超声波焊接工艺特点

超声波焊接工艺特点
超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。

一、超声波焊接特点

1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。

2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。

3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。

4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。

5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。

6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。

二、超声波焊接的分类

超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。

(1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。

(2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。

(3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。

(4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。

(5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

(6)超声波对焊超声波对焊主要用于金属的对接,是近年来开发的一种新方法。焊接设备由上、下振动系统、提供接触压力的液压源和焊件夹持装置等部分组成。左边焊件的一端由夹具固定,另一端夹在上、下振动系统之间作超声振动;右焊件端面与左端面对接,并由夹具夹紧,接触压力加在右侧焊件上。焊接时,在超声振动的作用下即可把两个焊件在端面焊接在一起。应注意,焊接装置的上、下振动系统的振动相位必须相反,上振动系统可以是无源的。采用频率为27kHz的该类焊接装置可以焊接6~10mm厚的铝板、6mm厚的铜板和铝板的焊接。目前可以实现6mm厚、100~400mm宽铝板的对接。

三、超声波焊接头设计

1.焊点设计超声波焊接时,要求焊点强度必须达到一定的要求,需要设计出一种合理的焊点结构,同时还要保持外形尽可能美观。焊点分布如图10所示,对焊点与板材边缘的距离没有限制,可以沿边缘布置焊点,焊点之间的距离可以任意选定,可以重叠和重复焊接(修补),每行之间的距离也可以根据需要任选,不存在电阻点焊时的分流问题。

2.焊接界面设计为了在焊接过程中使能量集中,缩短焊接时间,提高焊接质量,焊接界面的设计非常重要,主要有以下几种形式。(2)台阶式界面为了提高焊接力,可设计成图12所示的台阶式焊接界面(W为板宽),三角形凸缘

可以使凸缘材料熔化之后流入预留的孔隙,能产生较大的切应力及拉力强度,这种设计还可以避免外表面上产生的焊接痕迹。(3)凹凸插接式界面,待焊材料设计成带有三角形凸缘的凹凸形式,两焊件之间应留有间隙,凸形焊件壁应有一定的斜度,以便塑料件容易拼合,同时让熔融的材料有流动的空间,不致溢出外面。在超声波焊的接头设计中应注意控制焊件的谐振问题。当上声极向焊件引入超声振动时,如果焊件沿振动方向的自振频率与引入的超声振动频率相等或相近,就有可能引起焊件的谐振,其结果往往造成已焊焊点的脱落,严重时可导致焊件的疲劳断裂。解决上述问题的简单方法就是改变焊件与声学系统振动方向的相对位置,或者改变焊件的自振频率。

四、超声波焊接参数选择超声波焊的主要参数有振动频率?

振幅A、静压力F及焊接时间t,此外还应考虑超声波功率的选择以及各参数之间的相互影响。在超声波焊接中,点焊应用得最普遍,下面以点焊为例讨论各参数对焊接质量的影响。

1.超声波振动频率? 振动频率主要是指谐振频率的数值和谐振频率精度。振动频率一般在15~75kHz之间。频率的选择应考虑被焊材料的物理性能和厚度,焊件较薄的选用比较高的振动频率;焊件较厚、焊接材料的硬度及屈服强度较低时选用较低的振动频率。这是由于在维持声功能不变的前提下,提高振动频率可以降低振幅,因而可降低薄件因交变应力引起的疲劳破坏。振动频度对焊点抗剪强度有影响,材料越硬、厚度越大时,频率的影响越明显。应注意,随着频率的提高,高频振荡能量在声学系统中的损耗将增大,因此大功率超声波点焊机的频率比较低,一般在15~20kHz范围内。振动频率的精度是保证焊点质量稳定的重要因素,由于超声波焊接过程中机械负荷的多变性,会出现随机的失谐现象,造成焊接质量不稳定。

2.振幅A 振幅是超声波焊接工艺中基本的参数之一,它决定着摩擦功率

的大小,关系到焊接面氧化膜的去除、接合面的摩擦产热、塑性变形区域的大小及塑性流动层的状况等。因此,根据被焊材料的性质及其厚度正确选择振幅的数值是获得高可靠接头的前提。振幅的选用范围一般为5~25μm,小功率超声波

焊机一般具有高的振动频率,但振幅范围较低。低硬度的焊接材料或较薄的焊件应选用较低的振幅;随着材料硬度及厚度的提高,所选用的振幅也应相应提高。这是因为振幅的大小对应着焊件接触表面相对移动速度的大小,而焊接区的温度、塑性流动以及摩擦功的大小又由该相对移动速度所确定。对于具体的焊件,存在一个合适的振幅范围。图15为铝镁合金在不同振幅值下焊点强度的试验结果。当振幅A为17μm时,焊点抗剪强度最大,振幅减小,强度随之降低。当振幅小于6μm时,已经不能形成接头,即使增加振动作用的时间也无效果。这是因为振幅值过小,焊件间相对移动速度过小所致。当振幅值超过17μm时,焊点强度反而下降,这主要与金属材料内部及表面的疲劳破坏有关,因此振幅过大,由上声极传递到焊件的振动剪力超过了它们之间的摩擦力,声极与工件之间发生相对的滑动摩擦,并产生大量的热和塑性变形,导致上声极嵌入焊件,使有效接合截面减少所致。超声波焊机的换能器材料和聚能器结构决定了焊机振幅的大小,当它们确定以后,要改变振幅,一般是通过调节起声波发生器的电参数来实现。此外,振幅值的选择与其他参数有关,应综合考虑。必须指出,在合适的振幅范围内,采用偏大的振幅可大大缩短焊接时间,提高焊接生产效率。

