苏教版数学高二 必修5学案 2. 等比数列的性质

苏教版数学高二 必修5学案 2. 等比数列的性质
苏教版数学高二 必修5学案 2. 等比数列的性质

第2课时 等比数列的性质

1.掌握等比数列的性质,能应用其性质解题.(重点) 2.了解等比数列与指数函数的关系.(重点)

[基础·初探]

教材整理1 等比数列与指数函数的关系 阅读教材P 53,完成下列问题.

如果数列{a n }是等比数列,则a n =a 1q n -1(a 1≠0,q ≠0),故q ≠1时点(n ,a n )均在函数y =a 1q x -1的图象上.

若等比数列{a n }的通项公式a n =2n +p ,则p =________. 【解析】 结合等比数列{a n }的图象特点,可知p =0. 【答案】 0

教材整理2 等比数列的性质

阅读教材P 54第12题,P 55第14题,第16题,完成下列问题. 等比数列的性质

(1)如果m +n =k +l ,则有a m ·a n =a k ·a l . (2)如果m +n =2k ,则有a m ·a n =a 2k .

(3)在等比数列{a n }中,每隔k 项(k ∈N *)取出一项,按原来的顺序排列,所得的新数列仍为等比数列.

(4)如果{a n },{b n }均为等比数列,且公比分别为

q 1,q 2,那么数列????

??

1a n ,{a n ·b n },

????

??b n a n ,{|a n |}仍是等比数列,且公比分别为1q 1,q 1q 2,q 2

q 1,|q 1|.

(5)等比数列的项的对称性:在有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积,即a1·a n=a2·a n-1=a k·a n-k+1=….

1.在等比数列{a n}中,若a5=1,则a2·a8=________.

【解析】a2·a8=a25=1.

【答案】 1

2.在等比数列{a n}中,a1a2=3,a5a6=27,则a3a4=________.

【解析】∵a1a2,a3a4,a5a6成等比数列,

∴(a3a4)2=(a1a2)·(a5a6)

=3×27

=81,

∴a3a4=±9.

【答案】±9

[质疑·手记]

预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:

疑问1:_________________________________________________

解惑:_________________________________________________

疑问2:_________________________________________________

解惑:_________________________________________________

疑问3:_________________________________________________

解惑:_________________________________________________

疑问4:_________________________________________________

解惑:_________________________________________________

[小组合作型]

等比数列的性质

在等比数列{a n }中, (1)若a 3a 5a 7a 9a 11=243,求a 29

a 11

的值;

(2)若a n >0,且a 3a 6=32,求log 2a 1+log 2a 2+…+log 2a 8的值.

【精彩点拨】 利用等比数列的性质,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k 求解.

【自主解答】 (1)∵a 3,a 5,a 7,a 9,a 11成等比数列,

∴a 3a 5a 7a 9a 11=a 5

7=243=35,

∴a 7=3.

又a 29

a 11=a 7·a 11a 11

=a 7,

∴a 29

a 11

=3. (2)log 2a 1+log 2a 2+…+log 2a 8=log 2a 1·a 2·…·a 8=log 2(a 1·a 8)4 =log 2(a 3a 6)4=log 2324=log 2220=20.

等比数列中的项的序号若成等差数列,则对应的项依次成等比数列,有关等比数列的计算问题,应充分发挥项的“下标”的“指引”作用,以使运算简便.

[再练一题]

1.(1)在各项均为正数的等比数列{a n }中,a 3·a 9=4,a 6·a 10+a 3·a 5=41,求a 4+a 8的值;

(2)在等比数列{a n }中,a 5,a 9是方程7x 2-18x +7=0的两个根,求a 7. 【解】 (1)∵{a n }为等比数列,且3+9=4+8,6+10=2×8,3+5=2×4,

∴a 3·a 9=a 4·a 8=4,a 6·a 10=a 28,a 3·a 5=a 24, ∴a 6·a 10+a 3·a 5=a 28+a 24=41,又a 4·

a 8=4,

∴(a 4+a 8)2=41+2×4=49,且a n >0, ∴a 4+a 8=7.

(2)∴a 5,a 9是方程7x 2-18x +7=0的两个根,

∴??

