中心维护,网址:http://dbtss.hgc.jp。最初该数据库收集用实验方法得到的人类基因的TSS(TranscriptionalStartSites,转录起始位点)数据。对转录起始位点(TSS)的确切了解具有非常重要的意义,可更准确的预测翻译起始位点;可用于搜索决定TSS的核苷酸序列,而且可更精确地分析上游调控区域(启动子)。自2002年发布第一版以来已作了多次更新。目前包含的克隆数为190964个,含盖了11234个基因,在SNP数据库中显示了人类基因中的SNP位点,而且现在含包含了鼠等其他生物的相关数据。DBTSS最新的版本为3.0。 在该最新的版本中,还新增了人和鼠可能同源的启动子,目前可以显示3324个基因的启动子,通过本地的比对软件LALIGN可以图的形式显示相似的序列元件。另一个新的功能是可进行与已知转录因子结合位点相似的部位的定位,这些存贮在TRANSFAC(http://transfac.gbf.de/TRANSFAC/index.html)数据库中,免费用于研究,但TRANSFAC专业版是商业版本。 DBTSS对匿名登录的用户是免费的,该网站要求用户在使用前注册,用户注册后即可使用。主页分为2个区域,一个介绍网站的部分信息和用户注册,另一区域为用户操作区,该区约分为10个部分,可分别进行物种和数据库的选择、BLAST、SNP以及TF(转录因子)结合部位搜索等部分。后者的使用可以见网页中的Help部分,里面有比较详细的介绍。DBTSS还提供了丰富的与其他相关网站的链接,如上文提到的TRANSFAC数据库、真核生物启动子数据库(Eukaryot-icPromoterDatabase,http://www.epd.isb-sib.ch/)以及人类和其他生物cDNA全长数据库等。 2JASPAR JASPAR是有注释的、高质量的多细胞真核生物转录因子结合部位的开放数据库。网址http://jaspar.cgb.ki.se。所有序列均来源于通过实验方法证实能结合转录因子,而且通过严格的筛选,通过筛选后的序列再通过模体(motif)识别软件ANN-Spec进行联配。ANN-Spec利用人工神经网络和吉布斯(Gibbs)取样算法寻找特征序列模式。联配后的序列再利用生物学知识进行注释。 目前该数据库收录了111个序列模式(profiles),目前仅限于多细胞真核生物。通过主页界面,用户可进行下列操作:1)浏览转录因子(TF)结合的序列模式;2)通过标识符(identifier)和注解(annotation)搜索序列模式;3)将用户提交的序列模式与数据库中的进行比较;4)利用选定的转录因子搜索特定的核苷酸序列,用户可到ConSite服务器(http://www.phylofoot.org/consite)进行更复杂的查询。JASPAR数据库所有内容可到主页下载。 与相似领域数据库相比,JASPAR具有很明显优势:1)它是一个非冗余可靠的转录因子结合部位序列模式;2)数据的获取不受限制;3)功能强大且有相关的软件工具使用。JASPAR与TRANSFAC(一流的TF数据库)有较明显的差异,后者收录的数据更广泛,但包含不少冗余信息且序列模式的质量参差不齐,是商业数据库,只有一部分是可以免费使用。用户在使用过程中会发现二者的差异,这主要是由于二者对数据的收集是相互独立的。另外该数据库还提供了相关的链接:如MatInspector检测转录因子结合部位,网址http://transfac.gbf.de/programs/matinspector/;TESS转录元件搜索系统,网址http://www.cbil.upenn.edu/tess/。 转录调节位点和转录因子数据库介绍! 张光亚!!方柏山 (华侨大学生物工程与技术系福建泉州362021) 摘要转录水平的调控是基因表达最重要的调控水平之一,对转录调节位点和转录因子的研究具有重要意义。介绍了DBTSS、JASPAR、PRODORIC和TRRD等相关数据库及其特征、内容和使用。 关键词转录调节位点转录因子数据库生物信息学 !基金项目:国务院侨办科研基金资助项目(05QZR06) !!通讯作者