3.静压力F 静压力的作用是通过声极使超声振动有效地传递给焊件,超

声波焊接时所需静压力的大小根据材料类型的不同而异。静压力与焊点抗剪力之间的关系如图16所示。当静压力过低时,由于超声波几乎没有被传递到焊件,不足以在两焊件界面产生一定的摩擦功,超声波能量几乎全部损耗在上声极与焊件之间的表面滑动方面,因此不可能形成有效的连接。随着静压力的增加,改善了振动的传递条件,使焊区温度升高,材料的变形抗力下降,塑性流动的程度逐渐加剧;另外,由于压应力的增加,接触处塑性变形的面积及连接面积增加,因而接头的强度增加。当静压力达到一定数值后再增加压力,接头强度不再提高或反而下降。这是因为当静压力过大时,振动能量不能合理地利用,使摩擦力过大,造成焊件间的相对摩擦运动减弱,甚至会使振幅值有所降低,导致了焊件间的连

接面积不再增加或有所减小,加之材料压溃造成接头的实际接合截面减少,使焊点强度降低。在其他焊接条件不变的情况下,选用偏高的静压力,可以在较短的焊接时间内得到同样强度的焊点,这是因为偏高的静压力能在振动早期较低的温度下产生塑性变形所致。同时,选用偏高的静压力,能在较短的时间内达到最高的温度,缩短了焊接时间。

4.焊接时间t 焊接时间对接头质量有很大影响,焊接时间太短时,表面的氧化膜来不及被破坏,只形成几个凸点间的接触,则接头强度过低,甚至不能形成接头。随着焊接时间的延长,焊点强度迅速提高,在一定的焊接时间内强度值不降低。但当超声波焊接时间超过一定值以后,焊点强度反而下降,这是由于焊件的热输入量过大,塑性区扩大,上声极陷入焊件,除了降低焊点的截面积以外,还容易引起焊点表面和内部产生裂纹。从图17中还可以看出,对于不同的静压力,获得接头最佳强度所需的焊接时间不同,增大静压力的数值,可在某种程度上缩短焊接时间。

5.焊接功率P 超声波焊接时,功率的选择主要取决于焊件的厚度和材料的硬度,由于在实际应用中超声波功率的测量尚有困难,因此常常用振幅来表示功率的大小,超声波功率与振幅的关系可由下式确定: P=μSFυ=μSF2Aω/π=4μSFA? (1)式中 P——超声波功率; F——静压力; S——焊点面积;υ——相对速度; A——振幅;μ——摩擦系数;ω——角频率(ω=2π?); ?——振动频率。超声波焊接时,振幅的选取范围为5~25μm,当换能器材料、结构及其功率选定后,振幅值大小还与聚能器的放大系数有关。通常在确定上述各种焊接参数的相互影响时,可以通过绘制临界曲线的方法来达到,图18为静压力与功率的临界关系曲线。一般选用最小可用功率时的静压力和比最小可用功率稍高一点的功率值进行实际焊接。上述几个焊接参数之间并不是孤立的,而是相互影响、相互关联,应统筹考虑。例如,塑料的超声波焊接时,接头质量的好坏取决于换能器的振幅、静压力及焊接时间等因素的相互配合。焊接时间t和焊头静压力F是可以调节的,振幅由换能器和变幅杆决定,这三个量相互有最佳选择值。焊接能量超过合适值时,材料的熔解量大,产生较大的变形。若焊接能量太小,则不易焊牢。除了焊接参数以外,上声极材料、形状尺寸及其表面状态等因素也对焊接质量有影响。

超声波焊接技术

1.超声焊接 2. 振动焊接振动焊接是摩擦焊接过程,其间被焊接的制件在压力下磨擦到一起直到生成的磨擦和剪切热量使接触面达到充分熔融状态。一旦熔融膜已经形成渗入到足够深的沓接区域,相对运动停止,在压力作用下焊缝冷却并固化。振动焊接的材料因素与超声焊接类似 3. 旋转焊接旋熔式塑胶熔接是将塑胶工件相互摩擦所产生之热力,使塑胶工件接触面产生熔解,在靠外在压力、驱动促使上下工件旋转凝固为一体,而定位旋熔是在设定时间旋转,瞬间停在设定的位置上,成为永久性的熔合。旋转熔接机对于超音波范围以外圆形塑胶,适用于不易熔接塑胶,且韧性较高之圆形产品,如:脱水容器,汽机车滤油杯,喷水接头,热水瓶气胆,保温杯,球状玩具,油漆筒,保温锅,过滤心,浮标等。藉高速振动旋转磨擦生热原理,使塑胶加工物熔接表面熔解而达到熔接的效果。 旋转焊接用来连接具有旋转对称接合表面的制件,它属磨擦焊接工艺。是连接可大可小的圆柱形热塑性塑 料制件的最有效的工艺。用旋转焊接技术组装的制件常常具有与周边垂直的连接板等特征。它的生要加工变量 是相对剪切速率、焊接压力和焊接时间。旋转焊接的接头强度取决于材料、接头设计和所用的加工条件;多数 热塑性塑料可达到强的气密封接焊缝。旋转焊接对透射性能不好的材料特别合适。 4. 热板焊接主要通过一个由温度控制的加热板来焊接塑料件。焊接时,加热板置于两个塑料件之间,当工件紧贴住加热板时,塑料开始熔化。在一段预先设置好的加热时间过去之后,工件表面的塑料将达到一定的熔化程度,此时工件向两边分开,加热板移开,随后两片工件并合在一起,当热板停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能超越于原材料强度,整个焊接过程完成。 5. 感应焊接电磁焊接(电感焊接)是利用能达到熔化温度的电感能量连接热塑性制件的方法。也被称作特种插入焊接,此间磁致旋光聚合插入物被一个高频电磁场加热。 6. 接触(电阻)焊电导线或条带被直接放入接头界面,电线连接在电路中且用电阻损失直接加热。热量通过导热性传递给相邻的塑料材料,因此塑性固体在局部区域软化或溶化。断电后,焊接区或冷却,压力使啮合制件彼此接触。设备要求最低,焊接过程简单且速度快,特别适合于焊接很大的制件。但需要损失加热电线,焊接后电线保留在原位,增加了加工成本,且电线的存在也对成品的焊缝强度有不利影响。 7. 热气焊接又称热风焊接。压缩空气或惰性气体(通常为氮气)通常焊枪口的加热器加热到所需温度,喷到塑料表面及焊条上,使得二者熔融后在不大的压力下结合的方法。对氧有敏感性的塑料(如聚酰胺等)应使用惰性气体作为加热介质,其他塑料一般用经过滤的空气即可。气体以及零件必须干燥、无灰尘和油脂 8. 挤出焊接挤出焊接是由热气焊接发展而来的焊接方法。主要较大片型结构的自动焊接。

