A机器人权限设定

A机器人权限设定
A机器人权限设定

UAS介绍及设定

一:在电脑上安装与ROBOT系统同样或更高的版本的ROBOT WARE 和 ROBOTSTUDIO软件,如果版本低于系统则连接不上。

二:用ABB配的网络线,连接PC 与机器人;pc上设自动获取IP;如下图F端口;

三:在pc上打开ROBOTSTUDIO软件,并点击在线,如下图:

四:点击:“添加控制器”—》“一线连接”——》如果接上会出现机械人的序列号——》在机器人的序列号上点击右键——》“请求写权限”——在示校器上点击“同意”

五:UAS概述控制器用户授权系统(UAS),该系统规定了不同用户对机器

人的操作权限。该系统能避免控制器功能和数据的未授权使

用。用户授权由控制器管理,这意味着无论运行哪个系统控

制器都可保留 UAS 设置。这也意味着 UAS 设置可应用于所

有与控制器通信的工具,如 RobotStudio 或 FlexPendant。

UAS 设置定义可访问控制器的用户和组,以及他们授予访问

的动作。

用户

UAS 用户是人员登录控制器所使用的帐户。此外,可将这些用户添加到授权他们访问的组中。每个用户都有用户名和密码。要登录控制器,每个用户需要输入已定义的用户名和正确的密码。在用户授权系统中,用户可以是激活或锁定状态。若用户帐号被锁定,则用户不能使用该帐号登录控制器。UAS管理员可以设置用户状态为激活或锁定。默认用户所有控制器都有一个默认的用户名Default User和一个公开的密码robotics。Default User无法删除,且该密码无法更改。但拥有管理 UAS 设置权限的用户可修改控制器授权和Default User的应用程序授权。

用户组

在用户授权系统中,根据不同的用户权限您可以定义一系列登录控制器用户组。您可以根据用户组的权限定义,向用户组中添加新的用户。比较好的做法是根据使用不同工作人员对机器人的不同操作情况进行分组。例如,您可以创建管理员用户组,程序员用户组和操作员用户组。默认用户组所有的控制器都会定义默认用户组,该组用户拥有所有的权限。该用户组不可以被移除,但拥有管理用户授权系统的用户可以对默认用户组进行修改。

附注!修改默认的用户组人员会带来风险。如果您错误的清空了默认用户复选框或任何默认组权限,系统将会显示提示警告信息。请确保至少一位用户被定义为拥有管理用户授权系统设置权限。如果默认用户组或其他任何用户组都没有该权限,您将不能管理和控制用户和用户组。

权限

权限是对用户可执行的操作和可获得数据的许可。您可以定义拥有不同权限的用户组,然后向相应的用户组内添加用户帐号。权限可以是控制器权限或应用程序权限。根据您要执行的操作,您可能需要多个权限。详细操作过程请参阅 .控制器权限控制器权限对机器人控制器有效,并适用于所有访问控制器的工具和设备。应用程序权限针对某个特殊应用程序您可以定义应用程序权限,例如示教器,仅在使用该应用程序时有效。应用程序权限可以使用附加选项添加,也可以针对用户定义的应用程序进行定义。

六:在“在线”选项卡上,”用户管理”并选择编辑用户帐号来管理用户帐号,权限和用户组.

用户选项卡

使用用户选项卡您可以设定可以登录控制器的用户,以及每个用户应该属于哪个用户组.

用户选项卡部件

1.添加按钮。打开添加用户对话框。

2.编辑按钮。打开对话框修改用户登录名和密码.

3.删除按钮。从控制器中删除所选的用户帐号.

4.当前控制器用户列表。显示了在当前控制上定义的用户列表。该

列表包含两列::

列描述

用户帐号名称

状态显示该帐号激活还是锁定状态。如果是锁定状态,则不能使用该帐号登录控制器.

5.激活/锁定选项框。改变用户状态。

6.用户组/用户权限列表. 用户组列表显示了用户帐号所属的用户

组。要修改用户组包含的用户,选中或清空组名前的复选框。用户权限列表显示了所选用户组的可用权限。当在用户权限列表中选择了项目之后,将显示关于所选权限的描述。如下图:

添加用户

1.在用户选项卡上,单击添加打开对话框。

2.在用户名称框中,输入用户名称。仅能使用ISO8859-1

(Latin 1)字符,且不超过16个字符。

3.在密码框中,输入用户密码。您所输入的密码将不可见。仅

能使用ISO8859-1(Latin 1)字符,且不超过16个字符。

4.在重新输入密码框中,重新输入用户密码。

5.单击确定添加新用户并关闭对话框.

6.单击OK。

删除用户

1.在用户选项卡上,在当前控制器用户列表中选择要删除的

用户并单击删除.

2.当提示您确定要删除所选用户吗?时,单击是。

3.单击OK。

设定用户组成员

1.在用户选项卡上,在当前控制器用户列表中选择所需用

户.

2.在用户组列表中,选择该组包含的用户.

3.单击OK。

改变用户名和密码

1.在用户选项卡上,在当前控制器用户列表中选择要编辑的

用户,单击编辑用户.打开编辑对话框.

2.要修改用户名,在用户名称框中输入新用户名。仅能使用

ISO8859-1(Latin 1)字符,且不超过16个字符。

3.要修改密码,在密码框中输入新密码,然后在重新输入密

码框中重新输入新密码。仅能使用ISO8859-1(Latin 1)字符,且不超过16个字符。

4.单击确定保存对用户的修改并关闭对话框.

5.单击OK。

激活或锁定用户

1.在用户选项卡上,在当前控制器用户列表中选择一个用

户,单击它的状态描述(激活或锁定),将显示一个项目框,在这个项目框上您可以选择更改用户状态.用户的新状态将显示在当前控制器用户列表的状态列中.

2.单击OK。

导出用户列表

1.在用户选项卡上,在当前控制器用户列表中选择选择您所

需的用户,单击导出.将打开另存为对话框,请在对话框中

输入名称和地址保存包含有用户列表信息的文件.

导入用户列表

1.在用户选项卡上,在当前控制器用户列表中选择用户,然

后单击导入.将打开打开文件对话框,请在对话框中查找您

要导入文件所在的地址.

描述

当您选中要导

入的文件,将

出现导入选项

表格. 选择

之前的用户和用户组将被删除.

导入前删除已

存在的用户和

用户组

高级选项将出现新对话框。导入用户但不删除拷贝已存在的用户

不会被替代。导入用户并删除拷贝表示已存在的用户

将被替代.导入用户组但不删除拷贝已存在的用户组不

会被替代.导入用户组并删除拷贝表示已存在的用户组

将被替代.

2.