?

a 5+a 9=18

7,

a 5·

a 9=1,∴a 5>0,a 9>0.

又∵a 2

7=a 5·a 9=1,且a 7=a 5·q 2>0,∴a 7=1.

灵活设项求解等比数列

第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.

【精彩点拨】 解答此类题目主要是利用性质和已知巧设,再构造方程或方程组求解.

【自主解答】 法一:设这四个数依次为a -d ,a ,a +d ,(a +d )2a ,

由条件得???

??

a -d +(a +d )2

a =16,

a +(a +d )=12,

解得????? a =4,d =4或?????

a =9,

d =-6.

∴当a =4,d =4时,所求四个数为0,4,8,16; 当a =9,d =-6时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.

法二:设这四个数依次为2a q -a ,a

q ,a ,aq (a ≠0),

由条件得?????

2a q -a +aq =16,

a

q +a =12,

解得?????

q =2,a =8或???

q =13,a =3.

∴当q =2,a =8时,所求四个数为0,4,8,16; 当q =1

3,a =3时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.

灵活设项求解等比数列的技巧

1.三数成等比数列,一般可设为a

q ,a ,aq .

2.四数成等比数列,一般可设为a q 3,a

q ,aq ,aq 3或a ,aq ,aq 2,aq 3. 3.五数成等比数列,一般可设为a q 2,a

q ,a ,aq ,aq 2.

[再练一题]

2.三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则这三个数成等差数列,求这三个数.

【导学号:91730038】

【解】 设三个数依次为a

q ,a ,aq , ∵a q ·a ·aq =512,∴a =8. ∵? ??

??

a q -2+(aq -2)=2a ,

∴2q 2-5q +2=0,∴q =2或q =1

2, ∴这三个数为4,8,16或16,8,4.

[探究共研型]

等差数列与等比数列的综合应用

n 2n 【提示】 {log 2a n }是等差数列,由log 2a n +1-log 2a n =log 2a n +1

a n 可知.

探究2 若{a n }是等差数列,则{2a n }是什么数列? 【提示】 {2a n }是等比数列,由2a n +1

2a n

=2a n +1-a n 可知.

设{a n }是公差大于0的等差数列,b n =? ??

??

12a n ,已知b 1+b 2+b 3=218,

b 1b 2b 3=1

8,

(1)求证:数列{b n }是等比数列; (2)求等差数列{a n }的通项a n .

【精彩点拨】 (1)证明b n +1

b n 为同一常数;(2)先求b n ,由b n 求a n .

【自主解答】 (1)证明:设{a n }的公差为d (d >0), ∵b n +1b n =? ????12a n +1-a n =? ????

12d 为常数,

且b 1=? ??

??

12a 1>0,

∴{b n }为以? ????12a 1为首项,公比为? ????

12d 的等比数列.

(2)∵b 1b 2b 3=1

8,

∴b 32=18,

∴b 2=12,

∴?????

b 1+b 3=17

8,b 1b 3=14,

∴??? b 1=1

8,

b 3=2

或???

b 1=2,b 3=1

8

.

∵q =? ????

12d ∈(0,1),

∴b 1>b 3,

∴???

b 1=2,b 3=18,

∴b n =? ??

??122n -3

∴a n =2n -3,(n ∈N *).

等差数列与等比数列的转化

1.若数列{a n }为等差数列,则数列{ma n }(m >0,m ≠1)为等比数列. 2.若数列{a n }为等比数列,且a n >0,则数列{log b a n }(b >0,b ≠1)为等差数列.

[再练一题]

3.已知{x n }为各项不为1的正项等比数列,{y n }满足y n ·log x n a =2(a >0且a ≠1),设y 4=17,y 7=11.

则数列{y n }的前多少项的和最大?最大值是多少? 【解】 y n =2

log x n a =2log a x n ,且{x n }为等比数列,

∵y n -1+y n +1=2log a x n -1+2log a x n +1

=2log a (x n -1·x n +1)=2log a x 2n =4log a x n =2y n ,n ≥2,n ∈N *

∴{y n }为等差数列.

又y4=17,y7=11=y4+3d,∴d=-2,∴y n=y4-2(n-4)=25-2n(n∈N*).

