IRB机器人参数

IRB机器人参数
IRB机器人参数

ABB机器人产品

Technical Agreement 技术协议书

合同编号:

技术协议

买方:

地址:

电话:

传真:

邮编:

卖方:

地址:

电话:

传真:

邮编:

买方同意采购,卖方同意出售 1台ABB IRB 2600-20/型工业机器人裸机产品。经双方友好协商,按如下内容达成本技术协议。

1供货依据

根据买方的选择,卖方向买方提供1台IRB 2600-20/型工业机器人产品(以下简称机器人)。2机器人的描述

2.2非供货范围

?主侧电、气供应

?现场劳力,安装工具,现场机器人的装卸、移动、就位、安装。

?外围设备的设计和制作及控制

?系统集成工程

?工艺编制、编程调试、产品质量、生产节拍及最终集成结果

?机器人底座的设计与制作

?夹具的设计与制作

?线槽及安装

?其他不包含在供货范围中的产品和服务

2.3设备性能指标及技术参数

2.3.1IRB 2600-20/

?安装方式:地面安装

?本体颜色:石墨白色

?手腕持重:20 kg

?最大臂展半径:

?轴数:6轴

?位置重复精度:

?防护等级:IP67

?运动范围:

轴动作范围最大速度

1 回转+180?至-180?175?/s

2 立臂+155?至-95?175?/s

3 横臂+ 75?至-180?175?/s

4 腕 +400?至-400?360?/s

5 腕摆+120?至-120?360?/s

6 腕传+400?至-400?500?/s

?机器人重量:272kg

?环境温度:5?C~45?C

?最大湿度:95%

?最大噪音:69dB(A)

2.3.2IRC5控制柜

?控制硬件:多处理器系统

PCI 总线

奔腾CPU

大容量闪存(1GB)

20s UPS 备份电源

?控制软件:BaseWare 机器人操作系统

强大的RAPID编程语言

PC-DOS文本格式

软件出厂预装,并存于光碟

?电源:3相四线 400V(+10%,-15%),~

?额定功率: 4KVA(变压器容量)

?控制柜尺寸:??0 mm

?控制柜重量:150kg

?环境温度:5?C- 45?C

?最大湿度:95%

?防护等级:IP54

?操作面板:控制柜上

?编程单元:便携式示教盒,具备操纵杆和键盘

彩色触摸式显示

具中、英文菜单选项

?安全性:紧急停止,自动模式停止,测试模式停止等

3机器人在系统中的功能及技术要求

3.1卖方按照供货范围提供1台IRB 2600-20/型工业机器人裸机,买方提供相关的周边设备,并将

机器人与这些设备集成,形成完整的机器人应用系统。

3.2与机器人安装有关的土建参数

?倒置或者墙面安装必须事先指出,并且要在技术协议中注明;

3.3机器人与周边设备的控制连接

机器人提供供货范围内的通信模块,用于与周边设备的通信。

3.4机器人通过示教的方式来实现机器人路径的设置。

4双方责任

4.1卖方责任

4.1.1卖方负责按照购货合同及本技术协议规定保质、保量、按时供货。

4.1.2卖方保证所提供的机器人的功能、参数适合本技术协议的要求。

4.1.3卖方提供的为ABB标准产品,其责任限于供货范围规定的设备及服务。

4.2买方责任

4.2.1买方负责机器人的正确选型和编程调试。

4.2.2买方负责设计和制作机器人安装底座。

4.2.3买方负责提供除机器人外的周边设备,并负责这些设备和机器人的系统集成及最终结果。

4.2.4买方负责安全围栏的设置,确保机器人工作区域的安全。

4.2.5买方负责提供机器人必需的电力。

4.2.6买方负责机器人的卸货、起吊、就位、基础水平调整等现场安装工作。

4.2.7买方负责提供存货区域,保证货物的安全。

4.2.8买方负责回收包装材料,并提供各种废物的处理服务和装置,以免对环境造成损害。

5提供技术资料 (电子版)

5.1机器人系统软件

5.2机器人技术文档

6本技术协议以中文书写,原件共二份,甲、乙双方各持一份。

7本技术协议经双方代表签字后生效,为购货合同的有效组成部分,与购货合同(合同编号:)具有同等法律效力。

8协议签署

买方:

代表:

职务:

日期:

卖方:

代表:

职务:

日期:

附IRB2600-20/ 型机器人工作域图(详细信息请参考机器人随机手册):

附IRB2600-20/ 型机器人负载图(详细信息请参考机器人随机手册):

附IRB2600-20/ 型机器人底座图(详细信息请参考机器人随机手册):

附IRB2600-20/ 型机器人手腕法兰图(详细信息请参考机器人随机手册):

机器人性能指标

1.自由度冗余自由度可以增加机器人的灵活性、躲避障碍物与改善动力性能。人的手臂(大 臂、小臂、手腕)共有7个自由度,所以工作起来很灵巧,手部可回避障碍而从不同方向到达同一个目的点。 2.定位精度(positioning accuracy):指机器人末端参考点实际到达的位置与所需要到达的理 想位置之间的差距。 3.重复性或重复精度:指机器人重复到达某一目标位置的差异程度;或在相同的位置指令下, 机器人连续重复若干次其位置的分散情况。它就是衡量一列误差值的密集程度,即重复度。 4.工作空间(Working Space):机器人手腕参考点或末端操作器安装点(不包括末端操作器)所 能到达的所有空间区域,一般不包括末端操作器本身所能到达的区域。 5.工作速度:机器人各个方向的移动速度或转动速度。 6.承载能力:机器人在工作范围内的任何位姿上所能承受的最大质量 工业机器人类型 首先要知道的就是您的机器人要用于何处。这就是您选择需要购买的机器人种类时的首