添加用户组

1.在用户组选项卡上,单击添加.将打开添加新用户组对话

框.

2.在用户组名称框,输入组名。仅能使用ISO8859-1(Latin

1)字符,且不超过16个字符。

3.单击确定添加新的用户组并关闭对话框.

4.单击OK。

重命名用户组

1.在用户组选项卡上,在当前控制器用户组列表中选择要重

命名的用户组,单击重命名.将打开重命名用户组对话框.

2.在用户组名称框,输入组名。仅能使用ISO8859-1(Latin

1)字符,且不超过16个字符。

3.单击确定重命名用户组并关闭对话框.

4.系统将提示您是否同时保留原用户组和组内的用户和新用户组

以及新用户组内的用户(与原用户组用户相同)。

用于

是用户同时属于新名称用户组和原用户组。但是,由于原用户组已被新名称的用户组替换,在控制器用户授权系统中将没有原用户组的

定义。此操作在您要重新创建原用户组或将用户设置复制至另一使

用原用户组定义的控制器时非常有用.

否删除原用户组中的用户。此操作仅将原用户组内的名称替换为新名称.

取消更改,保持原有用户组名称和组中的用户不变.

5.单击OK。

删除用户组

1.在用户组选项卡,选中要从当前控制器用户组列表中删除

的用户组,单击删除.

2.系统将提示您当前用户组内的原有用户是否还属于当前用户

组(即使当前用户组不合法)。

用于

是用户组内的用户仍属于该组,即便在控制器用户授权系统中已经没有该用户组的定义。此操作在您要重新创建原用户组或将用户设置

复制至另一使用原用户组定义的控制器时非常有用.

否删除该用户组内的用户.

取消更改,保持原用户组和组内用户不变.

3.单击OK。

授予用户组权限

1.在用户组选项卡上,在当前控制器用户组列表中选择所需

的用户组.

2.在控制器授权/应用程序授权列表中,选择该用户组所需的

授权.

3.单击OK。

七:用户权限管理查看器

概述用户权限管理查看器页面显示当前登录控制器用户的权限信息和其所属的用户组。

1.在验证菜单中,单击用户权限管理系统查

看器。将打开用户权限窗口

常用操作示例

操作所需权限

重命名控制器(需要重启控制器)Modify controller propertiesRemote warm start

修改系统参数并加载配置文件Modify configurationRemote warm start

安装新系统Administration of installed

system

执行备份(需要重启控制器)Backup and saveRemote warm start

Restore a backup (需要重启控制器)Restore a backupRemote warm start

下载/删除模块Load program

创建新模块. Load program

编辑RAPID模块代码 Edit RAPID code

将模块和程序保存至

磁盘

Backup and save

在任务窗口开始执行

程序

Execute program

创建新的I/O信号,即添加信号类型实例(需要重启控制器)Modify configurationRemote warm start

设置I/O信号的值I/O write access

由文件传送窗口访问Read access to controller

控制器磁盘disksWrite access to

controller disks

控制器权限

Full access 该权限包含了所有控制器权限,也包

含将来RobotWare版本添加的权限。

本权限不包含应用程序权限和安全

配置权限权限。

Manage UAS settings 该权限可以读写用户授权系统的配置文件,即可以读取,添加,删除和修改用户授权系统中定义的用户和用户组.

Execute program 拥有执行以下操作的权限:

?开始/停止程序(使

用拥有停止程序的权

限)

?将程序指针指向主程

?执行服务程序

Perform ModPos

and HotEdit

拥有执行以下操作的权限:

?修改和示教RAPID代

码中的位置信息

(ModPos)

?在执行的过程中修改

RAPID代码中的单个

点或路径中的位置信

息。

?将ModPos/HotEdit

位置值复位为原始值

?修改RAPID变量的当

前值

Modify current value 拥有修改RAPID变量的当前值。该权限是Perform ModPos and HotEdit 权限的子集.

I/O write

access

拥有执行以下操作的权限::

?设置 I/O信号值

?设置信号仿真或不允

许信号仿真

?将I/O总线和单元设

置为启用或停用

Backup and save 拥有执行备份和保存模块,程序和配

置文件的权限.

Restore a

backup

拥有恢复备份并执行B-启动的权限.

Modify configuration 拥有修改配置数据库,即加载配置文件,更改系统参数值和添加删除实例的权限.

Load program 拥有下载/删除模块和数据的权限.

Remote warm start 拥有远程关机和热启动的权限。使用本地设备进行热启动不需任何权限,例如使用示教器.

Edit RAPID code 拥有执行以下操作的权限::

?修改已存在RAPID模

块中的代码

?框架校准(工具坐

标,工件坐标)

?确认ModPos/HotEdit

值为当前值

?重命名程序

Program debug 拥有执行以下操作的权限::

?Move PP to routine ?Move PP to cursor ?HoldToRun

?启用/停用 RAPID任务

?向示教器请求写权限?启用或停用非动作执行操作

Decrease production speed 拥有在自动模式下将速度由100%进行减速操作的权限。该权限在速度低于100%或,控制器在手动模式下时无需请求。

Calibration 拥有执行以下操作的权限::

?精细校准机械单元

?校准Baseframe

?更新/清除SMB数据

注意!框架校准(工具坐标,工件坐

标)需请求Edit RAPID Code 权限。

手动偏移机械单元校准以及从文件中

加载校准数据需要请求Modify

configuration权限.

Administration

of installed

systems

拥有执行以下操作的权限::

?安装新系统

?P-启动

?I-启动

?X -启动

?C-启动

?选择系统

?由设备安装系统

该权限给予全部FTP访问权限,即与

Read access to controller disks

和Write access to controller disks相同的权限.

Read access to controller disks 对控制器磁盘的外部读取权限。该权限仅对外部访问有效,例如,FTP客户端或RobotStudio文件管理器.也可以在没有该权限的情况下将程序加载到hd0a。

Write access to controller disks 对控制器磁盘的外部写入权限。该权限仅对外部访问有效,例如,FTP客户端或RobotStudio文件管理器.可以,例如,将程序保存至控制器磁盘或执行备份.

Modify controller properties 拥有设置控制器名称,控制器ID和系统时钟的权限.

Delete log 拥有删除事件日志中信息的权限.

Revolution

counter update

拥有更新转数计数器的权限.

安全控制器配置拥有执行控制器安全模式配置的权

限。仅对PSC选项有效,且该权限不

包括在Full access权限中.

应用程序权限

Access to the ABB menu on FlexPendant 值为true时表示有权使用示教器上的 ABB 菜单。在用户没有任何授权时该值为默认值.值为false时表示当控制器在“自动”模式下时用户不能访问 ABB 菜单.该权限在手动模式下无效.