由y n≥0,知n≤12.

故{y n}的前12项和最大,其最大值为12×(23+1)

2

=144.

[构建·体系]

1.对任意等比数列{a n},下列说法一定正确的是________.

①a1,a3,a9成等比数列;②a2,a3,a6成等比数列;③a2,a4,a8成等比数列;④a3,a6,a9成等比数列.

【解析】∵3+9=2×6,∴a26=a3·a9,∴a3,a6,a9成等比数列.

【答案】④

2.已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=________.

【解析】∵{a n}成等比数列,∴a1a2a3,a4a5a6,a7a8a9也成等比数列,

∴(a4a5a6)2=(a1a2a3)·(a7a8a9)=50,

∴a4a5a6=±52,

又a n >0,∴a 4a 5a 6=5 2. 【答案】 5 2

3.在等比数列{a n }中,已知a 1+a 2=324,a 3+a 4=36,则a 5+a 6=________.

【导学号:91730039】

【解析】 ∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6成等比数列,∴a 5+a 6=362

324=4.

【答案】 4

4.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=________.

【解析】 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7. 又∵a 5a 6+a 4a 7=18,

∴a 5a 6=a 1a 10=a 4a 7=a 3a 8=a 2a 9=9,

∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2a 3…a 10)=log 395=log 3310=10. 【答案】 10

5.已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.

【解】 依题意可设这四个数分别为:(4-d )2

4,4-d,4,4+d ,则由前三个数和为19,可列方程得,

(4-d )2

4+4-d +4=19,整理得,d 2

-12d -28=0,解得d =-2或d =14. ∴这四个数分别为:25,-10,4,18或9,6,4,2.

我还有这些不足:

(1)_________________________________________________

(2)_________________________________________________ 我的课下提升方案:

(1)_________________________________________________ (2)_________________________________________________

学业分层测评(十一)

(建议用时:45分钟)

[学业达标]

一、填空题

1.若a ,b ,c 既成等差数列,又成等比数列,则公比为________. 【解析】 由已知得?????

2b =a +c ,

b 2=a

c ,

∴2b =a +b 2

a ,即a 2+

b 2=2ab , ∴(a -b )2=0, ∴a =b ≠0, ∴q =b a =1. 【答案】 1

2.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1a 15=________. 【解析】 ∵lg(a 3a 8a 13)=lg a 38=6,

∴a 38=106?a 8=102=100.

又a 1a 15=a 28=10 000. 【答案】 10 000

3.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________. 【解析】 ∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8,联立?????

a 4+a 7=2,a 4a 7=-8,

可解

得????? a 4=4,a 7=-2或?????

a 4=-2,a 7=4, ∴q 3=-12或q 3=-2,故a 1+a 10=a 4q 3+a 7·q 3=-7.

【答案】 -7

4.在各项均为正数的等比数列{a n }中,a n +1

7

=________.

【导学号:91730040】

【解析】 设公比为q ,则由等比数列{a n }各项为正数且a n +1

, ∴a 5a 7=1q 2=? ????622=3

2. 【答案】 32

5.已知数列{a n }是等比数列,且a 2a 6=2a 4,则a 3a 5=________. 【解析】 ∵a 2a 6=2a 4,

由等比数列的性质可知,a 2a 6=a 3a 5=a 2

4, ∴a 24=2a 4,∴a 4=2,∴a 3a 5=4.

【答案】 4

6.互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,a +3b +c =10,则a =________.

【解析】 由题意知a +c =2b , ∴5b =10,b =2, ∴a +c =4.

∵a c =b

a ,∴a 2=bc ,∴a 2=2c , ∴a 2+2a -8=0,解得a =2或a =-4.

当a =2时,a =b =2不合题意,∴a =-4. 【答案】 -4

7.(2016·南京高二检测)已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q =________.

【解析】 设等差数列为{a n },公差为d ,d ≠0,则a 23=a 2·a 6,∴(a 1+2d )2

=(a 1+d )(a 1+5d ),化简得d 2=-2a 1d .∵d ≠0,∴d =-2a 1,

∴a 2=-a 1,a 3=-3a 1, ∴q =a 3

a 2

=3.

【答案】 3

8.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.