ChIP-Seq技术在转录因子结合位点分析的应用

ChIP-Seq技术在转录因子结合位点分析的应用 摘要:染色质免疫沉淀(Chromatin immunoprecipitaion, ChIP)技术是用来研究细胞 内特定基因组区域特定位点与结合蛋白相互作用的技术。将ChIP与第二代高通量测序技术相结合的染色质免疫沉淀测序(chromatin immunoprecipitation followed by sequencing,ChIP-Seq)技术能在短时间内获得大量研究数据,高效地在全基因组范围内检测与组蛋白、转录因子等相互作用的DNA区段,在细胞的基因表达调控网络研究中发挥重要作用。本文 简要介绍了ChIP-Seq技术的基本原理、实验设计和后续数据分析,以及ChIP-Seq技术在 研究转录因子结合位点中的。 关键词:ChIP-Seq;转录因子; 引言 染色质是真核生物基因组DNA主要存在形式,为了阐明真核生物基因表达调控机制,对于蛋白质与DNA在染色质环境下的相互作用的研究是基本途径。转录因子是参与基因表达调控的一类重要的细胞核蛋白质,基因的转录调控是生物基因表达调控层次中最关键的一层,转录因子通过特异性结合调控区域的DNA序列来调控基因转录过程。转录因子由基础转录因子和调控性转录因子两类组成,其中基础转录因子在转录起始位点附近的启动子区,与RNA聚合酶相互作用实现基因的转录;而调控性转录因子一般与位置多样的增强子序列结合,再通过形成增强体在组织发育、细胞分化等基因表达水平调控中发挥极其重要的作用[1]。 ChIP-Seq是近年来新兴的将ChIP与新一代测序技术相结合,在全基因s组范围内分析转录因子结合位点(transcription factor binding sites,TFBS)、组蛋白修饰(histone modification)、核小体定位(nucleosome positioning)和DNA 甲基化(DNA methylation)的高通量方法[2-4]。其中ChIP是全基因组范围内识别DNA与蛋白质体内相互作用的标准方法[5],最初用于组蛋白修饰研究[6],后来用于转录因子[7]。同时,新一代测序技术的迅猛发展也将基因组学水平的研究带入了一个新的阶段,使得许多基于全基因组的研究成为可能。相对于传统的基于芯片的ChIP-chip (chromatin immunoprecipitation combined with DNA tiling arrays),ChIP-seq 提供了一种高分辨率、低噪音、高覆盖率的研究蛋白质-DNA 相互作用的手段[8],可以应用到任何基因组序列已知的物种,可以研究任何一种DNA 相关蛋白与其靶定DNA 之间的相互作用,并能确切得到每一个片段的序列信息.随着测序成本的降低,ChIP-seq 逐步成为研究基因调控和表观遗传机制的一种常用手段。此外,为了达到更好的检测效果和更为完整的信息,近年来,将ChIP-Seq和ChIP-chip两者融合的研究具有很好的应用前景[9,10]。 转录因子在器官发生过程中起至关重要的作用,在全基因组水平将转录因子定位于靶基因DNA是认识转录调控网络的有效方法之一,了解基因转录调控的关键是识别蛋白质与DNA的相互作用。ChIP-Seq技术能够揭示转录因子的结合位点和确定直接的靶基因序列,可在体内分析特定启动子的分子调控机制,因此被广泛应用于转录调控机制的研究。本文主要就这一技术在转录因子结合位点研究中的基本原理、实验设计和数据分析等技术层面、以及实际应用层面进行讨论。 1 ChIP-seq基本原理及实验设计 1.1 ChIP技术 蛋白质与DNA相互识别是基因转录调控的关键,也是启动基因转录的前提。ChIP是在全基因组范围内检测DNA与蛋白质体内相互作用的标准方法[11],该技术由Orlando等[12]于1997年创立,最初用于组蛋白修饰的研究,后来广泛应用到转录因子作用位点的研究中[13]。ChIP的基本原理为:活细胞采用甲醛交联后裂解,染色体分离成为一定大小的片段,然后用特异性抗体免疫沉淀目标蛋白与DNA交联的复合物,对特定靶蛋白与DNA片段进行

转录因子

转录因子 ? 1 简介 ? 2 方法 ? 3 转录因子 转录因子-简介 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 转录因子-方法 这篇文章的试验方法是,通过高密度的寡核苷酸芯片,反映出人21和22号染色体的几乎所有的非重复序列,通过这种芯片,检测三种转录因子,Sp1、 cMyc、和p53的结合位点。结果表明,每种转录因子都有大量的TFBS与之结合。然而,只有22%的转录因子结合位点分布在蛋白编码基因的5'端, 36%的TFBS分布在蛋白编码基因的中部或3'端,并且这36%的TFBS常常和基因组中的非蛋白编码RNA分布在一起。这暗示,在人的基因组中,不仅包含蛋白编码基因,也包含数量相当的非编码基因(noncoding genes),他们都受常见的转录因子所调控。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的

启动子

启动子 科技名词定义 中文名称:启动子 英文名称:promoter;P 定义1:DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域,在许多情况下,还包括促进这一过程的调节蛋白的结合位点。 应用学科:生物化学与分子生物学(一级学科);基因表达与调控(二级学科) 定义2:对遗传转录起发动作用的基因。 应用学科:水产学(一级学科);水产生物育种学(二级学科) 定义3:DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域。在许多情况下,还包括促进这一过程的调节蛋白的结合位点。 应用学科:细胞生物学(一级学科);细胞遗传(二级学科) 定义4:决定RNA聚合酶转录起始位点的DNA序列。 应用学科:遗传学(一级学科);分子遗传学(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 百科名片 RNA聚合酶特异性识别和结合的DNA序列。启动子是基因(gene)的一个组成部分,控制基因表达(转录)的起始时间和表达的程度。启动子(Promoters)就像“开关”,决定基因的活动。既然基因是成序列的核苷酸(nucleotides),那么启动子也应由核苷酸组成。启动子本身并不控制基因活动,而是通过与称为转录(transcription)因子的这种蛋白质(proteins)结合而控制基因活动的。转录因子就像一面“旗子”,指挥着酶(enzymes)(RNA 聚合酶polymerases) 的活动。这种酶指导着RNA复制。 目录 简介