Log off FlexPendant user when switching to Auto mode 当由手动模式转到自动模式时,拥有该权限的用户将自动由示教器注销.

机器人性能指标

1.自由度冗余自由度可以增加机器人的灵活性、躲避障碍物与改善动力性能。人的手臂(大 臂、小臂、手腕)共有7个自由度,所以工作起来很灵巧,手部可回避障碍而从不同方向到达同一个目的点。 2.定位精度(positioning accuracy):指机器人末端参考点实际到达的位置与所需要到达的理 想位置之间的差距。 3.重复性或重复精度:指机器人重复到达某一目标位置的差异程度;或在相同的位置指令下, 机器人连续重复若干次其位置的分散情况。它就是衡量一列误差值的密集程度,即重复度。 4.工作空间(Working Space):机器人手腕参考点或末端操作器安装点(不包括末端操作器)所 能到达的所有空间区域,一般不包括末端操作器本身所能到达的区域。 5.工作速度:机器人各个方向的移动速度或转动速度。 6.承载能力:机器人在工作范围内的任何位姿上所能承受的最大质量 工业机器人类型 首先要知道的就是您的机器人要用于何处。这就是您选择需要购买的机器人种类时的首

要条件。如果您只就是要一个紧凑的拾取与放置机器人,Scara机器人就是不错的选择。如果想快速放置小型物品,Delta机器人就是最好的选择。如果您想机器人在工人旁边一起工作,您就应该选择协作机器人。下面就是一些具体的指标。 机器人负载 负载就是指机器人在工作时能够承受的最大载重。如果您需要将零件从一台机器处搬至另外一处,您就需要将零件的重量与机器人抓手的重量计算在负载内。 自由度(轴数) 机器人轴的数量决定了其自由度。如果只就是进行一些简单的应用,例如在传送带之间拾取放置零件,那么4轴的机器人就足够了。如果机器人需要在一个狭小的空间内工作,而且机械臂需要扭曲反转,6轴或者7轴的机器人就是最好的选择。轴的数量选择通常取决于具体的应用。需要注意的就是,轴数多一点并不只为灵活性。事实上,如果您在想把机器人还用于其它的应用,您可能需要更多的轴,“轴”到用时方恨少。不过轴多的也有缺点,如果一个6轴的机器人您只需要其中的4轴,您还就是得为剩下的那2个轴编程。 机器人制造商倾向于用稍微有区别的名字为轴或者关节命名。一般来说,最靠近机器人基座的关节为J1,接下来就是J2,J3,J4以此类推,直到腕部。还有一些厂商像安川莫托曼则使用字母为轴命名。 最大运动范围 在选择机器人的时候,您需要了解机器人要到达的最大距离。选择机器人不单要关注负载,还要关注其最大运动范围。每一个公司都会给出机器人的运动范围,您可以从中瞧出就是否符合您应用的需要。最大垂直运动范围就是指机器人腕部能够到达的最低点(通常低于机器人的基座)与最高点之间的范围。最大水平运动范围就是指机器人腕部能水平到达的最远点与机器人基座中心线的距离。您还需要参考最大动作范围(用度表示)。这些规格不同的机器人区别很大,对某些特定的应用存在限制。 重复精度 这个参数的选择也取决于应用。重复精度就是机器人在完成每一个循环后,到达同一位置的精确度/差异度。通常来说,机器人可以达到0、5mm以内的精度,甚至更高。例如,如果机器人就是用于制造电路板,您就需要一台超高重复精度的机器人。如果所从事的应用精度要求不高,那么机器人的重复精度也可以不用那么高。精度在2D视图中通常用“±”表示。实际上,由于机器人并不就是线性的,其可以在公差半径内的任何位置。 速度 速度对于不同的用户需求也不同。它取决于工作需要完成的时间。规格表上通常只就是给出最大速度,机器人能提供的速度介于0与最大速度之间。其单位通常为度/秒。一些机器人制造商还给出了最大加速度。 机器人重量 机器人重量对于设计机器人单元也就是一个重要的参数。如果工业机器人需要安装在定制的工作台甚至轨道上,您需要知道它的重量并设计相应的支撑。 制动与惯性力矩 机器人制造商一般都会给出制动系统的相关信息。一些机器人会给出所有轴的制动信息。为在工作空间内确定精准与可重复的位置,您需要足够数量的制动。机器人特定部位的惯性力矩可以向制造商索取。这对于机器人的安全至关重要。同时还应该关注各轴的允许力矩。例如您的应用需要一定的力矩去完成时,就需要检查该轴的允许力矩能否满足要求。如果不能,机器人很可能会因为超负载而故障。 防护等级 这个也取决于机器人的应用时所需要的防护等级。机器人与食品相关的产品、实验室仪器、

移动机器人导航技术总结

移动机器人的关键技术分为以下三种: (1)导航技术 导航技术是移动机器人的一项核心技术之一[3,4]"它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动"目前,移动机器人主要的导航方式包括:磁导航,惯性导航,视觉导航等"其中,视觉导航15一7]通过摄像头对障碍物和路标信息拍摄,获取图像信息,然后对图像信息进行探测和识别实现导航"它具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向,而基于非结构化环境视觉导航是移动机器人导航的研究重点。 (2)多传感器信息融合技术多传感器信息融合技术是移动机器人的关键技术之一,其研究始于20世纪80年代18,9]"信息融合是指将多个传感器所提供的环境信息进行集成处理,形成对外部环境的统一表示"它融合了信息的互补性,信息的冗余性,信息的实时性和信息的低成本性"因而能比较完整地,精确地反映环境特征,从而做出正确的判断和决策,保证了机器人系统快速性,准确性和稳定性"目前移动机器人的多传感器融合技术的研究方法主要有:加权平均法,卡尔曼滤波,贝叶斯估计,D-S证据理论推理,产生规则,模糊逻辑,人工神经网络等"例如文献[10]介绍了名为Xavier的机器人,在机器人上装有多种传感器,如激光探测器!声纳、车轮编码器和彩色摄像机等,该机器人具有很高的自主导航能力。 (3)机器人控制器作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一"目前,国内外机器人小车的控制系统的核心处理器,己经由MCS-51、80C196等8位、16位微控制器为主,逐渐演变为DSP、高性能32位微控制器为核心构成"由于模块化系统具有良好的前景,开发具有开放式结构的模块化、标准化机器人控制器也成为当前机器人控制器的一个研究热点"近几年,日本!美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构!网络功能的机器人控制器"我国863计划智能机器人主题也已对这方面的研究立项 视觉导航技术分类 机器人视觉被认为是机器人重要的感觉能力,机器人视觉系统正如人的眼睛一样,是机器人感知局部环境的重要“器官”,同时依此感知的环境信息实现对机器人的导航。机器人视觉信息主要指二维彩色CCD摄像机信息,在有些系统中还包括三维激光雷达采集的信息。视觉信息能否正确、实时地处理直接关系到机器人行驶速度、路径跟踪以及对障碍物的避碰,对系统的实时性和鲁棒性具有决定性的作用。视觉信息处理技术是移动机器人研究中最为关键的技术之一。