超声波焊接技术

哈尔滨工业大学 金属工艺学课程论文 题目:超声波金属焊接技术的综合介绍 院系:能源科学与工程学院 专业:能源与动力工程

班级: 1502403 学号: 1150240325 姓名:石嘉成 超声波金属焊接技术的综合介绍 石嘉成1 (1.哈尔滨工业大学能源科学与工程学院) 摘要:本文主要介绍特种焊接中的超声波金属焊接技术,将从超声波焊金属接技术的应用背景、工艺过程、特点及实际应用情况及最新发展等发面展开介绍。通过文献的查阅得到了以下的结论:超声波焊接的应用越来越广泛,它具有能耗低、压力小、速度快、稳定性高、程序简便、精度高等优点,虽然对仪器的要求较高导致成本较高,但是仍不失为一种很有前景的焊接技术。 关键词:超声波焊接;金属;工艺过程;文献查阅

1.超声波金属焊接技术应用背景 超声波金属焊接起源于1950年的美国1。超声波金属焊接在电子工业、电器制造、新材料的制备、航空航天及核能工业、食品包装盒、高级零件的密封技术方面都有很广泛的应用,加上其节能、环保、操作方便等突出优点,对于我国建设资源节约型、环境友好型的现代化社会,超声波金属焊接将发挥很大的促进作用2。 2.超声波焊接技术的原理及工艺过程 2.1超声波金属焊接技术的原理 超声波金属焊接主要过程是被夹持在一起的两块工件受到硬砧和焊接端头之间的静压力,将超声波能量传输给工件顶部,维持短暂的时间,待结合表面之间的摩擦破碎氧化膜和其它沾污,每个表面上暴露出清洁新生的金属,从而使两个表面相互结合。一旦两表面处于一个原于间距内,就会产生金属型结合,由于超声波清理作用是连续的,就没有时间来形成阻碍原于接近的新氧化膜。完成最终的冶金结合时,无电弧和飞溅,无焊缝金属的熔化,铸造组织无熔化,厚度变形也很小3。 2.2超声波金属焊接技术的工艺过程 如图1所示,超声波焊接过程分为4个阶段: 第1阶段:焊头与零件接触,施压并开始振动。摩擦发热量熔化导能筋,熔液流入结合面。随着两零件之间距离的减少,焊接位移量(两零件之间由于熔体流动产生的距离减小值)开始增加。起初焊接位移量快速增加,然后在熔化的导能筋铺展并接触下零件表面时放慢增速。在固态摩擦阶段,发热是由于两表面之间的摩擦能和零件中的内摩擦产生的。摩擦发热使聚合物材料升温至其熔点。发热量取决于作用频率、振幅和压力4。

高锰钢与超高锰钢铸件生产技术要点

高锰钢与超高锰钢铸件生产技术要点在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。 1化学成分 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是%-%。受冲击大,碳含量低。锰含量在%-%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于%。铬是提高抗磨性的,一般在%左右。 2炉料 入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。这里特别提醒的是有人认为只要化学成分合适,就可以多用回炉料。这个认识是有害的。某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。那么,回炉料过剩该如何只要把废品降到最低,回炉料就不会过剩。3熔炼 这里着重讲加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm

为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒在金属液面上,又不加覆盖,岂不白白浪费!在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。 4炉料与造型材料 要延长炉龄,当分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80毫米左右为宜,捣毕要低温长时间烘烤。如提高生产效率,笔者建议采用成型坩埚(沈阳力得厂和恒丰厂均有成品出售),从拆炉到装成,不用1小时,即可投入生产,同时成型坩埚对防穿炉大有裨益。当然,炉龄的长短与操作者大有关系。不少操作者像掷铅球的运动员一样,把炉料从三四米之外投入炉内,既不安全又伤炉龄,应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。 造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的基体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。5铸造工艺设计

低合金钢(16Mn)焊接工艺特点

低合金钢(16Mn)在钢结构中的焊接工艺特点 摘要:低合金钢(16Mn)中,16Mnq与Q345是最典型的两种钢材,分别运用于桥梁与建筑钢结构。如何采用正确的焊接工艺来保证该类钢材的焊接质量,是本文讨论的重点。 关键词:钢结构低合金钢单面焊双面成形焊接工艺层状撕裂 在承重钢结构中,经常采用掺加合金元素的低合金钢,其强度高于碳素结构钢,它的强度增加不是靠增加含碳量,而是靠加入合金元素的程度。所以,其韧性并不降低。低合金钢(16Mn)的综合性能较好,在钢结构领域已广泛使用。 1:16Mnq钢焊接工艺 16Mnq钢是广泛运用于钢桥梁的低合金钢, 该钢材以热轧状态交货化学成分与力学性能见表1,2: 表1 表2 由碳当量公式:Ceq(%)=C+1/6Mn+1/24Si可知该钢焊接性接近中碳钢,因而在施焊过程中要防止因淬硬带来的微裂纹等缺陷。 1.1 单面焊双面成形 图1 单面焊双面成形示意图 (1:二氧化碳气体保护打底焊 2:二氧化碳气体保护中间层焊 3;埋弧直动焊盖面)