1启动子区的基本结构转录单元 1转录起点 1启动子区 1-10位的TATA区和-35位的TTGACA区 展开 简介 启动子是基因(gene)的一个组成部分,控制基因表达(转录)的 起始时间和表达的程度。启动子(Promoters)就像“开关”,决定基因的活动。既然基因是成序列的核苷酸(nucleotides),那么启动子也应由DNA组成。启动子本身并不控制基因活动,而是通过与称为转录(transcription)因子的这种蛋白质(proteins)结合而控制基因活动的。转录因子就像一面“旗子”,指挥着酶(enzymes)(RNA聚合酶polymerases) 的活动。这种酶制造着基因的RNA 复制本。一般分为广谱表达型启动子、组织特异性启动子、肿瘤特异性启动子等多种形式。基因的启动子部分发生改变(突变),则导致基因表达的调节障碍。这种变化常见于恶性肿瘤。真核细胞含有3类不同的RNA聚合酶,根据其对α-鹅膏蕈碱的敏感性不同,分为RNA聚合酶Ⅰ(A)、RNA聚合酶Ⅱ(B)、RNA聚合酶Ⅲ(C),如下: 酶的种类[1] 存在功能对抑制物的敏感性 RNA聚合酶 Ⅰ 核仁合成rRNA前体不敏感RNA聚合酶 Ⅱ 核质合成mRNA前体及大多数snRNA 低浓度敏感 RNA聚合酶Ⅲ核质 合成5S rRNA前体、tRNA前体及其他的核和胞质小 RNA前体 高浓度敏感 [1]真核细胞还具有线粒体RNA聚合酶,存在于线粒体,能产生线粒体RNA;叶绿体RNA聚合酶,存在于叶绿体,能产生叶绿体RNA。 如RNA聚合酶Ⅱ识别Ⅱ类启动子,催化mRNA和大多数核内小RNA(snRNA)合成,它的启动子很复杂,主要包括4个部位:第一个部位为转录的起始部位其碱基大多为A;第二个部位是TATA框(TATA box),其共有序列为TATA(A/T)A(A/T),是富含AT的7个核苷酸。TATA框是类似于原核启动子的Pribnow框,位于-25;第三个部位为CAAT框(CAAT box),其共有序列为GGNCAATCT(其中N为C或T),位于-75附近;第四部分为增强子(enhancer),增加转录的速率

王思民-2014.7-启动子与转录因子(基因表达调控蛋白)

启动子与转录因子/基因表达调控蛋白生命活动丰富多彩、千变万化。但是万变不离其宗,不管如何变化都围绕着中心法则展开。核酸作为遗传物质指导蛋白质的表达,表达产生的一些特殊蛋白(如转录因子、调控蛋白)反过来又对DNA 指导合成蛋白质的过程进行调控。对基因表达调控的研究一直是生物学研究热点,涉及到生命活动的各个过程,也是各类信号通路研究无法绕过的部分。 当面对某个基因表达调控研究时,第一个想到的研究对象是什么?没错,就是基因的启动子。通过启动子区域对基因表达进行调控是最直接有效的手段,所以也是研究基因表达调控的重点。现在的基因数据库信息丰富,拿到基因及其启动子序列非常简单。那么问题又来了,拿到启动子序列以后,下一步怎么找相关的调控蛋白/转录因子呢?生物信息学方法预测?你会得到很多可能的目标调控蛋白/转录因子,还要做实验一个一个验证。凝胶迁移(EMSA),染色质免疫共沉淀(ChIP)?只能针对已知能与启动子结合的调控蛋白/转录因子,而且还需要相应探针/抗体,对于大量筛选无能为力。 美国Signosis的转录因子(结合启动子)微孔板芯片检测试剂可以方便、高效地解决这一问题。该方法专门用于筛查与特定DNA序列(通常是含有转录因子结合位点的启动子序列)相互作用的调控蛋白/转录因子,获得目的基因的启动子序列后,使用该方法可以筛查48/96种常见的调控蛋白/转录因子与启动子序列结合情况。该方法利用转录因子与特定DNA序列结合的特点,针对每一种转录因子设计

相应的生物素标记探针;当混合探针与核蛋白样本共同孵育时,探针与相应的转录因子结合形成转录因子/探针复合物;除去游离的探针,收集转录因子/探针复合物;分离复合物中的DNA探针,探针的量与 转录因子含量呈正相关。在探 针混合物中同时加入启动子片 段,如果DNA序列中含有转录 因子结合位点,就会与生物素 标记的探针竞争性结合转录因 子,转录因子与相应探针形成 的复合物减少。通过比较有无 目的基因启动子片段中转录因 子探针检测差异,可以分析出 与无目的基因启动子片段相互 作用的转录因子种类。 这种方法可以简单、快速地在48/96种常见转录因子筛选出与目的启动子片段相互作用的调控蛋白/转录因子,从而进一步探索目的基因的表达调控。待筛选的调控蛋白/转录因子都是在生命活动中起重要通的调控蛋白/转录因子,大大方便了后续的基因表调控、信号通路及其它方面的研究。