工业机器人使用与维护

机电工程学院课程报告 课程名称:工业机器人使用与维护 专业:机械工程及自动化 年级: 2012级 班级:机械一班 姓名: 学号: 任课老师: 一、前言 机器人技术是融合了电子技术、机械技术等多种新兴技术的一种高新技术。工业机器人先后经历了从第一代示教再现机器人、第二代离线编程机器人,到现在的第三代智能机器人三个过程。焊接

作为工业“裁缝”,是工业生产中非常重要的加工手段,焊接质量的好坏对产品质量起着决定性的影响,同时由于焊接烟尘、弧光、金属飞溅的存在,焊接的工作环境又非常恶劣。随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化已经成为必然趋势,采用机器人焊接已经成为焊接技术自动化的主要标志。 二、焊接机器人目前的使用情况 我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等主要行业。汽车是焊接机器人的最大用户,也是最早的用户。早在 20 世纪 70年代末,上海电焊机厂与上海电动工具研究所合作研制了直角坐标机械手,成功应用于上海牌轿车底盘的焊接。一汽公司是我国最早引进焊接机器人的企业, 1984 年起先后从 KUKA 公司引进了 3 台点焊机器人,用于当时“红旗牌”轿车的车身焊接和“解放牌”车身顶盖的焊接。 1986 年成功地将焊接机器人应用于前围总成的焊接,并于 1988 年开发了机器人车身总焊线。20 世纪 80 年代末和 20 世纪 90 年代初,德国大众公司分别与上海和一汽成立合资汽车厂生产轿车,虽然是国外的二手设备,但其焊接自动化程度和装备水平让我们认识到了与国外的巨大差距。随后二汽在货车及轻型车项目中都引进了焊接机器人。可以说 20 世纪 90 年代以来的技术引进和生产设备、工艺装备的引进使我国的汽车制造水平由原来的作坊式生产提高到规模化生产,同时使国外焊接机器人大量进入中国。由于我国基础设施建设的高速发展带

机器人的位置检测传感器

机器人的位置检测传感器 测量可变位置和角度,即测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。常用的有电位器、旋转变压器、编码器等。其中编码器既可以检测直线位移,又可以检测角位移。下面是几种常用的位置检测传感器。1、光电开关2、编码器3、旋转变压器。二、机器人速度、角速度传感器:1、编码器对任意给定的角位移,编码器将产生确定数量的脉冲信号,通过统计指定时间(dt)内脉冲信号的数量,就能计算出相应的角速度。dt越短,得到的速度值就越准确,越接近实际的瞬时速度。但是,如果编码器的转动很缓慢,则测出的速度可能不准。通过对控制器的编程,将指定时间内脉冲信号的个数转化为速度信息就可以计算出速度。2、测速发电机测速发电机是一种把输入的转速信号转换成输出的电压信号的机电式信号元件,它可以作为测速、校正和解算元件,广泛应用于机器人的关节测速中。3、位置信号微分如果位置信号中噪音较小,那么对他进行微分来求取速度信号不仅可行,而且很简单。为此,位置信号应尽可能连续,以免在速度信号中产生大的脉动。所以,建议使用薄膜式电位器测量位置,因为绕线式电位器的输出时分段的,不适合微分。然而,信号的微分总是会有噪音的,应该仔细处理。三、机器人接触觉传感器:机器人接触觉传感器是用来判断机器人是否接触物体的测量传感器。传感器输出信号常为0或1,最经济适用的形式是各种微动开关。常用的微动开

关由滑柱、弹簧、基板和引线构成,具有性能可靠、成本低、使用方便等特点。接触觉传感器不仅可以判断是否接触物体,而且还可以大致判断物体的形状。一般传感器装在末端的执行器上,除了微动开关外,接触觉传感器还采用碳素纤维及聚氨基甲酸脂为基本材料构成触觉传感器。机器人与物体接触,通过碳素纤维与金属针之间建立导通电路,与微动开关相比,碳素纤维具有更高触电安装密度、更好的柔性、可以安装在机器手的曲面手掌上。四、机器人接近觉传感器、机器人接近觉传感器能感知相距几毫米到几时厘米内对象物或障碍物的距离、对象物的便面性质等的传感器,其目的是在接触对象前得到必要的信息,以便后续动作。接近觉传感器有许多不同的类型,如电磁式、涡流式、霍尔效应式、光学式、超声波式、电感式和电容式等等。五、机器人姿态传感器:姿态传感器是用来检测机器人与地面相对关系的传感器,当机器人被限制在工厂的地面时,没有必要安装这种传感器,如大部分工业机器人。但当机器人脱离了这个限制,并且能够自由的移动,如移动机器人,安装姿态传感器就成必要了。典型的姿态传感器是陀螺仪,他利用高速旋转物体(转子)经常保持一定姿态的性质。转子通过一个支撑它的,被称为万向接头的自由支持机构,安装在机器人上。机器人围绕着输入轴仅转过一个角度。在速率陀螺仪中,加装了弹簧。卸掉这个弹簧后的陀螺仪成为速率积分陀螺仪,此时输出轴以角速度旋转,且此角速度与围绕输入轴的转角速度成正比。姿态传感器设置在机器人的躯干部分,它用来检测移动中的躯干部分,它用来你

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。 (2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。

自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。 (4)运动精度(Accurucy) 机器人机械系统的精度主要涉及位姿精度、重复位姿精度、轨迹精度、重复轨迹精度等。 位姿精度是指指令位姿和从同一方向接近该指令位姿时各实到位置中心之间的偏差。重复位姿精度是指对同指令位姿从同一方向重复响应n次后实到位姿的不一致程度。 轨迹精度是指机器人机械接口从同一方向n次跟随指令轨迹的接近程度。轨迹重复精度是指对一给定轨迹在同方向跟随n次后实到轨迹之间的不一致程度。

川崎机器人E控系列基本操作培训手册 系统设置篇

佛山隆深机器人有限公司内部技术培训教程 川崎机器人应用参数设置

川崎机器人E控系列基础操作培训教程 系统设置篇 教程编制:佛山隆深机器人有限公司 川崎机器人中国华南区S级代理商

如何进入设置面板界面 第一步:按示教器的,在弹出的菜单内选择[辅助功能],然后按示教器的 .