1.1.1 板缝间隙 通过焊接工艺试验发现: 当板缝间隙过窄,小于6毫米时,则二氧化碳气体保护打底焊焊丝无法摆动,焊缝反面成型不规则,反面余高过高。 当板缝间隙大于8毫米时,则显过宽,容易产生夹渣与边缘未融合以及焊缝收缩量大现象。同时,板缝间隙过宽,二氧化碳气体保护焊丝摆动大,焊缝融敷金属受二氧化碳气体保护效果差,焊工也难于控制其面焊接质量。板缝间隙过宽,还会造成埋弧直动焊一次盖面不能彻底盖住,造成偏焊,达不到焊接质量要求。 当板缝间隙处于6~8毫米时,再配合适当的运条方法,则能避免上述问题出现,达到焊接质量要求。 1.1.2 打底层数和运条方法 对于8~14毫米间板厚,如果只进行一层二氧化碳气体保护打底焊,则易造成埋弧直动焊盖面时烧穿。所以,需采取两层二氧化碳气体保护打底。 但当板薄且运条方式不正确,又易造成打底焊焊缝高于母材,对埋弧直动焊盖面带来困难。 在实际施焊过程中,第一道二氧化碳气体保护打底焊需采用前月牙形右焊法,见图2。 图2 前月牙形右焊法 此种运条方法易保证焊接时不断弧,焊丝突然送进时,不对陶瓷衬垫造成破坏。 第二道二氧化碳气体保护打底焊需采用后月牙左焊法,见图3。 图3 后月牙左焊法 此种运条方法易保证埋弧直动焊盖面所需深度,也易避免坡口边缘产生夹渣和未融合。 1.1.3 接头处理方法 由于16Mnq钢淬硬带来的微裂纹趋向大,易出现弧坑裂纹与缩孔。 在收弧时,要采用慢收弧方法,并对这种冷接头采取打磨处理,将弧坑微裂纹与缩孔磨出,并将端部打磨成1:5的斜坡。 当要进行下次施焊时,要对其预热处理。 对于端部和收尾,要求每条焊缝必须安置与正式焊缝同材质同坡口的引熄弧板。同时,焊接

超声波焊接件的工艺设计

超声波焊接件的工艺设计 作者:欣宇机械来源:本站原创日期:2014-5-5 17:32:38 点击:6943 属于:行业新闻超声波焊接件的工艺设计-东莞市欣宇超声波机械有限公司 在超声波焊接行业中,很多客户都不知道塑料件焊接,焊接产品优良不只是跟材质,超声波选择机型功率有关系,最容易被忽略的一点是:超声波焊接件的工艺设计,塑料焊接件需要设计有超声线,焊接出来的产品才是比较完美的。那么,超声波焊接件的工艺设计是怎么样的呢?要怎么设计呢?很多客户初步使用超声波焊接,都会对个问题不了解,今天,欣宇小陈为大家讲解:超声波焊接件的工艺设计,希望对朋友有所帮助! 超声波塑料件的结构设计必须首先考虑如下几点: 1.是否需要水密、气密。 2.是否需要完美的外观。 3.是否适合焊头加工要求。 4.焊缝的大小(即要考虑所需强度)。 5.避免塑料熔化或合成物的溢出。 超声波焊接质量获得原因: 1.材质 2.上下表面的位置和松紧度 3.焊头与塑料件的妆触面 4.顺畅的焊接路径 5.塑料件的结构 6.焊接线的位置和设计 7.焊接面的大小 8.底模的支持 为了获得完美的、可重复的超声波熔焊方式,必须遵循三个主要设计方向: 1.围绕着连接界面的焊接面必须是统一而且相联系互紧密接触的。如果可能的话,接触面尽量在同一个平面上,这样可使能量转换时保持一致。 2.最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。 3.找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或齿口之类。 下面就对超声波塑料件设计中的要点进行分类举例说明: 超声波整体塑料件的结构 1.1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为 2-6kgf/cm2 。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑

通常版焊接工艺标准规范标准卡

焊接工艺编号HP-I-1/II-1-094 通用焊接工艺卡编号RXDTYS-01-02 适用范围 材料牌号20/16MnII 焊接层次及顺序简图 规格Φ57*5、Φ89*6 B7~B13 接头种类对接 焊接位置平焊 焊接方法 手工钨极氩弧焊 +焊条电弧焊 焊接 电源 种类直流 极性正接+反接 坡口形式Y 坡口角度(°)60±5 钝边(mm)1~1.5 组对间隙(mm) 2.5~2.8 背面清根:/ 焊前预热 加热方式/ 层间温度/ 温度范围/ 测温方法/ 焊后热处理 种类消应力保温时间0.25~1.5h 加热方式炉内加热冷却方式随炉缓冷炉外空冷 温度范围600~640℃测温方法热电偶 焊接工艺参数 焊层焊道焊材牌号 焊材规格 (mm) 焊接电流 (A) 电弧电压 (V) 焊接速度 Cm/min 气流量 L/min 钨极直径 (mm) 喷嘴直径 (mm) 线能量 (KJ/cm) 1 J50 ф2.5 90~95 13~14 8~9 9~11 2.5 10 7.8~10 2 J427 ф3.2 110~115 21~22 17~18 / / / 7.7~8.9 3 J427 ф3.2110~115 21~22 15~16 / / / 8.7~10.1 备注:其它焊接工艺要求,按本单位《通用焊接工艺规程》执行

焊接工艺编号HP-I-1/II-1-094 通用焊接工艺卡编号RXDTYS-01-01 适用范围 材料牌号20/16MnII 焊接层次及顺序简图 规格Ф25×3mm B16、B17 接头种类对接 焊接位置平焊 焊接方法 手工钨极氩弧焊 +焊条电弧焊 焊接 电源 种类直流 极性正接+反接 坡口形式Y 坡口角度(°)60±5 钝边(mm)1~1.5 组对间隙(mm) 2.5~2.8 背面清根:/ 焊前预热 加热方式/ 层间温度/ 温度范围/ 测温方法/ 焊后热处理 种类消应力保温时间0.25~1.5h 加热方式炉内加热冷却方式随炉缓冷炉外空冷 温度范围600~640℃测温方法热电偶 焊接工艺参数 焊层焊道焊材牌号 焊材规格 (mm) 焊接电流 (A) 电弧电压 (V) 焊接速度 Cm/min 气流量 L/min 钨极直径 (mm) 喷嘴直径 (mm) 线能量 (KJ/cm) 1 J50 ф2.5 90~95 13~14 8~9 9~11 2.5 10 7.8~10 2 J427 ф3.2 110~115 21~22 17~18 / / / 7.7~8.9 备注:其它焊接工艺要求,按本单位《通用焊接工艺规程》执行