【解析】 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12

可得q 9=3,又a n -1·a n a n +1=a 31q

3n -3=324,因此q 3n -6=81=34=q 36,所以n =14.

【答案】 14 二、解答题

9.数列{a n }是等比数列,

(1)若已知a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值; (2)若a 2=2,a 6=16,求a 10; (3)若a 3=-2,a 7=-16,求a 5. 【解】 (1)∵a 3a 4a 5=8,∴a 34=8,a 4=2. ∴a 2a 3a 4a 5a 6=(a 2·a 6)·(a 3·a 5)·a 4=a 24·a 24·a 4=32. (2)∵a 2·a 10=a 26,

∴a 10=a 26a 2

=16

2

2=128.

(3)∵a 3·a 7=a 25,∴a 5=±a 3a 7=±

4 2.

又∵a5=a3q2<0,

∴a5=-4 2.

10.若a,b,c是△ABC中角A,B,C的对边,A,B,C成等差数列,a,b,c成等比数列,试判断△ABC的形状.

【解】∵角A,B,C成等差数列,

∴A+C=2B,又△ABC中,A+B+C=π,∴B=π

3.

又∵边a,b,c成等比数列,

∴b2=ac,由余弦定理

∴cos B=a2+c2-b2

2ac

a2+c2-ac

2ac

=cosπ

3

=1

2

∴a2+c2-ac=ac,

∴(a-c)2=0,∴a=c,

∴△ABC为等边三角形.

[能力提升]

1.若正数a,b,c成公比大于1的等比数列,则当x>1时,下列关于log a x,log b x,log c x的说法正确的是________(填序号).

①成等差数列;②成等比数列;

③各项倒数成等差数列;④各项倒数成等比数列.

【解析】a,b,c成等比数列,则b

a

=c

b

即b2=ac,2log x b=log x a+log x c,

即2 log b x =1

log a x

+1

log c x

即1 log a x ,1

log b x

,1

log c x

成等差数列.

【答案】③

2.(2016·启东高二检测)设{a n}是公比为q的等比数列,其前n项积为T n,

并满足条件a1>1,a99a100-1>0,a99-1

a100-1

<0,给出下列结论:

①0

其中正确的编号为________.

【解析】根据等比数列的性质,如果等比数列的公比是负值,在其连续两

项的乘积是负值,根据a99a100-1>0,可知该等比数列的公比是正值,再根据

a99-1

a100-1

<0,可知a99,a100一个大于1,一个小于1,因为a1>1,所以数列不会是单调递增的,只能单调递减,所以01,a100<1,又a99·a101=a2100 <1,①③正确;T198=a1a2…a99a100…a197·a198=(a99a100)99>1,②不正确;T199=a1a2…a100…a198a199=(a100)199<1,故④正确.

【答案】①③④

3.设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1(n=1,2,…).若数列{b n}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.

【解析】∵b n=a n+1,

∴a n=b n-1,

而{b n}有连续四项在集合{-53,-23,19,37,82}中,

∴{a n}有连续四项在集合{-54,-24,18,36,81}中.

∵{a n}是公比为q的等比数列,|q|>1,

∴{a n}中的连续四项为-24,36,-54,81,

∴q=-36

24=-3

2

∴6q=-9.

【答案】-9

4.若{a n}是公差d≠0的等差数列,{b n}是公比q≠1的等比数列,已知a1=b1=1,且a2=b2,a6=b3.

(1)求d 和q ;

(2)是否存在常数a ,b ,使对一切n ∈N *都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.

【解】 (1)由题意得?????

1+d =q ,

1+5d =q 2,

解得d =3,q =4. (2)假设存在常数a ,b . 由(1)得a n =3n -2,b n =4n -1, 代入a n =log a b n +b , 得3n -2=log a 4n -1+b ,

即(3-log a 4)n +(log a 4-b -2)=0对n ∈N *都成立, ∴?????

3-log a 4=0,

log a 4-b -2=0,

∴???

a =34,

b =1.

所以存在常数a =3

4,b =1使等式成立.