主菜单的设置分类 第一步:按示教器的,在弹出的菜单内选择[辅助功能],然后按示教器的 示教器的方向键↑↓可选择需要修改的项目按【登陆】键进入子菜单. 常用设置菜单为: 2.保存/加载(用来保存和加载程序) 4.基本设定(设定机器人基础数据) 5.高级设定(系统开关/核心参数设定) 6.输入/输出信号(专用信号/信号编号设定) 7.显示器功能(履历/机器人运行数据) 8.系统(核心控制/设置参数.

程序的保存/加载 .保存/加载功能提供程序/参数等数据的导入/导出操作,我们可以把外部存储设备的数据导入机器人,也可以把机器人内部的数据导出来进行分析/编辑. 保存:把机器人内部的数据按所选类型导出到USB存储设备中. 加载:将USB存储设备中的数据按所选类型导入机器人内部存储. 注:正在使用/打开的程序无法加载到机器人内部(提示程序正在运行,加载错误).

机器人内部数据的导出 保存(导出)数据:(R码0201) 首先:进入机器人数据保存菜单 然后:用[↑↓]键移动到文件名输入框 然后:;用手点击(输入文件名),在弹出的(键盘操作页)输入文件名. 注:※文件名不能以数字开头※ 可以是字母+数字,也可以加下划线 输入完毕后点击(保存数据)选择保存的 文件类型. 选择完类型后就可以点击保存了.

焊接机器人日常维护及保养计划书

焊接机器人日常维护及保养计划书 焊接机器人日常维护及保养计划书摘要:郑州三磨所高厚度金属结合剂金刚石砂轮通过鉴定基于AutoCAD进行APT语言自动编程CIMT2007精品介绍:威力铭马科黛尔加工中心FANUC数控系统界面齿轮机床操作规程用宏程序编制钻孔复合循环程序加工非圆曲线四分之一的椭圆编程源程序德美推新式自行车采用瓷制滚珠轴承材料对照表(结构钢)CRM软件未来发展三趋势淬火工件线切割畸变和开裂原因分析激光加工在装备制造和维修中的研究与应用信息化使顺特电气再次腾飞PLC在千吨液压机控制系统改造中的应用CNC的一些名词解释车床数控系统的更新换代编程步骤——操作面板与界面包装机械设计趋势调研变频空调压缩机及变频调速系统的技术现状如何排除数控机床操作不当引起的故障[标签:tag]焊接机器人日常维护及保养计划书一.日检查及维护1.送丝机构。包括送丝力距是否正常,送丝导管是否损坏,有无异常报警。2.气体流量是否正常。3.焊枪安全保护系统是否正常。(禁止关闭焊枪安全保护工作)4.水循环系统工作是否正常。5.测试TCP 焊接机器人日常维护及保养计划书 一.日检查及维护 1.送丝机构。包括送丝力距是否正常,送丝导管是否损坏,有无异常报警。 2.气体流量是否正常。 3.焊枪安全保护系统是否正常。(禁止关闭焊枪安全保护工作) 4.水循环系统工作是否正常。 5.测试TCP(建议编制一个测试程序,每班交接后运行) 二.周检查及维护 1.擦洗机器人各轴。 2.检查TCP的精度。 3.检查清渣油油位。 4.检查机器人各轴零位是否准确。 5.清理焊机水箱后面的过滤网。 6.清理压缩空气进气口处的过滤网。 7.清理焊枪喷嘴处杂质,以免堵塞水循环。 8.清理送丝机构,包括送丝轮,压丝轮,导丝管。 9.检查软管束及导丝软管有无破损及断裂。(建议取下整个软管束用压缩空气清理)10.检查焊枪安全保护系统是否正常,以及外部急停按钮是否正常。 三.月检查及维护 1.润滑机器人各轴。其中1—6轴加白色的润滑油。油号86E006。 2.RP变位机和RTS轨道上的红色油嘴加黄油。油号:86K007 3.RP变位机上的蓝色加油嘴加灰色的导电脂。油号:86K004 4.送丝轮滚针轴乘加润滑油。(少量黄油即可) 5.清理清枪装置,加注气动马达润滑油。(普通机油即可) 6.用压缩空气清理控制柜及焊机。 7.检查焊机水箱冷却水水位,及时补充冷却液(纯净水加少许工业酒精即可) 8.完成1—8项的工作外,执行周检的所有项目。 四.焊接机器人的维护保养工作由操作者负责,其中人员分配如下:

工业机器人的主要技术参数

工业机器人的主要技术参数 工业机器人的种类、用途以及用户要求都不尽相同。但工业机器人的主要技术参数应包括以下几种:自由度、精度、工作范围、最大工作速度和承载能力。 1. 自由度 机器人所具有的独立坐标轴运动的数目,一般不包括手爪(或末端执行器)的开合自由度。在三维空间中表述一个物体的位置和姿态需要6个自由度。但是,工业机器人的自由度是根据其用途而设计的,可能小于6个也可能大于6个自由度。例如,日本日立公司生产的A4020装配机器人有4个自由度,可以在印制电路板上接插电子元器件; PUMA562机器人具有6个自由度(见图1.11~图1.13),可以进行复杂空间曲面的弧焊作业。从运动学的观点看,在完成某一特定作业时具有多余自由度的机器人,叫做冗余自由度机器人,又叫冗余度机器人。例如,PUMA562机器人去执行印制电路板上接插元器件的作业时就是一个冗余度自由机器人。利用冗余的自由度可以增加机器人的灵活性,躲避障碍物和改善动力性能。 人的手臂共有7个自由度,所以工作起来很灵巧,手部可回避障碍物,从不同方向到达目的地。 2.精度 工业机器人精度是指定位精度和重复定位精度。定位精度是指机器人手部实际到达位置与目标位置之间的差异,用反复多次测试的定位结果的代表点与指定位置之间的距离来表示。重复定位精度是指机器人重复定位手部于同一目标位置的能力,以实际位置值的分散程度来表示。实际应用中常以重复测试结果的标准偏差值的3倍来表示,它是衡量一列误差值的密集度。图1.14所示为工业机器人定位精度与重复定位精度图例。 (a)重复定位精度的测定 (:b)合理的定位精度,良好的重复定位精度 (C)良好的定位精度,较差的重复定位精度(d)很差的定位精度,良好的重复定位精度 2. 工作范围 工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫做工作区域。因为末端操作器的形状和尺寸是多种多样的,为了真实地反映机器人的特征参数,一般工作范围是指不安装末端操作器的工作区域。工作范围的形状和大小是十分重要的,机器人在执行某作业时可能会因为存在手部不能到达的作业死区而不能完成任务,如图1.15所示。 3.最大工作速度 最大工作速度,有的厂家指工业机器人自由度上最大的稳定速度,有的厂家指手臂大合成速度,通常欧洲技术参数中就有说明。工作速度越高,工作效率就越高。但是,工作速度越高就要花费更多的时间去升速或降速。 4.承载能力 承载能力是指机器人在工作范围内的任何位置上所能承受的最大质量。承载能力不仅决定于负载的质量,而且与机器人运行的速度、加速度的大小和方向