焊接的工艺特点及流程介绍

可通过与波峰焊的比较来了解选择性焊接的工艺特点。两者间最明显的差异在于波峰焊中PCB的下部完全浸入液态焊料中,而在选择性焊接中,仅有部分特定区域与焊锡波接触。由于PCB本身就是一种不良的热传导介质,因此焊接时它不会加热熔化邻近元器件和PCB 区域的焊点。在焊接前也必须预先涂敷助焊剂。与波峰焊相比,助焊剂仅涂覆在PCB下部的待焊接部位,而不是整个PCB。另外选择性焊接仅适用于插装元件的焊接。选择性焊接是一种全新的方法,彻底了解选择性焊接工艺和设备是成功焊接所必需的。选择性焊接的流程典型的选择性焊接的工艺流程包括:助焊剂喷涂,PCB预热、浸焊和拖焊。助焊剂涂布工艺在选择性焊接中,助焊剂涂布工序起着重要的作用。焊接加热与焊接结束时,助焊剂应有足够的活性防止桥接的产生并防止PCB产生氧化。助焊剂喷涂由X/Y机械手携带PCB通过助焊剂喷嘴上方,助焊剂喷涂到PCB待焊位置上。助焊剂具有单嘴喷雾式、微孔喷射式、同步式多点/图形喷雾多种方式。回流焊工序后的微波峰选焊,最重要的是焊剂准确喷涂。微孔喷射式绝对不会弄污焊点之外的区域。微点喷涂最小焊剂点图形直径大于2mm,所以喷涂沉积在PCB上的焊剂位置精度为±0.5mm,才能保证焊剂始终覆盖在被焊部位上面,喷涂焊剂量的公差由供应商提供,技术说明书应规定焊剂使用量,通常建议100%的安全公差范围。预热工艺在选择性焊接工艺中的预热主要目的不是减少热应力,而是为了去除溶剂预干燥助焊剂,在进入焊锡波前,使得焊剂有正确的黏度。在焊接时,预热所带的热量对焊接质量的影响不是关键因素,PCB材料厚度、器件封装规格及助焊剂类型决定预热温度的设置。在选择性焊接中,对预热有不同的理论解释:有些工艺工程师认为PCB应在助焊剂喷涂前,进行预热;另一种观点认为不需要预热而直接进行焊接。使用者可根据具体的情况来安排选择性焊接的工艺流程。焊接工艺选择性焊接工艺有两种不同工艺:拖焊工艺和浸焊工艺。选择性拖焊工艺是在单个小焊嘴焊锡波上完成的。拖焊工艺适用于在PCB上非常紧密的空间上进行焊接。例如:个别的焊点或引脚,单排引脚能进行拖焊工艺。PCB以不同的速度及角度在焊嘴的焊锡波上移动达到最佳的焊接质量。为保证焊接工艺的稳定,焊嘴的内径小于6mm。焊锡溶液的流向被确定后,为不同的焊接需要,焊嘴按不同方向安装并优化。机械手可从不同方向,即0°~12°间不同角度接近焊锡波,于是用户能在电子组件上焊接各种器件,对大多数器件,建议倾斜角为10°。与浸焊工艺相比,拖焊工艺的焊锡溶液及PCB板的运动,使得在进行焊接时的热转换效率就比浸焊工艺好。然而,形成焊缝连接所需要的热量由焊锡波传递,但单焊嘴的焊锡波质量小,只有焊锡波的温度相对高,才能达到拖焊工艺的要求。例:焊锡温度为275℃~300℃,拖拉速度10mm/s~25mm/s通常是可以接受的。在焊接区域供氮,以防止焊锡波氧化,焊锡波消除了氧化,使得拖焊工艺避免桥接缺陷的产生,这个优点增加了拖焊工艺的稳定性与可靠性。https://www.360docs.net/doc/2613302975.html,机器具有高精度和高灵活性的特性,模块结构设计的系统可以完全按照客户特殊生产要求来定制,并且可升级满足今后生产发展的需求。机械手的运动半径可覆盖助焊剂喷嘴、预热和焊锡嘴,因而同一台设备可完成不同的焊接工艺。机器特有的同步制程可以大大缩短单板制程周期。机械手具备的能力使这种选择焊具有高精度和高质量焊接的特性。首先是机械手高度稳定的精确定位能力(±0.05mm),保证了每块板生产的参数高度重复一致;其次是机械手的5维运动使得PCB能够以任何优化的角度和方位接触锡面,获得最佳焊接质量。机械手夹板装置上安装的锡波高度测针,由钛合金制成,在程序控制下可定期测量锡波高度,通过调节锡泵转速来控制锡波高度,以保证工艺稳定性。尽管具有上述这么多优点,单嘴焊锡波拖焊工艺也存在不足:焊接时间是在焊剂喷涂、预热和焊接三个工序中时间最长的。并且由于焊点是一个一个的拖焊,随着焊点数的增加,焊接时间会大幅增加,在焊接效率上是无法与传统波峰焊工艺相比的。但情况正发生着改变,多焊嘴设计可最大限度地提高产量,例如,采用双焊接喷嘴可以使产量提高一倍,对助焊剂也同样