转录因子

转录因子 基因转录有正调控和负调控之分。如细菌基因的负调控机制是当一种阻遏蛋白(repressor protein)结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。而顺式作用因子则指的是基因上与反式作用因子结合的对基因表达起调控作用的基因序列。 转录因子(transcription factor)是起正调控作用的反式作用因子。转录因子是转录起始过程中RNA聚合酶所需的辅助因子。真核生物基因在无转录因子时处于不表达状态,RNA聚合酶自身无法启动基因转录,只有当转录因子(蛋白质)结合在其识别的DNA序列上后,基因才开始表达。 转录因子的结合位点(transcription factor binding site,TFBS)是转录因子调节基因表达时,与mRNA结合的区域。按照常识,转录因子(transcription factor,TF)的结合位点一般应该分布在基因的前端,但是,新的研究发现,人21和22号染色体上,只有22%的转录因子结合位点分布在蛋白编码基因的5'端。 真核生物在转录时往往需要多种蛋白质因子的协助。一种蛋白质是不是转录机构的一部分往往是通过体外系统看它是否是转录起始所必须的。一般可将这些转录所需的蛋白质分为三大类: (1)RNA聚合酶的亚基,它们是转录必须的,但并不对某一启动子有特异性。 (2)某些转录因子能与RNA聚合酶结合形成起始复合物,但不组成游离聚合酶的成分。这些因子可能是所有启动子起始转录所必须的。但亦可能仅是譬如说转录终止所必须的。但是,在这一类因子中,要严格区分开哪些是R NA聚合酶的亚基,哪些仅是辅助因子,是很困难的。 (3)某些转录因子仅与其靶启动子中的特异顺序结合。如果这些顺序存在于启动子中,则这些顺序因子是一般转录机构的一部分。如果这些顺序仅存在于某些种类的启动子中,则识别这些顺序的因子也只是在这些特异启动子上起始转录必须的。 黑腹果蝇的RNA聚合酶需要至少两个转录因子方能在体外起始转录。其中一个是B因子,它与含TATA盒的部位结合。人的因子TFⅡD亦和类似的部位结合。同样,CTF(CAAT结合因子)则与腺病毒的主要晚期启动子中与CAAT盒同源的部位相结合。结合在上游区的另一个转录因子是USF(亦称MLTF),则可以识别腺病毒晚期启动子中靠近-55的顺序。转录因子Sp1则能和GC盒相结合。在SC40启动子中有多个GC盒,位于-70到-110之间。它们均能和Sp1相结合。然而含有GC盒的不同的DNA顺序与Sp1的亲和力却各不相同。可见GC盒两侧的顺序对Sp1-GC盒的结合究竟如何能影响转录。有时候需要几个转录因子才能起始转录。例如胞苷激酶的启动子需要S p1与GC盒结合和CTF与CAAT盒结合;腺病毒晚期启动子需要TFⅡD与TATA盒结合和USF与其邻近部位相结合。以上所述的因子是一般转录都需要的,似乎并没有什么调节功能。另一些转录因子则可以调控一组特殊基因的转录。热休克基因就是一个很好的例子。真核生物的热休克基因在转录起始点的上游15bp处有一个共同顺序。H STF因子仅在热休克细胞中有活性。它与包括热休克共同顺序在内的一段DNA相结合,所以这个因子的激活可以引起约包括20个基因的一组基因起始转录。在这里,转录因子和RNA聚合酶Ⅱ之间关系很类似细菌的σ因子与核心酶之间的关系。 转录因子是一种具有特殊结构、行使调控基因表达功能的蛋白质分子,也称为反式作用因子。植物中的转录因子分为二种,一种是非特异性转录因子,它们非选择性地调控基因的转录表达,如大麦(Hordeum vulgare) 中的HvCBF2 (C-repeat/DRE binding factor 2) (Xue et al., 2003)。还有一种称为特异型转录因子,它们能够选择性调控某种或某些基因的转录表达。典型的转录因子含有DNA结合区(DNA-binding domain)、转录调控区(acti vation domain)、寡聚化位点(oligomerization site) 以及核定位信号(nuclear localization signal) 等功能区域。这些功能区域决定转录因子的功能和特性(Liu et al., 1999)。DNA结合区带共性的结构主要有:1)HTH 和HL H 结构:由两段α-螺旋夹一段β-折叠构成,α-螺旋与β-折叠之间通过β-转角或成环连接,即螺旋-转角-螺旋结构和螺旋-环-螺旋结构。2)锌指结构:多见于TFIII A 和类固醇激素受体中,由一段富含半胱氨酸的多肽链构成。每四个半光氨酸残基或组氨酸残基螯合一分子Zn2+ ,其余约12-13 个残基则呈指样突出,刚好能嵌入DNA 双螺旋的大沟中而与之相结合。3)亮氨酸拉链结构:多见于真核生物DNA 结合蛋白的 C 端,与癌基因表达调控有关。由两段α - 螺旋平行排列构成,其α - 螺旋中存在每隔7 个残基规律性排列的亮氨酸残基,亮氨酸侧链交替排列而呈拉链状,两条肽链呈钳状与DNA 相结合。