工业机器人的基本参数和性能指标知识讲解

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。

(2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。 自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。

机器人注意事项及日常维护

机器人注意事项及日常维护 1、注意事项: 1)安全第一,机器人启动前,务必确保机器人作业区域内没有人。生产时如有必要进入作业区,务必征得监护人员的同意,拔掉护拦安全栓,打开安全门,进入安全门打开的区域,严禁穿越压力机进入安全门未打开的区域。若要处理压力机内模具问题,务必停止该压力机前后两台机器人。保证绝对的人身安全。 2)每天机器人生产前,务必要将机器人导轨擦拭一遍,防止过度磨损。严禁用脚踩机器人导轨。观察润滑油脂是否够用,工作时留意机器人工作导轨及齿轮导轨的润滑情况。 3)更换吸盘时,要留意观察机器人R1轴前端定位销是否松动、暗伤、开裂,机器人气管接头是否松动漏气,吸盘上紧固螺丝是否松动,橡胶吸盘是否拧紧。 4)生产前要观察机器人运动区域内是否有其他物体(踏板、支架等)与其干涉;生产中要注意观察机器人的运动轨迹及运动声响是否有异常,如有异常现象,务必做下记录。 5)起吊模具时要注意对传感器接线盒的保护,防止将接头撞坏,影响正常生产。 6)强化6S管理,提升现场的管理水平,保证机器人、机器人控制柜、安全护栏及周边环境清洁美观。 2、周期性维护: 1)注意观察导轨润滑油脂是否够用,不能低于油箱下面的标示线,利用周末或岗位练兵的时间进行加润滑油脂。 2)利用岗位练兵时间对输送带传动系统进行检查,对各轴承进行加注润滑油。 3)利用岗位练兵时间检查机器人、拆垛台、对中台是否有紧固螺栓松动现象。 4)利用岗位练兵时间对对中台空气过滤网进行清洗。 5)检查机器人与吸盘连接处的定位销是否有松动、暗伤、开裂现象并给予适当的处理。6)利用岗位练兵时间检查机器人各气路是否有漏气现象,接头是否牢固可靠。 7)定期(按要求一般为12个月)给机器人各关节轴加注润滑油脂。

基于惯性传感器的机器人姿态监测系统设计

基于惯性传感器的机器人姿态监测系统设计一、设计背景 空间飞行器的惯性测量系统、机器人的平衡姿态检测、机械臂伸展确定等许多方面都需要测量物体的倾斜和方向等姿态参数。机器人的运动过程中要不断的检测机器人的运动状态,以实现对机器人的精确控制。.本文研究的基于MEMS 惯性传感器姿态检测系统用于检测自平衡机器人运动时姿态,以控制机器人的平衡。 随着微机电系统(MEMS)技术的发展,采用传感器应用到姿态检测系统上的条件变得成熟。基于MEMS 技术的加速度传感器和陀螺仪具有抗冲击能力强、可靠性高、寿命长、成本低等优点,是适用于构建姿态检测系统的惯性传感器。利用MEMS 陀螺仪和加速度传感器等惯性传感器组成的姿态检测系统,能够通过对重力矢量夹角和系统转动角速度进行测量,从而实时、准确地检测系统的偏转角度。 由于惯性传感器随着时间、温度的外界变化,会产生不同程度的漂移。通过对陀螺仪和加速度计的采集数据进行数据融合,测量的角度与实际的角度相吻合,取得了良好的控制效果。同时该系统具有独立,易用的特点,其应用前景广泛。 二、基本原理 在地球上任何位置的物体都受到重力的作用而产生一个加速度,加速度传感器可以用来测定变化或恒定的加速度。把三轴加速度传感器固定在物体上,在相对静止状态下,当物体姿态改变时,加速度传感器的敏感轴相对于重力场发生变

化,加速度传感器的三个敏感轴分别输出重力在其相应方向产生的分量信号。 当系统处于变速运动状态时,由于加速度传感器同时受到重力加速度和系统自身加速度的影响,其返回值是重力加速度同系统自身加速度的矢量和。对加速度传感器温度漂移及系统振动和机械噪声等方面的考虑,加速度传感器不能独立运用测量系统的姿态。陀螺仪能够提供瞬间的动态角度变化,由于其本身的固有特性、温度及积分过程的影响,它会随着工作时间的延长产生漂移误差。因此对于姿态检测系统而言,单独使用陀螺仪或加速度计,都不能提供系统姿态的可靠估计。为了克服这些问题,数据融合算法需使用加速度传感器的测量值并使用陀螺仪测得的角速度数据对加速度传感器数据进行融合和矫正。 图1加速度传感器 系统依据上一时刻的重力矢量方向的估计值,结合陀螺仪测得的角度值计算出当前时刻的重力矢量方向,再与当前时刻加速度传感器返回的矢量方向进行加权平均,得到当前矢量方向的最优估计值。 三、系统框架 姿态平衡检测系统中,控制单元采用单片机来完成控制,数据采集与处理,数据通讯等功能。根据对资料的分析,同时对性能价格比的衡量,惯性测量单元

Z1 配置福尼斯焊机的机器人系统参数设置说明

配置福尼斯焊机的机器人系统参数设置说明 吴为进2011-10 一、检查系统配置,确认ARC选项为:650-9 Fronius TPS4000/5000 ABB出厂默认选项,如果使用旧机器人ARC选项可能不是650-9 Fronius TPS4000/5000,需重装系统,参考系统安装手册。 二、修改EIO.cfg,配置肯比焊机信号 2.1、EIO_UNIT_TYPE确认福尼斯焊机通讯板定义;如果没有定义,添加如下定义。 -Name "BK5200" -BusType "DNET" -VendorName "BECKHOFF"\ -ProductName "BECKHOFF" -DN_VendorId 108 -DN_ProductCode 5200\ -DN_DeviceType 12 -DN_MajorRev 3 -DN_C1Interval 30 -DN_C1OutputSize -1\ -DN_C1InputSize -1 -Name "BK5250" -BusType "DNET" -VendorName "BECKHOFF"\ -ProductName "BECKHOFF" -DN_VendorId 108 -DN_ProductCode 5250\ -DN_DeviceType 12 -DN_C1Interval 30 -DN_C1OutputSize -1 -DN_C1InputSize -1 2.2、EIO_UNIT添加福尼斯焊机通讯板及虚拟板;红字的“20”为DeviceNet 地址需根据福尼斯的拔码开关确定,不能与系统中已使用的地址重复。