超声波焊接机的工作原理

超声波焊接机的工作原理 超音波焊接机的工作原理是: 是通过振荡电路振荡出高频信号由换能器转化成机械能(即频率超出人耳听觉阈的高频机械振动能),该能量通过焊头传导到塑料工件上,以每秒上几十万次的振动加上压力使塑料工件的接合面剧烈摩擦后熔化。振动停止后维持在工件上的短暂压力使两焊件以分子链接方式凝固为一体。一般焊接时间小于1秒钟,所得到的焊接强度可与本体相媲美。超声波塑料焊接机可用于热塑性塑料的对焊,也用于铆焊、点焊、嵌入、切除等加工工艺。根据产品的外观来设计模具的大小、形状。 超声波塑料焊接机由气压传动系统、控制系统、超声波发生器、换能器及工具头和机械装置等组成。 1、气动传动系统 包括有:过滹器、减压阀、油雾器、换向器、节流阀、气缸等。 工作时首先由空压机驱动冲程气缸,以带动超声换能器振动系统上下移动,动力气压在中小功率的超声波焊接中气压根据焊接需要调定。 2、控制系统 控制系统由时间继电器或集成电路时间定时器组成。主要功能是:一是控制气压传动系统工作,使其焊接时在定时控制下打开气路阀门,气缸加压使焊头下降,以一定压力压住被焊物件,当焊接完后保压一段时间,然后控制系统将气路阀门换向,使焊头回升复位;二是控制超声波发生器工作时间,本系统使整个焊接过程实现自动化,操作时只启动按钮产生一个触发脉冲,便能自动地完在本次焊接全过程。整个控制系统的顺序是:电源启动一触发控制信号气压传动系统,气缸加压焊头下降并压住焊触发超声发生器工作,发射超声并保持一定焊接时间去除超声发射继续保持一定压力时间退压,焊头回升焊接结束。 3、超声波发生器 (1)功率较大的超声波塑料焊接机,发生器信号采用锁相式频率自动跟踪电路,使发生器输出的频率基本上与换能器谐振频率一致。

高锰钢辙叉焊修工艺

高锰钢辙叉焊修工艺 怀化工务段退休工程师肖国富 特别声明:本工艺虽然经过作者数十年研究实验,已经在全国铁路推广。但本文脱稿于2007年,上传于2012年,仅供同行研究参考。 第一节准备工作 一、安全注意事项 1、从事辙叉焊补的焊工应取得相应的操作许可证; 2、不焊补任何部位出现断裂的辙叉,也不焊补同一部位焊补过三次的辙叉; 3、不在风力大于5级和雨雾天进行辙叉的室外焊补作业,室外焊补人员应在上风方向作业,室内应有吸尘排烟设备,以减少烟尘锰毒对焊补人员的危害; 4、辙叉表面缺陷或磨耗,打磨后不影响行车时,可以在车速不高的线上,利用列车间隙时间焊补,但应由辙叉养护工区按《铁路工务安全规则》及有关规定办理施工手续和设置防护才能上线作业,且在作业中,要严格控制辙叉挖补尺寸,以保证能随时放行列车; 5、利用“天窗”时间线上焊补辙叉裂纹、磨耗、掉块时,也要按“天窗”作业的相关规定,办理手续和防护施工车辆; 6、线上焊补时,电焊搭铁应搭接在所焊辙叉的轨底裙边上。严禁跨过钢轨、绝缘接头及轨道绝缘处,进行搭铁和引弧,以防止破坏和影响行车信号; 7、线上“天窗”条件焊补有困难时,辙叉焊补应在线下进行,或运回工厂,在室内的水槽中施焊; 8、随时注意行车和人身安全,遵守焊接安全操作规章,按规定穿着防护用品。 二、现场焊修设备工具 1、AXQ1-200系列内燃电焊机1台,含焊钳、电缆线、面罩等附件; 2、0.35~0.4立方米、0.7~0.8兆帕(700~800千帕)内燃机驱动空压机1台,含碳弧气刨手钳、高压(氧气)气管等附件; 3、交直流两用手提式电动砂轮机或角磨机一台(建议用上海砂轮机厂生产的S1S-150型850W砂轮机,不要用其它工厂生产的580W砂轮机,否则磨不动),最近有工务段使用的博世角磨机和博世磨片也比较好; 4、电焊条干燥保温筒一个或小烘箱+保温筒; 5、接线板或多用(耐摔、防水)插座一至二个或带插座的电缆圆盘; 6、Φ22~26厘米水壶一个,约10公斤水桶一只或用钢轨钻孔用的压力式水桶; 表2-2 碳棒的规格及适用的电焊机和电流参考表 适用场地电焊机型号圆形碳棒 规格(mm) 使用电流 (A) 线场焊叉AXQ1-200 ¢ 3 150~180 ¢3.5 150~180 ¢4 150~200 ¢5 150~200(250) 工厂焊叉ZXG-400等¢7 200~350 ¢8 250~400 ¢9 350 ~400(500) 7、扳手、钳子、敲渣尖锤、钢丝刷、扁油刷、手锤、钢錾子等手工工具一套; 8、1米长钢直尺、0.05(0.5)~1.00塞尺、弦线、钢轨测温计、2~5米钢卷尺、等量具一套,

高锰钢焊接

高锰钢Mn13 焊接工艺 高锰钢是指含碳量为0.9% ~1.3% ,含锰量为11.0% ~14.0% 的铸钢,即 ZGMn13 。 此材料在1000 ~1100 ℃之间为单一奥氏体组织,为保持此组织,需高温淬火, 即在1100 ~1050 ℃间的温度内立即水淬至常温。经过热处理后的高锰钢,如果 再加热到250 ℃以上, 就会有碳化物析出,其脆性增加,再有此材料的线胀系数大,易出现较大内应力,如果采取常规焊接工艺焊接会出现开裂现象,原因是焊后缓冷到950 ~250 ℃的温度区间内, 会有大量碳化物析出,使母材变脆,再有内应力大,冷却后检查焊缝与母材间已开裂。解决此问题, 就要根据此材料的特殊性质,采取特殊焊接工艺,采取间断焊接、焊后立即水冷至常温的办法,使焊缝避开那段温度区。 结果是成功的.ZGMn13 高锰钢的焊接较差,焊接时的主要问题是:⑴热影响区碳化物的析出高锰钢经1050 ℃水韧处理后, 碳全部固溶于奥氏体中,室温下呈单相奥氏体组织,具有良好的韧性,但当重新加热超过250 ℃时,碳就会沿晶界析出碳化物, 使材料的韧性大大下降,因此焊补后,在热影响区的一个区段内会不同程度地析出碳化物,不仅失去韧性变脆, 而且还会降低耐磨性和冲击韧度。解决的措施是加快施焊时焊件的冷却速度,缩短在高温下停留的时间,以减少碳化物的析出。 ⑵热裂纹倾向严重ZGMn13 高锰钢的线膨胀系数是低碳钢的 1.6 倍,但热导率