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

高中数学必修五测试题含答案

高一数学月考试题 一.选择题(本大题共12小题,每小题5分,共60分) 1.已知数列{a n }中,21=a ,*11()2 n n a a n N +=+∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 211,两数的等比中项是( ) A .1 B .1- C .1± D .12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,B C b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知{}n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=, 则31 32log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知b a ρρ,满足:a ρ=3,b ρ=2,b a ρρ+=4,则b a ρρ-=( ) A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形

高中数学必修五综合测试题(卷) 含答案解析

绝密★启用前 高中数学必修五综合考试卷 第I卷(选择题) 一、单选题 1.数列的一个通项公式是() A.B. C.D. 2.不等式的解集是() A.B.C.D. 3.若变量满足,则的最小值是() A.B.C.D.4 4.在实数等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( ) A.8B.-8C.±8D.以上都不对 5.己知数列为正项等比数列,且,则()A.1B.2C.3D.4 6.数列 1111 1,2,3,4, 24816 L前n项的和为() A. 2 1 22 n n n + +B. 2 1 1 22 n n n + -++C. 2 1 22 n n n + -+D. 2 1 1 22 n n n + - -+ 7.若的三边长成公差为的等差数列,最大角的正弦值为,则这个三角形的面积为() A.B.C.D. 8.在△ABC中,已知,则B等于( ) A.30°B.60°C.30°或150°D.60°或120° 9.下列命题中正确的是( ) A.a>b?ac2>bc2B.a>b?a2>b2 C.a>b?a3>b3D.a2>b2?a>b 10.满足条件,的的个数是( ) A.1个B.2个C.无数个D.不存在

11.已知函数满足:则应满足()A.B.C.D. 12.已知数列{a n}是公差为2的等差数列,且成等比数列,则为()A.-2B.-3C.2D.3 13.等差数列的前10项和,则等于() A.3 B.6 C.9 D.10 14.等差数列的前项和分别为,若,则的值为()A.B.C.D. 第II卷(非选择题) 二、填空题 15.已知为等差数列,且-2=-1,=0,则公差= 16.在中,,,面积为,则边长=_________. 17.已知中,,,,则面积为_________. 18.若数列的前n项和,则的通项公式____________ 19.直线下方的平面区域用不等式表示为________________. 20.函数的最小值是_____________. 21.已知,且,则的最小值是______. 三、解答题 22.解一元二次不等式 (1)(2) 23.△的角、、的对边分别是、、。 (1)求边上的中线的长;

高二数学必修5全套教案(人教版)

1.1.1正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; 会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系, 引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合 情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 一.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二.讲授新课 [探索研究] 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义, 有 sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,(1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B (2)当?ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导) 思考2:还有其方法吗? 由于涉及边长问题,从而可以考虑用向量来研究这问题。 C A B B C A

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

高二数学必修五试卷

高二年级数学必修五综合检测试卷 姓名 得分 一、选择题:(本大题共12小题,每小题5分,共60分). 1.在等差数列{}n a 中,若210,a a 是方程2 1280x x +-=的两个根,那么6a 的值( ) A .-12 B .-6 C .12 D .6 2.△ABC 中, =cos cos A a B b ,则△ABC 一定是 ( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 3.若 11 0a b <<,则下列不等式中,正确的不等式有( ) [ ①a b ab +< ②a b > ③a b < ④2b a a b +> 个 个 个 个 4.若}{n a 是等比数列,124,5128374=+-=a a a a 且公比q 为整数,则10a 等于( ) A 、-256 B 、256 C 、-512 D 、512 5.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于 ( ) A .30° B .30°或150° C .60° D .60°或120 6. 下列不等式中,对任意x ∈R 都成立的是 ( ) A . 2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .x x +244 ≤1 < 7. 二次不等式2 0ax bx c ++>的解集是全体实数的条件是( ) A . 00a ?>??>? B. 0a >???? D. 0 0a

高二数学必修五知识点归纳

高二数学必修五知识点归纳 第一章解三角形 1、三角形的性质: ①.A+B+C=, AB2 C2 sin AB2 cos C2 ②.在ABC中, ab>c , ab<c ; A>BsinA>sinB, A>BcosA<cosB, a >b A>B ③.若ABC为锐角,则AB> ,B+C > ,A+C > a2b2>c2,b2c2>a2,a2+c2>b2 2、正弦定理与余弦定理:①. (2R为ABC外接圆的直径) a2Rsin A、b2Rsin B、c2RsinC sinA a2R