-Name "ioFronius1" -UnitType "BK5250" -Bus "DeviceNet1" -DN_Address 20 -Name "ioFroniusSim1" -UnitType "Virtual" -Bus "Virtual1"\ -UnitLabel "RWArc Simulated welder" 2.3、EIO_SIGNAL添加如下信号,所有信号不能修改; -Name "doFr1ArcOn" -SignalType "DO" -Unit "ioFronius1" -UnitMap "0" -Name "doFr1RobotReady" -SignalType "DO" -Unit "ioFronius1" -UnitMap "1" -Name "doFr1GasTest" -SignalType "DO" -Unit "ioFronius1" -UnitMap "8" -Name "doFr1FeedForward" -SignalType "DO" -Unit "ioFronius1" -UnitMap "9" -Name "doFr1FeedRetract" -SignalType "DO" -Unit "ioFronius1" -UnitMap "10" -Name "doFr1ErrorReset" -SignalType "DO" -Unit "ioFronius1" -UnitMap "11" -Name "doFr1TouchSense" -SignalType "DO" -Unit "ioFronius1" -UnitMap "12" -Name "doFr1TrchBlowOut" -SignalType "DO" -Unit "ioFronius1" -UnitMap "13" -Name "doFr1WeldingSim" -SignalType "DO" -Unit "ioFronius1" -UnitMap "31" -Name "diFr1ArcStable" -SignalType "DI" -Unit "ioFronius1" -UnitMap "0"\ -FiltPas 50 -Name "diFr1ProcessActv" -SignalType "DI" -Unit "ioFronius1" -UnitMap "2" -Name "diFr1MainCurrent" -SignalType "DI" -Unit "ioFronius1" -UnitMap "3" -Name "diFr1TorchColisn" -SignalType "DI" -Unit "ioFronius1" -UnitMap "4" -Name "diFr1WelderReady" -SignalType "DI" -Unit "ioFronius1" -UnitMap "5" -Name "diFr1CommunicRdy" -SignalType "DI" -Unit "ioFronius1" -UnitMap "6" -Name "aoFr1Power" -SignalType "AO" -Unit "ioFronius1" -UnitMap "32-47"\ -EncType "UNSIGNED" -MaxLog 100 -MaxPhys 10 -MaxPhysLimit 10\ -MaxBitVal 65535 -Name "aoFr1ArcLength" -SignalType "AO" -Unit "ioFronius1"\ -UnitMap "48-63" -EncType "UNSIGNED" -MaxLog 30 -MaxPhys 10\ -MaxPhysLimit 10 -MaxBitVal 65535 -MinLog -30 -Name "aoFr1Dynamic" -SignalType "AO" -Unit "ioFronius1" -UnitMap "64-71"\

机器人定位技术详解

机器人定位技术介绍 前言 随着传感技术、智能技术和计算技术等的不断提高,智能移动机器人一定 能够在生产和生活中扮演人的角色。那么移动机器人定位技术主要涉及到 哪些呢?经总结目前移动机器人主要有这5大定位技术。 移动机器人超声波导航定位技术 超声波导航定位的工作原理也与激光和红外类似,通常是由超声波传感器的发射探头发射出超声波,超声波在介质中遇到障碍物而返回到接收装置。 通过接收自身发射的超声波反射信号,根据超声波发出及回波接收时间差及传播速度,计算出传播距离S,就能得到障碍物到机器人的距离,即有公式:S=Tv/2式中,T—超声波发射和接收的时间差;v—超声波在介质中传播的波速。 当然,也有不少移动机器人导航定位技术中用到的是分开的发射和接收装置,在环境地图中布置多个接收装置,而在移动机器人上安装发射探头。 在移动机器人的导航定位中,因为超声波传感器自身的缺陷,如:镜面反射、有限的波束角等,给充分获得周边环境信息造成了困难,因此,通常采用多传感器组成的超声波传感系统,建立相应的环境模型,通过串行通信把传感器采集到的信息传递给移动机器人的控制系统,控制系统再根据采集的信号和建立的数学模型采取一定的算法进行对应数据处理便可以得到机器人的位置环境信息。 由于超声波传感器具有成本低廉、采集信息速率快、距离分辨率高等优点,长期以来被广泛地应用到移动机器人的导航定位中。而且它采集环境信息时不需要复杂的图像配备技术,因此测距速度快、实时性好。 同时,超声波传感器也不易受到如天气条件、环境光照及障碍物阴影、表面

粗糙度等外界环境条件的影响。超声波进行导航定位已经被广泛应用到各种移动机器人的感知系统中。 移动机器人视觉导航定位技术 在视觉导航定位系统中,目前国内外应用较多的是基于局部视觉的在机器人中安装车载摄像机的导航方式。在这种导航方式中,控制设备和传感装置装载在机器人车体上,图像识别、路径规划等高层决策都由车载控制计算机完成。 视觉导航定位系统主要包括:摄像机(或CCD图像传感器)、视频信号数字化设备、基于DSP的快速信号处理器、计算机及其外设等。现在有很多机器人系统采用CCD图像传感器,其基本元件是一行硅成像元素,在一个衬底上配置光敏元件和电荷转移器件,通过电荷的依次转移,将多个像素的视频信号分时、顺序地取出来,如面阵CCD传感器采集的图像的分辨率可以从 32×32到1024×1024像素等。 视觉导航定位系统的工作原理简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。 GPS全球定位系统 如今,在智能机器人的导航定位技术应用中,一般采用伪距差分动态定位法,用基准接收机和动态接收机共同观测4颗GPS卫星,按照一定的算法即可求出某时某刻机器人的三维位置坐标。差分动态定位消除了星钟误差,对于在距离基准站1000km的用户,可以消除星钟误差和对流层引起的误差,因而可以显着提高动态定位精度。 但是因为在移动导航中,移动GPS接收机定位精度受到卫星信号状况和道路环境的影响,同时还受到时钟误差、传播误差、接收机噪声等诸多因素的影响,因此,单纯利用GPS导航存在定位精度比较低、可靠性不高的问题,所以在机器人的导航应用中通常还辅以磁罗盘、光码盘和GPS的数据进行导