仅是低碳钢的1/6 ,所以焊接时会产生很大的应力, 在S、P 有害杂质的作用下,产生焊缝热裂纹和热影响区的液化裂纹。解决的措 施是严格控制母材中的S、P 含量, 特别是焊接材料中的S、P 含量;其次是采用锤击焊缝等工艺措施,减少焊接应力。 如何正确地选用ZGMn13 奥氏体高锰钢焊接时的焊接材料?⑴焊条用于 ZGMn13 奥氏体高锰钢焊接的焊条为低碳钢焊芯 ,并在药皮中加入适量合金元素,使熔敷金属得到高锰钢的化学成分和力学性能。 用于焊接ZGMn13 奥氏体高锰钢的焊条有两种类型: 一种是高锰钢型焊条D256(EDMn-A-16 )和(EDMn-B-16 ),主要用于堆焊受严重冲击磨料磨损零件,如碎石机颚板等; 另一种是Cr-Mn 型焊条D276 (EDCrMo-B-16 )和D277 (EDCrMo-B-15 ),其堆焊金属处于介稳定状态的高锰奥氏体, 当受到强烈冲击后转变为马氏体,主要用于耐气蚀的堆焊或高锰钢堆焊,如水轮机叶片、挖掘机斗齿等。 ⑵焊丝焊接ZGMn13 奥氏体高锰钢用焊丝有Mn-Ni 、Mn-Cr 、Mn-Mo 、Mo-Ni-Cr 系高锰钢焊丝和Cr-Ni 、Cr-Ni-Mn 系合金钢焊丝, 其化学成分,见表31。Cr-Ni 系焊丝不仅具有较高的耐腐蚀性能,能冲击载荷下 能声速被加工硬化, 而且还在焊接高锰钢与碳钢或低合金钢的异种钢时容许有较高的稀释,可用来作为高锰钢与碳钢焊接时的填充材料。 ZGMn13 奥氏体高锰钢的焊接工艺。焊补或焊接ZGMn13 奥氏体高锰钢时,应

焊接工艺卡-作业指导书(最新)

焊接工艺卡 建设单位茂名建筑集团工业设备安装有限 公司 母材20#、①273*6.5 焊接材料焊条J427① 3.2) 焊丝 H08M nSiA (①2.5)焊剂/ 焊条烘烤温度350C?400C 焊条烘烤时间2h 清根手段 预热温度 预热保温方法 层间温度 焊后热处理 工艺说明本工艺根据工程技术要求,制定适用于工程上钢管与钢管间的焊缝焊接. 编制审核 工程东莞虎门港海湾石油仓储码头有限公司名 称石化仓储工程 结点图 2 1 60° 焊接顺序图 见左图 工艺评定编号 序号 编号13P- 01 G10-TS-03 施焊要求 施焊前认真按工艺要求检查焊口尺 寸,并仔细清理管道焊口及附近20mm 内的油、锈、氧化皮等杂质. 每层焊道之间要进行清渣、打磨,若 有明显缺陷应清除再施焊下一层? 盖面 完成后,要清除焊缝表面飞溅、毛 刺,并按规定打上焊工钢印代号? 备注 焊缝尺 寸标准 GB50236- 2011 焊接方 法 层数电流A电压V 速度 mm/s 焊条 直径 (mm) 焊丝直径 (mm) 喷嘴直径 (mm) 钨极直 径(mm) 氩气流 量(升/分) 电源 种类 极性 焊 接 规 范 参 数 氩弧 焊 手弧 焊 打底80 ? 90 14 ? 16 ①2.5 ①10 ①2.5 8?12 直流正极 80 ? 90 20 ? 23 ①3.2 直流反极

建设单位茂名建筑集团工业设备安装有限 公司 母材20#、①89*4.5 焊接材料焊条J427① 3.2))焊丝 H08M nSiA (①2.5) 焊剂/ 焊条烘烤温度350C?400C 焊条烘烤时间2h 清根手段 预热温度 预热保温方法 层间温度 焊后热处理 工艺说明本工艺根据工程技术要求,制定适用于工程上钢管与钢管间的焊缝焊接. 编制审核 工程东莞虎门港海湾石油仓储码头有限公司名 称石化仓储工程 结点图 2 1 60° 焊接顺序图 见左图 工艺评定编号G10-TS-03 序号 焊缝尺 寸标准 GB50236- 2011 焊接方 法 层数电流A电压V 速度 mm/s 焊条 直径 (mm) 施焊要求 施焊前认真按工艺要求检查焊口尺 寸,并仔细清理管道焊口及附近20mm 内的油、锈、氧化皮等杂质. 每层焊道之间要进行清渣、打磨,若 有明显缺陷应清除再施焊下一层? 盖面 完成后,要清除焊缝表面飞溅、毛 刺,并按规定打上焊工钢印代号? 焊丝直径 (mm) 喷嘴直径 (mm) 钨极直 径(mm) 氩气流 量(升/分) 电源 种类 备注 极性 焊 接 规 范 参 数 氩弧 焊 手弧 焊 打底80 ? 90 14 ? 16 ①2.5 ①10 ①2.5 8?12 直流正极 80 ? 90 20 ? 23 ①3.2 直流反极

超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。 6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。 (4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。 (5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

下向焊工艺的特点及技术【最新版】

下向焊工艺的特点及技术 其焊接特点是,在管道水平放置固定不动的情况下,焊接热源从顶部中心开始垂直向下焊接,一直到底部中心。其焊接部位的先后顺序是:平焊、立平焊、立焊、仰立焊、仰焊。下向焊焊接工艺采用纤维素下向焊焊条,这种焊条以其独特的药皮配方设计,与传统的由下向上施焊方法相比,其优点主要表现在: (1)焊接速度快,生产效率高。因该种焊条铁水浓度低,不淌渣,比由下向上施焊提高效率50%。 (2)焊接质量好,纤维素焊条焊接的焊缝根部成形饱满,电弧吹力大,穿透均匀,焊道背面成形美观,抗风能力强,适于野外作业。 (3)减少焊接材料的消耗,与传统的由下向上焊接方法相比焊条消耗量减少20%-30%。 (4)焊接一次合格率可达90%以上。 下向焊焊接中易产生的缺陷及其防止措施如下: 1焊接中易产生的缺陷