12 b2R 、 sinC 12 c2R 12 acsinB 面积公式:SABC absinC bcsinA ②.余弦定理:abc2bccosA、bac2accosB、cab2abcosC bca 2bc cosA、cosB ac b 2ac 222 、cosC abc

222 3第二章数列 1、数列的定义及数列的通项公式: ①. anf(n),数列是定义域为N 的函数f(n),当n依次取1,2,时的一列函数值② i.归纳法 若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm Snf(an) iv. 若Snf(an),先求a 1得到关于an1和an的递推关系式 Sf(a)n1n1Sn2an1 例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an Sn12an11 2.等差数列: ① 定义:a n1an=d(常数),证明数列是等差数列的重要工具。② 通项d0时,an为关于n的一次函数; d>0时,an为单调递增数列;d<0时,a n为单调递减数列。 n(n1)2 ③ 前nna1

高中数学必修5测试题(基础)

朝阳教育暑期辅导中心数学必修5测试题(B 卷) 考试时间:90分钟 满分:100分 出卷人:毛老师 考生姓名: 一、选择题(每小题5分,共50分) 1.在等比数列{n a }中,已知11 = 9 a ,5=9a ,则3=a ( ) A 、1 B 、3 C 、±1 D 、±3 2.在△ABC 中,若=2sin b a B ,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0 015030或 3.在△ABC 中,若SinA :SinB :SinC=5:7:8,则B 大小为( ) A 、30° B 、60° C 、90° D 、120° 4.已知点(3,1)和(- 4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A. a <-7或 a >24 B. a =7 或 a =24 C. -7的解集是11 (,)23 -,则a b +的值是( )。 A. 10 B. 10- C. 14 D. 14- 8 1 1,两数的等比中项是( ) A .1 B .1- C .1± D . 12 9.设11a b >>>-,则下列不等式中恒成立的是 ( ) A . 11a b < B .11 a b > C .2a b > D .22a b > 10.已知{}n a 是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 二、填空题(每小题4分,共20分) 11、在△ABC 中,=2,=a c B 150°,则b = 12.等差数列{}n a 中, 259,33,a a ==则{}n a 的公差为______________。 13.等差数列{}n a 中, 26=5,=33,a a 则35a a +=_________。

高中数学必修五综合练习

高中数学必修五综合练习3 文 班 考号 姓 名 A 卷 一.选择题(本大题共11小题,每小题5分,共55分). 1.如果R b a ∈,,并且b a >,那么下列不等式中不一定能成立的是( ) A.b a -<- B.21->-b a C.a b b a ->- D.ab a >2 2.等比数列{}n a 中,5145=a a ,则111098a a a a =( ) A.10 B.25 C.50 D.75 3.在ABC ?中,若b 2 + c 2 = a 2 + bc , 则A =( ) A .30? B .45? C .60? D .120? 4.已知数列{}n a 中,11=a ,31+=+n n a a ,若2008=n a ,则n =( ) A.667 B.668 C.669 D.670 5.等差数列{}n a 的前n 项和为S n ,若,100,302==n n S S 则=n S 3( ) A.130 B.170 C.210 D.260 6.在⊿ABC 中,A =45°,B =60°,a=2,则b 等于( ) A.6 B.2 C.3 D. 62 7.若将20,50,100都分别加上同一个常数,所得三个数依原顺序成等比数列,则此等比数列的公比是( ) A. 21 B. 23 C. 34 D. 3 5 8.关于x 的不等式x x x 352 >--的解集是( ) A.}1x 5{-≤≥或x x B.}1x 5{-<>或x x C.}5x 1{<<-x D.}5x 1{≤≤-x 9.在一幢10米高的楼顶测得对面一塔吊顶的仰角为060,塔基的俯角为0 45,那么这座塔吊的高是( ) A.)3 3 1(10+ B.)31(10+ C.)26(5+ D.)26(2+ 10.已知+ ∈R b a ,且 11 1=+b a ,则 b a +的最小值为( ) A.2 B.8 C. 4 D. 1