机器人操作安全

机器人安全操作规程 一.示教和手动机器人 1)严禁非专业培训人员手动操作机器人,非设备维护人员禁止更改机器人速度及坐标。 2)严禁操作者手套操作示教盘和操作盘。 3)如需要手动控制机器人时,应确保机器人动作范围内(无任何人员或障碍物)示教器线缆不能严重绕曲成麻花状和与硬物摩擦,以防内部线芯折断或裸漏。将速度由慢到快逐渐调整,采用较低的倍率速度以增加对机器人的控制安全,避免速度突变造成伤害或损失。 4)在按下示教盘上的点动键之前要考虑到机器人的运动趋势。5)要预先考虑好避让机器人的运动轨迹,并确认该线路不受干涉。 6)机器人周围区域必须清洁、无油,水及杂质等。 二.生产运行 1)在开机运行前,须知道机器人根据所编程序将要执行的全部任务。 2)须知道所有会左右机器人移动的开关、传感器和控制信号示、教器和控制柜位置和状态。 3)必须知道机器人控制器和外围控制设备上的紧急停止按钮的位置,准备在紧急情况下按这些按钮。 4)机器人动作速度较快,存在危险性,人员避免停留在机

器人装箱位置附近及护栏旁,所有操作人员一律不得接近机器人运动的轨迹,设备维护人员应负责维护工作。(严禁非培训人员进入机器人工作区域) 5)永远不要认为机器人没有移动其程序就已经完成。因为这时机器人很有可能是在等待让它继续移动的输入信号 6)中途短暂休息离开设备工作区域前负责人应按下停止按钮;中途长时间休息离开设备工作区域前负责人应停止机器人及真空泵(开工时先提前一分钟开启真空泵再复位机器人)。 7)严禁在控制柜内随便放置(配件、工具、杂物、安全帽等)以免影响到部分线路,造成设备的异常 8)严格遵守并执行机器的(日常维护) 三.操作者平时操作时应注意的事项: 1)打开机器人总开关后,必须先检查机器人在不在原点位置,如果不在,请手动跟踪机器人返到原点,严禁打开机器人总开关后,机器人不在原点时按启动按钮启动机器人。2)打开机器人总开关后,检查外部控制盒急停按钮、真空泵按钮有没有按下去,如果按下去了就先打上来,然后点亮示控制柜上的伺服灯,再去按启动按钮启动机器人,严禁打开机器总开关后,外部急停按钮按下去生效时,按启动按钮启动机器人。如果当外部急停按钮按下去生效时,按启动按钮启动机器人时,机器人会出现单步动,必须查找按下急停

焊接机器人主要技术指标

焊接机器人主要技术指标 选择和购买焊接机器人时,全面和确切地了解其性能指标十分重要。使用机器人时,掌握其主要技术指标更是正确使用的前提。各厂家在其机器人产品说明书上所列的技术指标往往比较简单,有些性能指标要根据实用的需要在谈判和考察中深入了解。 焊接机器人的主要技术指标可分为两大部分,机器人的通用指标和焊接机器人的专门指标。 (1) 机器人通用技术指标 1) 自由度数这是反映机器人灵活性的重要指标。一般来说,有3 个自由度数就可以达到机器人工作空间任何一点,但焊接不仅要达到空间某位置,而且要保证焊枪( 割具或焊钳) 的空间姿态。因此,对弧焊和切割机器人至少需要5 个自由度,点焊机器人需要6 个自由度。 2) 负载指机器人末端能承受的额定载荷,焊枪及其电缆、割具及气管、焊钳及电缆、冷却水管等都属负载。因此,弧焊和切割机器人的负载能力为6 ~10kg,点焊机器人如使用一体式变压器和焊钳一体式焊钳,其负载能力应为60 ~90kg ,如用分离式焊钳,其负载能力应为40 ~50kg。 3) 工作空间厂家所给出的工作空间是机器人未装任何末端操作器情况下的最大可达空间,用图形来表示。应特别注意的是,在装上焊枪( 或焊钳) 等后,又需要保证焊枪姿态。实际的可焊接空间,会比厂家给出的小一层,需要认真地用比例作图法或模型法核算一下,以判断是否满足实际需要。 4) 最大速度这在生产中是影响生产效率的重要指标。产品说明书给出的是在各轴联动情况下,机器人手腕末端所能达到的最大线速度。由于焊接要求的速度较低,最大速度只影响焊枪( 或焊钳) 的到位、空行程和结束返回时间。一般情况下,焊接机器人割机器人要视不同的切割方法而定。 5) 点到点重复精度这是机器人性能的最重要指标之一。对点焊机器人,从工艺要求出发,其精度应达到焊钳电极直径的1/2 以下,即+ 1 ~2mm 。对弧焊机器人,则应小于焊丝直径的1/2 ,即0.2 ~0.4mm 。 6) 轨迹重复精度这项指标对弧焊机器人和切割机器人十分重要,但各机器人厂家都不给出这项指标,因为测量比较复杂。但各机器人厂家内部都做这项测量,应坚持索要其精度数据,对弧焊和切割机器人,其轨迹重复精度应小于

6关节机器人介绍

BONMET ROBOT 在当今高度竞争的全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受的压力日益增大,既要应付低成本国家的对手,还要面临发达国家的劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 自动化的优势 机器人自动化一系列广受好评的优势,可参见”投资机器人的10大理由”。许多行业尤其是工程、食品等传统行业,普遍面临劳动力老龄化、对年轻人缺乏吸引力的问题。引入机器人解决方案之后,可减轻对传统技术人员的依赖,充分发挥IT、计数机等新兴技术的优势,相关人才也更容易在年轻一代中物色。 改善困难的工作条件与安全性 在高温、腐蚀等高危环境中,高柔性的自动化系统能够代替工作

人员勇挑重担。工作人员从事高度重复性的操作,稍有不慎就会造成经济或质量损失等。而实现自动化作业之后,工作人员便可以转调到对技能要求更高的岗位,工作成就感也将随之上升。恻然解决了招人难、留人难、老龄化这些问题。 优质稳定的产品与工艺降低生产成本 高度柔性的机器人自动化系统能根据市场需求的波动灵活性增减产量;每逢订单激增,即可安排夜班或周末班,而只负担有限的加班成本。机器人自动化还能加快产品转换,在确保品质恒定如一的同时,实现小批量、短周期、多频次供货,从而提升服务水准。自动化系统的重复定位精度与一致性俱优,加工公差更小,工艺控制更严,能长期确保优异的产品质量、最大限度降低生产和劳动力成本。 提高生产效率 机器人是开源节流的得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺和产品质量的恒定一致,显著提高产量。自动化将人类从枯燥繁重的重复性劳动中解放出来,让人类的聪明才智和应变能力得以释放,从而生产更大的经济回报。

相关文档
最新文档