DNA启动子概述

启动子概述 启动子是DNA链上一段能与RNA聚合酶结合并能起始mRNA合成的序列,它是基因表达不可缺少的重要调控序列。启动子是一段位于结构基因5’-端上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合,并具有转录起始的特异性。基因的特异性转录取决于酶与启动子能否有效地形成二元复合物。启动子分三类:启动子Ⅰ、启动子Ⅱ、启动子Ⅲ.只有启动子Ⅱ指导mRNA的转录。真核生物启动子Ⅱ由两大部分组成:上游元件(upstream element)和启动子核心(core promoter)。上游元件与转录的效率有关;启动子核心包括3部分:TATA 盒、起始子(initinator)及下游元件(downstream element)。TATA盒为转录调控因子包括各种调节蛋白的结合区,与转录起始位点的精确选择及转录有关,起始子是转录起始所必须,下游元件作用尚不清楚。原核生物启动子区范围较小,包括TATAAT区(Pribnow区)及其上游的TTGACA区。 启动子是一段提供RNA聚合酶识别和结合位点的DNA序列,位于基因上游。启动子具有如下特征: 1序列特异性。在启动子的DNA序列中,通常含有几个保守的序列框,序列框中碱基的变化会导致转录启动活性的改变。 2方向性。启动子是一种有方向性的顺式调控元件,有单向启动子和双向启动子两类。 3位置特性。启动子一般位于所启动转录基因的上游或基因内的前端。处于基因的下4种属特异性。原核生物的不同种、属,真核生物的不同组织都具有不同类型的启动 没有启动子,基因就不能转录。原核生物启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。启动子区域:(1)Pribnow盒,位于转录起始位点上游5—10bp,一般由6~8个碱基组成,富含A和T, 故又称为TATA盒或—10区。启动子来源不同,Pribnow盒的碱基顺序稍有变化。(2)—35区,位于转录起始位点上游35bp处,故称—35区,一般由10个碱基组成。 质粒设计时都需要加入启动子序列,以保证目的基因的表达。启动子可分为诱导型启动子和组成型启动子两大类,后者包括CMV,SV40,T7,pMC1,PGK启动子等。一下介绍几个常见的启动子。 (1)U6启动子 U6是二型启动子,一般发现是启动小片段,不带PolyA尾的序列。由Ⅲ类RNA聚合酶启动子U6启动子转录产生shRNA,经剪切后产生成熟siRNA,产生干扰效果。这一类 启动子在腺病毒和慢病毒干扰载体的构建中应用很多。U6更多的是用在shRNA的启动,来达到敲低一个基因的作用。

关于组蛋白、甲基化、CHIP-Seq、结合位点、转录因子

关于组蛋白、甲基化、转录因子、结合位点和CHIP-Seq 1)染色质:真核细胞分裂间期的细胞核内的一种物质,这种物质的基本化学成分为脱氧核 糖核酸核蛋白(核蛋白就是由DNA或RNA与蛋白质形成的复合体),主要由DNA和组蛋白构成,也含有少量的非组蛋白和RNA。由于它可以被碱性的染料染色,所以称为染色质。在细胞的有丝分裂期,染色质经过螺旋、折叠,包装成了染色体。 2)核小体:核小体是染色体的基本结构单位,由DNA和组蛋白(histone)构成,是染色质(染 色体)的基本结构单位。由4种组蛋白H2A、H2B、H3和H4,每一种组蛋白各二个分子,形成一个组蛋白八聚体,约200 bp的DNA分子盘绕在组蛋白八聚体构成的核心结构外面,形成了一个核小体。这时染色质的压缩包装比(packing ratio)为6左右,即DNA 由伸展状态压缩了近6倍。200 bp DNA为平均长度;不同组织、不同类型的细胞,以及同一细胞里染色体的不同区段中,盘绕在组蛋白八聚体核心外面的DNA长度是不同的。如真菌的可以短到只有154 bp,而海胆精子的可以长达260bp,但一般的变动范围在180bp到200bp之间。在这200bp中,146 bp是直接盘绕在组蛋白八聚体核心外面,这些DNA不易被核酸酶消化,其余的DNA是用于连接下一个核小体。连接相邻2个核小体的DNA分子上结合了另一种组蛋白H1。组蛋白H1包含了一组密切相关的蛋白质,其数量相当于核心组蛋白的一半,所以很容易从染色质中抽提出来。所有的H1被除去后也不会影响到核小体的结构,这表明H1是位于蛋白质核心之外的。 3)染色体:在细胞的有丝分裂的分裂期由染色质经螺旋折叠形成,呈线状或棒状。 4) 有丝分裂:真核细胞的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分 向两极,从而产生两个染色体数和遗传性相同的子细胞核的一种细胞分裂类型。分裂具有周期性。即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期,(这两个阶段所占的时间相差较大,一般分裂间期占细胞周期的90%-95%;分裂期大约占细胞周期的5%-10%。细胞种类不同,一个细胞周期的时间也不相同。)分裂期又分为分裂前期、分裂中期、分裂后期和分裂末期。细胞在分裂之前,必须进行一定的物质准备。细胞增殖包括物质准备和细胞分裂整个过程。有丝分裂是一个连续的过程按先后顺序划分为间期、前期、中期、后期和末期五个时期,在前期和中期之间有时还划分出一个前中期。 5) 分裂间期:主要完成DNA的复制和蛋白质的合成,DNA复制时边解旋编复制。 6) 姐妹染色单体:姐妹染色单体是指染色体在细胞有丝分裂(包括减数分裂)的间期进 行自我复制,形成由一个着丝点连接着的两条完全相同的染色单体。(若着丝点分裂,则就各自成为一条染色体了)。每条姐妹染色单体含1个DNA。 7) 同源染色体:二倍体细胞中染色体以成对的方式存在, 一条来自父本,一条来自母本, 且形态、大小相同,并在减数分裂前期相互配对的染色体。含相似的遗传信息。 8) 组蛋白:一组进化上非常保守的碱性蛋白质,其中碱性氨基酸(Arg,Lys)约占25%,存 在于真核生物染色质,分为5种类型(H1,H2A,H2B,H3,H4),后4种各2个形成组蛋白八聚体,构成核小体的核心,占核小体质量的一半。组蛋白的基因非常保守。亲缘关系较远的种属中,四种组蛋白(H2A、H2B、H3、H4)氨基酸序列都非常相似。 9) 甲基化(methylation):从活性甲基化合物(如S-腺苷基甲硫氨酸)上催化其甲基转移到其 他化合物的过程。可形成各种甲基化合物,或是对某些蛋白质或核酸等进行化学修饰形成甲基化产物。甲基化是蛋白质和核酸的一种重要的修饰,调节基因的表达和关闭,与癌症、衰老、老年痴呆等许多疾病密切相关,是表观遗传学的重要研究内容之一。最常见的甲基化修饰有DNA甲基化和组蛋白甲基化。DNA甲基化是指生物体在DNA甲基转移酶(DNA methyltransferase,DMT) 的催化下,以s-腺苷甲硫氨酸(SAM)为甲基