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总 第一章 解三角形 一、知识点总结 正弦定理: 1.正弦定理:2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 步骤1. 证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA 得到b b a a s i n s i n = 同理,在△ABC 中, b b c c sin sin = 步骤2. 证明:2sin sin sin a b c R A B C === 如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90° 因为同弧所对的圆周角相等,所以∠D 等于∠C. 所以C R c D sin 2sin == 故2sin sin sin a b c R A B C === 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; (4)R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ?中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算 解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:

人教版高二数学必修五学案(全套)

加油吧,少年,拼一次,无怨无悔! 高二数学必修五全套学案 §1.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. 学习过程 一、课前准备 试验:固定?ABC的边CB及∠B,使边AC绕着顶点C转动. 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而.能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直 角三角形中,角与边的等式关系. 如图,在Rt?ABC中,设BC=a, AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,

有 sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B = sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B =

最新高中数学必修1到必修5综合试题资料

数学综合试卷 一、 选择题(共10题,每题3分,总计30分) 1、执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于( D ) A. [6,2]-- B. [5,1]-- C. [4,5]- D. [3,6]- 2、一台机床有 的时间加工零件A ,其余时间加工零件B ,加工A 时,停机的概率是,加工零件B 时,停机的概率为 ,则这台机床 停机的概率为( A ) A. B. C. D. 3、设集合{|32}M m m =∈-<

人教版高中数学必修5全册导学案

§1.1.1 正弦定理 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. CB 及∠B ,使边AC 绕着 顶点C 转动. 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※ 学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ?ABC 中,设BC =a ,AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是 CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B =sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ) . A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A = (2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 . [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C . (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b =;sin C = . (4)一般地,已知三角形的某些边和角,求其它 的边和角的过程叫作解三角形. ※ 典型例题 例1. 在ABC ?中, 已知45A =,60B =,42a =cm ,解三角形.

北师大版高中数学必修5综合测试题及答案

高中数学必修5 命题人:魏有柱 时间:100分钟 一、选择题 1.数列1,3,6,10,…的一个通项公式是() (A )a n =n 2-(n-1) (B )a n =n 2-1 (C )a n =2)1(+n n (D )a n =2 )1(-n n 2.已知数列3,3,15,…,)12(3-n ,那么9是数列的() (A )第12项 (B )第13项 (C )第14项 (D )第15项 3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 () A . B . C . D . 4.等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是 () A.3 B.5 C.7 D.9 5.△ABC 中,cos cos A a B b =,则△ABC 一定是() A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于() A .30° B .30°或150° C .60° D .60°或120° 7.在△ABC 中,∠A =60°,a=6,b=4,满足条件的△ABC( A ) (A)无解 (B)有解 (C)有两解 (D)不能确定 8.若110a b <<,则下列不等式中,正确的不等式有 () ①a b ab +< ②a b > ③a b < ④2b a a b +> A.1个 B.2个 C.3个 D.4个 9.下列不等式中,对任意x ∈R 都成立的是 () A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244 x x +≤1 10.下列不等式的解集是空集的是(C) A.x 2-x+1>0 B.-2x 2+x+1>0 C.2x-x 2>5 D.x 2+x>2 11.不等式组 (5)()0,03x y x y x -++≥??≤≤?表示的平面区域是 ( )

高中数学必修五第一章知识点总结

高中数学必修五第一章知识点总结 一.正弦定理(重点) 1.正弦定理 (1)在一个三角形中,各边和它所对角的正弦的比相等,即 ==sin sin sin a b c A B C =2R(其中R是该三角形外接圆的半径) (2)正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2.正弦定理的应用(重难点) (1)已知任意两角与一边:有三角形的内角和定理,先算出第三个角,再有正弦定理计算出另两边 (2)已知任意两边与其中一边的对角:先应用正弦定理计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边与角(注意:这种情况可能出现解的个数的判断问题,一解,两解,或无解) (3)面积公式 111s i n s i n s i n 222C S b c a b C a c ?A B =A ==B 二余弦定理(重点) 1.余弦定理 三角形中任何一边的平方等于其它两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即 222 2cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 应用:已知三角形的两边及其夹角可以求出第三边 2.推论 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定 义 , 有 sin a A =, sin b B =,又s i n 1 c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