1.1 夹渣产生的原因 (1)打底焊后清根不彻底,致使在快速热焊时,未能使根部熔渣完全溢出。 (2)打底焊清根的方法不当,使根部焊道两侧沟槽过深,呈现“W”状。在快速热焊时,流到深槽的熔渣来不及溢出而形成夹渣。 (3)在6点钟位置收弧过快也易产生夹渣。 1.2 气孔产生的原因 (1)盖面焊时,熔池过热,吸覆大量的周边空气。 (2)盖面焊时,焊条摆动幅度太大,熔池保护不良。 (3)根部间隙过小,容易产生根部针形气泡。 (4)焊条未在规定时间内用完或长时间暴露在空气中。 1.3 裂纹产产的原因

(1)如果施工地段起伏较大,土墩未及时垫到位,使管子处在受力状态,在焊接收弧点(尤其是6点钟位置)易出现应力裂纹。 (2)在焊接过程中,如过早松开或撤离对口器,致使熔池中的铁水未来得及凝固好,在焊接收弧处容易产生裂纹。 (3)焊工在6点钟位置采用直线熄弧等不当的收弧方法,致使熔池未填满形成弧坑而出现弧坑裂纹。 1.4 内凹产生的原因 (1)对口间隙过大。 (2)打底焊时焊条送人深度不够。 (3)焊接电流过大,热焊时在5-7点钟位置运弧太慢。 2针对易产生的缺陷所应采取的措施 根据工程用的管材和焊材要求,对每次工程要作好焊接工艺评定,编写好焊接工艺操作规程,并要求电焊工严格按焊接工艺规程要

高锰钢

高锰钢 高锰钢(high manganese steel) 含锰量在10%以上的合金钢。1882年第一次获得奥氏体组织的高锰钢,1883 年英国人哈德菲尔德(R.A.Hadfield)取得了高锰钢专利。高锰钢依其用途的不同可分为两大类: (1)耐磨钢。这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ 0.2340~470 MPa ζ15%~85%ψ15%~45%aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.3 0%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从而为ε马氏体的形成和形变孪晶的产生创造了条件。常规成分的高锰钢的形变硬化层中常可以看到高密度位错、位错塞积和缠结。ε马氏体和形变孪晶的出现使钢难以变形,尤其是后者的作用更大。上述各种因素都使高锰钢的硬化层得到很高程度的强化,硬度大幅度提高。

超声波金属焊接基础知识

一、超声波金属焊接基础知识 1、原理 超声波金属焊接是利用高频振动波传递到两个需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合,其优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。 2、焊接优点: 1)、焊接材料不熔融,不脆弱金属特性。 2)、焊接后导电性好,电阻系数极低或近乎零。 3)、对焊接金属表面要求低,氧化或电镀均可焊接。 4)、焊接时间短,不需任何助焊剂、气体、焊料。 5)、焊接无火花,环保安全。 3、超声波金属焊接适用产品: 1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。. 2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。. 3)、电线互熔,偏结成一条与多条互熔。 4)、电线与名种电子元件、接点、连接器互熔。 5)、名种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。 6)、电磁开关、无熔丝开关等大电流接点,异种金属片的互熔。 7)、金属管的封尾、切断可水、气密。 4、振幅参数 振幅对于需要焊接的材料来说是一个关键参数,相当于铬铁的温度,温度达不到就会熔接不上,温度过高就会使原材料烧焦或导致结构破坏而强度变差。因为每一间公司选择的换能器不同,换能器输出的振幅都有所不同,经过适配不同变比的变幅杆及焊头,能够校正焊头的工作振幅以符合要求,通常换能器的输出振幅为10—20μm,而工作振幅一般为30μm左右,变幅杆及焊头的变比同变幅杆及焊头的形状,前后面积比等因素有关,形状来说如指数型变幅、函数型变幅、阶梯型变幅等,对变比影响很大,前后面积比与总变比成正比。贵公司选用的是不同公司品牌的焊接机,最简单的方法是按已工作的焊头的比例尺寸制作,能保证振幅参数的稳定。 5、频率参数 任何公司的超声波焊接机都有一个中心频率,例如20KHz、40 KHz等,焊接机的工作频率主要由换能器(Transducer)、变幅杆(Booster)、和焊头(Horn)的机械共振频率所决定,发生器的频率根据机械共振频率调整,以达到一致,使焊头工作在谐振状态,每一个部份都设计成一个半波长的谐振体。发生器及机械共振频率都有一个谐振工作范围,如一般设定为±0.5 KHz,在此范围内焊接机基本都能正常工作.我们制作每一个焊头时,都会对谐振频率作调整,要求做到谐振频率与设计频率误差小于0.1 KHZ,如 20KHz 焊头,我们焊头的频率会控制在19.90—20.10 KHz,误差为5‰。 6、节点 焊头、变幅杆均被设计为一个工作频率的半波长谐振体,在工作状态下,两个端面的振幅最大,应力最小,而相当于中间位置的节点振幅为零,应力最大。节点位置一般设计为固定位,但通常的固定位设计时厚度要大于3mm,或者是凹槽固定,所以固定位并不是一定为零振幅,这样就会引致一些叫声和一部分的能量损失,对于叫声通常用橡胶圈同其它部件隔离,或采用隔声材料进行屏蔽,能量损失在设计振幅参数时予以考虑。 7、网纹 超声波金属焊接通常会在焊接位表面,底座表面设计网纹,网纹设计的目地在于防止金属件的滑动,尽可

超声波焊接工艺特点

超声波焊接工艺特点 信息来源:www.66csb.cn发布时间:2008-01-23字号:小中大 关键字:超声波焊接超声波 超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。

6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。

相关文档
最新文档