转录因子

角朊细胞 角朊细胞的增殖和分化是一个受到精细调节的过程,并伴随着一系列形态学和生化改变,最终形成角质细胞,这就必然涉及到许多结构基因的同时活化与灭活,即基因表达的调控,而转录水平的调控尤为重要。现已发现许多转录因子如AP1、AP2、Sp1、POU结构域及C/EBP等可调节角朊细胞基因的表达。 目录

转录水平、翻译水平及翻译后水平,其中最常见的调控方式就是转录调控。现已发现AP1、AP2、NFκB、C/EBP、ets、Sp1及POU结构域等转录因子可作为表皮中的调控蛋白,从而调节编码套膜蛋白(involucrin, iNV)、转谷氨酰胺酶(transglutaminase,TG)、SPRR2A、兜甲蛋白(loricrin)、角蛋白及BPAG1等蛋白的基因的表达。本文就与角朊细胞基因表达有关的转录因子作一简要综述。 编辑本段转录因子的一般特征 转录因子(transcription factor)是能与位于转录起始位点上游50~5000bp的顺式作用元件(cis-acting elements)、沉默子(silencer)或增强子(enhancer)结合并参与调节靶基因转录效率的一组蛋白,并能将来自细胞表面的信息传递至核内基因。转录因子通常有几个功能域,可分为DNA结合域、转录调控域及自身活性调控域,DNA结合域可与特定的DNA序列(一般长8~20bp)相互作用,使转录因子与靶基因结合起来,随之转录调控域就可发挥其激活或抑制作用,通常这些结构域在结构与功能上是独立分开的。不同的转录因子还可结合于紧密相邻的DNA序列而形成一种多聚体结构来调节基因表达,这种组合调控(combinatorial regulation)不论转录因子是否激活及其含量多少均可激活基于靶基因中特定转录因子结合位点的转录。除启动基础转录活性外,转录因子还能整合从细胞表面经信号转导途径传递而来的信号[2]。 编辑本段激活角朊细胞基因表达的转录因子 (一)AP1 AP1转录因子通常以jun(c-jun、junB、junD)与Fos(Fra-1、Fra-2、c-fos、fosB)家族成员组成的同源或异源二聚体表达其活性,即结合于5’-GTGAGCTCAG-3’序列。目前已知AP1位点对于编码角蛋白(K1、K5、 K6及K19)、丝聚合蛋白原(profilaggrin)基因的最适转录活性十分重要[3,7],编码角质化包膜(cornified envelope)相关蛋白-TG1、兜甲蛋白及INV的基因也含有功能性AP1 位点[8,9],如hINV基因启动子在其转录起始位点上游2.5kb内有5个AP1共有结合位点(AP1-1~5),其中2个AP1位点AP1-1和AP1-5若同时发生突变时角朊细胞的转录水平就可下降80%;佛波酯(TPA)则可使AP1与hINV启动子处AP1-1及AP1-5位点的结合能力增强10~100倍,后经点突变实验证实AP1-1和AP1-5位点可部分介导佛波酯(TPA)诱导的效应[10]。丝聚合蛋白原、K1、兜甲蛋白及K19基因中的AP1位点可活化转录[3,6,7],