人教新课标版数学高二数学必修五练习2-5数列求和

习题课 数列求和 双基达标 (限时20分钟) 1.数列12·5,15·8,18·11,…, 1(3n -1)·(3n +2),…的前n 项和为 ( ). A. n 3n +2 B.n 6n +4 C.3n 6n +4 D. n +1n +2 答案 B 2.数列{a n }的通项公式a n = 1n +n +1,若前n 项的和为10,则项数为 ( ). A .11 B .99 C .120 D .121 解析 ∵a n =1 n +n +1=n +1-n , ∴S n =n +1-1=10,∴n =120. 答案 C 3.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的 前n 项和S n = ( ). A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n 4 D .n 2+n 解析 由题意设等差数列公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1, a 3,a 6成等比数列,∴a 23=a 1a 6,即(2+2d )2=2(2+5d ),整理得2d 2-d = 0.∵d ≠0, ∴d =12,∴S n =na 1+n (n -1)2d =n 24+74n .

答案 A 4.若S n =1-2+3-4+…+(-1)n -1·n ,S 50=________. 解析 S 50=1-2+3-4+…+49-50 =(-1)×25=-25 答案 -25 5.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为 3的等比数列,则数列的通项公式为________. 解析 a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =a n =1×(1-3n )1-3 =3n -12. 答案 a n =3n -12 6.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式; (2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . 解 (1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2. 所以{a n }的通项为a n =2·2n -1=2n (n ∈N *) (2)S n =2(1-2n )1-2 +n ×1+n (n -1)2×2=2n +1+n 2-2. 综合提高 (限时25分钟) 7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3 +…+1a n a n +1的结果可化为 ( ). A .1-14n B .1-12n C.23? ????1-14n D.23? ?? ??1-12n 解析 a n =2n -1,设b n = 1a n a n +1=? ????122n -1,则T n =b 1+b 2+…+b n =12+? ????123+…

人教版高中二年级数学必修5知识点归纳(最完整版)

必修五数学知识点归纳资料 第一章 解三角形 1、三角形的性质: ①.A+B+C=π,?222A B C π+=-?sin cos 22 A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sin B , A >B ?cosA <cosB, a >b ? A >B ③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2 π; 22a b +>2c ,22b c +>2a ,2a +2c >2b 2、正弦定理与余弦定理: ①.为ABC ?外接圆的直径) 2sin a R A =、2sin b R B =、2sin c R C = sin 2a A R =、 sin 2b B R =、 sin 2c C R = 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理: 2222cos a b c bc A =+-、2222cos b a c ac B =+-、 2222cos c a b ab C =+- 222 cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222 cos 2a b c C ab +-=补充:两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);

人教版高中数学必修五知识点总结

必修5 第一章 解三角形 一、正弦定理 1.定理 2.sin sin sin a b c R A B C === 其中a ,b ,c 为一个三角形的三边,A ,B ,C 为其对角,R 为外接圆半径. 变式:a =2R sin A ,b =2R sin B ,c =2R sin C 二、余弦定理 1.定理 a 2= b 2+ c 2-2bc cos A 、b 2=a 2+c 2-2ac cos B 、c 2=a 2+b 2-2ab cos C 变形:222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222 cos 2a b c C ab +-= 2.可解决的问题 ①已知三边,解三角形; ②已知两边及其夹角,解三角形; ③已知两边及一边的对角,求第三边.

三、三角形面积公式 (1)111 222 a b c S ah bh ch ?===. 其中h a ,h b ,h c 为a ,b ,c 三边对应的高. (3)如果一个数列已给出前几项,并给出后面任一项与前面的项之间关系式,这种给出数列的方法叫做递推法,其中的关系式称为递推公式. (4)一个重要公式:对任何数列,总有 111, (2). n n n a S a S S n -??? ??==-≥ 注:数列是特殊的函数,要注意数列与函数问题之间的相互转化. 二、等差数列 (1)定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做数列的公差. (2)递推公式:a n +1=a n +d . (3)通项公式:a n =a 1+(n -1)d . (4)求和公式:11()(1).22 n n n a a n n S na d +-==+ (5)性质:

相关文档
最新文档