启动子

启动子:RNA聚合酶识别、结合并开始转录所必需的一段DNA序列。 不同的启动子都存在保守的共同序列,包括RNA聚合酶识别位点和结合位点。 (1)、-10序列在转录起点上游大约-10处,有一个6bp的保守序列TATAAT,称Pribnow框。此段序列出现在-4到-13bp之间,每个位点的保守性在45%-100%。 频度:T89 A89 T50 A65 A65 T100 据预测,Pribnow框中,一开始的TA和第6位最保守的T在结合RNA聚合酶时起十分重要的作用。 目前认为,Pribnow框决定转录方向。酶在此部位与DNA结合形成稳定的复合物,Pribnow框中DNA序列在转录方向上解开,形成开放型起始结构,它是RNA聚合酶牢固的结合位点,是启动子的关键部位。 RNA聚合酶的结合,诱导富含AT的Pribnow框的双链解开,然后进一步扩大成17个核苷酸长度的泡状物,在泡状物中RNA聚合酶从模板链开始转录RNA产物。 (2)、-35序列 只含-10序列的DNA不能转录,在-10序列上游还有一个保守序列,其中心约在-35位置,称为-35序列,此序列为RNA酶的识别区域。 各碱基出现频率如下:T85 T83 G81 A61 C69 A52 ,其中TTG十分保守。 -35序列的功能:它是原核RNA聚合酶全酶依靠σ因子的初始识别位点。因此,-35序列对RNA聚合酶全酶有很高的亲和性。-35序列的核苷酸结构,在很大程度上决定了启动子的强度,RNA聚合酶易识别强的启动子。 -35序列提供RNA聚合酶识别信号, -10序列有助于DNA局部双链解开,启动子结构的不对称性决定了转录的方向。 2.熟悉原核生物启动子的结构与功能、其中的-35区、-10区等的结构? ①域中的基序并与之结合,启动转录的起始。一般将DNA上的转录位点定位+1来排序,其下游(右侧)为正值,其上游(左侧)为负值。原核生物不同基因的启动子虽然结构也有一定的差异,但明显具有共同的特点。◆结构典型,都含有识别(R),结合(B)和起始(I)三个位点;◆序列保守,如-35序列,-10序列结构都十分保守;◆位置和距离都比较恒定;◆直接和多聚酶相结合;◆常和操纵子相邻;◆都在其控制基因的5′端;◆决定转录的启动和方向。 ②-35序列又称为Sextama盒,其保守序列为TTGACA,与-10序列相隔16~19bp。其功能是:◆为RNA 聚合酶的识别位点。RNA 聚合酶的核心酶只能起到和模板结合和催化的功能,并不能识别-35序列,只有σ亚基才能识别-35序列,为转录选择模板链。◆-35序列和-10序列的距离是相当稳定的,过大或过小都会降低转录活性。这可能是因为RNA 聚合酶本身的大小和空间结构有关。 ③-10序列也称为Pribnow框盒,其保守序列为TATAAT,位于-10bp左右,其中3′端的“T”十分保守。A,T较丰富,易于解链。它和转录起始位点“I”一般相距5bp。其功能是:◆与RNA聚合酶紧密结合;◆形成开放启动复合体;◆使RNA聚合酶定向转录。 为什么RNA聚合酶能够仅在启动子处结合呢?显然启动子处的核苷酸顺序具有特异的形状以便与RNA聚合酶结合,就好像酶与其底物的结构相恰恰适合一样。将100个以上启动子的顺序进行了比较,发现在RNA合成开始位点的上游大约10bp和35bp处有两个共同的顺序,称为-10和-35序列。这两个序列的共同顺序如下,-35区“AATGTGTGGAAT”,-10区“TTGACATATATT”。大多数启动子均有共同顺序(consensus sequence),只有少数几个核苷酸的差别。 转录起点是指与新生RNA链第一个核苷酸相对应DNA链上的碱基,研究证实通常为一个嘌呤。常把起点前面,即5’末端的序列称为上游(upstream),而把其后而即3’未端的序列称为下游(downstream)。在描述碱基的位置时,一般用数字表示,起点为+1,下游方向依次为+2、+3……,上游方向依次为-1、-2、-3…

启动子分析-----------转录因子结合位点

启动子分析-----------转录因子结合位点 启动子分析-----------转录因子结合位点 启动子是DNA分子可以与RNA聚合酶特异结合的部位,也就是使转录开始的部位。在基因表达的调控中,转录的起始是个关键。常常某个基因是否应当表达决定于在特定的启动子起始过程。启动子一般可分为两类: (1)一类是RNA聚合酶可以直接识别的启动子。这类启动子应当总是能被转录。但实际上也不都如此,外来蛋白质可对其有影响,即该蛋白质可直接阻断启动子,也可间接作用于邻近的DNA结构,使聚合酶不能和启动子结合。 (2)另一类启动子在和聚合酶结和时需要有蛋白质辅助因子 的存在。这种蛋白质因子能够识别与该启动子顺序相邻或甚至重叠的DNA顺序。 因此,RNA聚合酶能否与启动子相互作用是起始转录的关键问题,似乎是蛋白质分子如何能识别DNA链上特异序列。例如,RNA聚合酶分子上是否有一个活性中心能够识别出DNA双螺旋上某特异序列的化学结构?不同启动子对RNA 聚合酶的亲和力各不同。这就可能对调控转录起始的频率,亦即对基因表达的程度有重要不同。DNA链上从启动子直到

终止子为止的长度称为一个转录单位。一个转录单位可以包括一个基因,也可以包括几个基因。启动子预测软件大体分为三类,第一类是启发式的方法,它利用模型描述几种转录因子结合部位定向及其侧翼结构特点,它具有挺高的特异性,但未提供通用的启动子预测方法;第二类是根据启动子与转录因子结合的特性,从转录因子结合部位的密度推测出启动子区域,这方法存在较高的假阳性;另一类是根据启动子区自身的特征来进行测定,这种方法的准确性比较高。同时,还可以结合是否存在CpG岛,而对启动子预测的准确性做出辅助性的推测。 启动子预测软件有:PromoterScan ; Promoter 2.0 ; NNPP ;EMBOSS Cpgplot ; CpG Prediction 启动子及转录因子结合位点数据库及预测工具 冷泉港启动子分析程序介绍 https://www.360docs.net/doc/253311743.html,/links/ch_09_t_6.html 在线预测和分析基因启动子(promoter) 一般在公共数据库中,如NCBI、UCSC、Ensembl给出的人类基因序列都没有对基因进行详细的标注。不过,有

启动子介绍

了解启动子 目录 1. 基因的构成 (2) 2. 启动子(promoter) (3) 3. 终止子(termianator) (4)

1. 基因的构成 基因是由成千上万个核苷酸对组成。组成基因的核苷酸序列可以分为不同区段。在基因表达的过程中,不同区段所起的作用不同。在遗传学上通常将能编码蛋白质的基因称为结构基因。任何一个基因都包括非编码区和编码区。能够转录为相应信使RNA-mRNA,进而指导蛋白质合成(也就是能编码蛋白质)的区段叫做编码区,编码区中可分为内含子和外显子。不能转录为信使RNA、不能编码蛋白质的区段叫做非编码区。非编码区位于编码区前后,同属于一个基因,控制基因的表达和强弱。 非编码区虽然不能编码蛋白质,但对遗传信息的表达是不可缺少的,因为在它上面由调控遗传信息表达的核苷酸序列,该序列中最重要的是位于编码区上游的RNA聚合酶结合位点。启动子、终止子属于非编码区。因为回文序列的特殊排列,大多都位于非编码区。

原核基因的编码区全部编码蛋白质,真核生物的基因是间断的、不连续的、断裂的基因。一个断裂基因能够含有若干段编码序列,可以编码蛋白质的序列称为外显子。在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。非编码区在每个断裂基因的第一个和最后一个外显子的外侧,有人称其为侧翼序列。在侧翼序列上有一系列调控序列。通常把基因转录起点前面即5’端的序列称为上游(upstream),起点后面即3’端的序列称为下游(downstream)。并把起点的位置记为+1,下游的核苷酸依次记为+2,+3,……,上游方向依次记为-1,-2,-3,……。 2. 启动子(promoter) 位于编码区上游的非编码区中,含有丰富的转录因子结合位点(transcription factor binding sites, TFBS)。主要包含核心启动子区域(TSS附近-60bp到+40bp)和调控区域。核心启动子区域产生基础水平的转录,对于精确转录是必须的最小单元;调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。 启动子的范围非常大,可以包含转录起始位点上游2000bp(主要在transcript start site 上游1kb的范围内),有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。

几个常用的启动子和诱导表达调控系统

1.最早应用于的表达系统的是Lac乳糖操纵子,由启动子lacP + 操纵基因lacO + 结构基因组成。其转录受CAP正调控和lacI负调控。 https://www.360docs.net/doc/253311743.html,cUV5突变能够在没有CAP的存在下更有效地起始转录,该启动子在转录水平上只受lacI的调控,因而随后得到了更广泛采用。lacI产物是一种阻遏蛋白,能结合在操纵基因lacO 上从而阻遏转录起始。乳糖的类似物IPTG可以和lacI 产物结合,使其构象改变离开lacO,从而激活转录。这种可诱导的转录调控成为了大肠杆菌表达系统载体构建的常用元件。 3.tac启动子是trp启动子和lacUV5的拼接杂合启动子,且转录水平更高,比lacUV5更优越。 4.trc启动子是trp启动子和lac启动子的拼合启动子,同样具有比trp更高的转录效率和受lacI阻遏蛋白调控的强启动子特性。 5.在常规的大肠杆菌中,lacI阻遏蛋白表达量不高,仅能满足细胞自身的lac 操纵子,无法应付多拷贝的质粒的需求,导致非诱导条件下较高地表达,为了让表达系统严谨调控产物表达,能过量表达lacI阻遏蛋白的lacIq 突变菌株常被选为Lac/Tac/trc表达系统的表达菌株。现在的Lac/Tac/trc载体上通常还带有lacIq 基因,以表达更多lacI阻遏蛋白实现严谨的诱导调控。 6.IPTG广泛用于诱导表达系统,但是IPTG有一定毒性,有人认为在制备医疗目的的重组蛋白并不合适,因而也有用乳糖代替IPTG作为诱导物的研究。另外一种研究方向是用lacI的温度敏感突变体,30℃下抑制转录,42℃开始发挥作用。热诱导不用添加外来的诱导物,成本低,但是由于发酵过程中加热升温比较慢而影响诱导效果,而且热诱导本身会导致大肠杆菌的热休克蛋白激活,一些蛋白酶会影响产物的稳定。 7.以λ噬菌体转录启动子PL、PR 构建的载体也为大家所熟悉。这两个强启动子受控于λ噬菌体cI基因产物。cI基因的温度敏感突变体cI857(ts)常常被用于调控PL、PR启动子的转录。同样也是30℃下阻遏启动子转录,42℃下解除抑制开始转录。同样的,PL、PR表达载体需要以cI857(ts)作为表达菌株,现在更常见的做法是在载体上携带cI857(ts)基因,所以可以有更大的宿主选择范围。另外一种思路是通过严谨调控cI产物来间接调控PL、PR启动子的转录。比如Invitrogen的PL表达系统,就是将受trp启动子严谨调控的cI基因溶源化到宿主菌染色体上,通过加入酪氨酸诱导抑制trp启动子,抑制cI基因的表达,从而解除强大的PL启动子的抑制。 8.T7启动子是当今大肠杆菌表达系统的主流,这个功能强大兼专一性高的启动子经过巧妙的设计而成为原核表达的首选,尤其以Novagen公司的pET系统为杰出代表。强大的T7启动子完全专一受控于T7 RNA聚合酶,而高活性的T7 RNA 聚合酶合成mRNA的速度比大肠杆菌RNA聚合酶快5倍——当二者同时存在时,宿主本身基因的转录竞争不过T7表达系统,几乎所有的细胞资源都用于表达目的蛋白;诱导表达后仅几个小时目的蛋白通常可以占到细胞总蛋白的50%以上。由

相关文档
最新文档