要条件。如果您只就是要一个紧凑的拾取与放置机器人,Scara机器人就是不错的选择。如果想快速放置小型物品,Delta机器人就是最好的选择。如果您想机器人在工人旁边一起工作,您就应该选择协作机器人。下面就是一些具体的指标。 机器人负载 负载就是指机器人在工作时能够承受的最大载重。如果您需要将零件从一台机器处搬至另外一处,您就需要将零件的重量与机器人抓手的重量计算在负载内。 自由度(轴数) 机器人轴的数量决定了其自由度。如果只就是进行一些简单的应用,例如在传送带之间拾取放置零件,那么4轴的机器人就足够了。如果机器人需要在一个狭小的空间内工作,而且机械臂需要扭曲反转,6轴或者7轴的机器人就是最好的选择。轴的数量选择通常取决于具体的应用。需要注意的就是,轴数多一点并不只为灵活性。事实上,如果您在想把机器人还用于其它的应用,您可能需要更多的轴,“轴”到用时方恨少。不过轴多的也有缺点,如果一个6轴的机器人您只需要其中的4轴,您还就是得为剩下的那2个轴编程。 机器人制造商倾向于用稍微有区别的名字为轴或者关节命名。一般来说,最靠近机器人基座的关节为J1,接下来就是J2,J3,J4以此类推,直到腕部。还有一些厂商像安川莫托曼则使用字母为轴命名。 最大运动范围 在选择机器人的时候,您需要了解机器人要到达的最大距离。选择机器人不单要关注负载,还要关注其最大运动范围。每一个公司都会给出机器人的运动范围,您可以从中瞧出就是否符合您应用的需要。最大垂直运动范围就是指机器人腕部能够到达的最低点(通常低于机器人的基座)与最高点之间的范围。最大水平运动范围就是指机器人腕部能水平到达的最远点与机器人基座中心线的距离。您还需要参考最大动作范围(用度表示)。这些规格不同的机器人区别很大,对某些特定的应用存在限制。 重复精度 这个参数的选择也取决于应用。重复精度就是机器人在完成每一个循环后,到达同一位置的精确度/差异度。通常来说,机器人可以达到0、5mm以内的精度,甚至更高。例如,如果机器人就是用于制造电路板,您就需要一台超高重复精度的机器人。如果所从事的应用精度要求不高,那么机器人的重复精度也可以不用那么高。精度在2D视图中通常用“±”表示。实际上,由于机器人并不就是线性的,其可以在公差半径内的任何位置。 速度 速度对于不同的用户需求也不同。它取决于工作需要完成的时间。规格表上通常只就是给出最大速度,机器人能提供的速度介于0与最大速度之间。其单位通常为度/秒。一些机器人制造商还给出了最大加速度。 机器人重量 机器人重量对于设计机器人单元也就是一个重要的参数。如果工业机器人需要安装在定制的工作台甚至轨道上,您需要知道它的重量并设计相应的支撑。 制动与惯性力矩 机器人制造商一般都会给出制动系统的相关信息。一些机器人会给出所有轴的制动信息。为在工作空间内确定精准与可重复的位置,您需要足够数量的制动。机器人特定部位的惯性力矩可以向制造商索取。这对于机器人的安全至关重要。同时还应该关注各轴的允许力矩。例如您的应用需要一定的力矩去完成时,就需要检查该轴的允许力矩能否满足要求。如果不能,机器人很可能会因为超负载而故障。 防护等级 这个也取决于机器人的应用时所需要的防护等级。机器人与食品相关的产品、实验室仪器、

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。 (2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。

自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。 (4)运动精度(Accurucy) 机器人机械系统的精度主要涉及位姿精度、重复位姿精度、轨迹精度、重复轨迹精度等。 位姿精度是指指令位姿和从同一方向接近该指令位姿时各实到位置中心之间的偏差。重复位姿精度是指对同指令位姿从同一方向重复响应n次后实到位姿的不一致程度。 轨迹精度是指机器人机械接口从同一方向n次跟随指令轨迹的接近程度。轨迹重复精度是指对一给定轨迹在同方向跟随n次后实到轨迹之间的不一致程度。

川崎机器人E控系列基本操作培训手册 系统设置篇

佛山隆深机器人有限公司内部技术培训教程 川崎机器人应用参数设置

川崎机器人E控系列基础操作培训教程 系统设置篇 教程编制:佛山隆深机器人有限公司 川崎机器人中国华南区S级代理商

如何进入设置面板界面 第一步:按示教器的,在弹出的菜单内选择[辅助功能],然后按示教器的 .

主菜单的设置分类 第一步:按示教器的,在弹出的菜单内选择[辅助功能],然后按示教器的 示教器的方向键↑↓可选择需要修改的项目按【登陆】键进入子菜单. 常用设置菜单为: 2.保存/加载(用来保存和加载程序) 4.基本设定(设定机器人基础数据) 5.高级设定(系统开关/核心参数设定) 6.输入/输出信号(专用信号/信号编号设定) 7.显示器功能(履历/机器人运行数据) 8.系统(核心控制/设置参数.

程序的保存/加载 .保存/加载功能提供程序/参数等数据的导入/导出操作,我们可以把外部存储设备的数据导入机器人,也可以把机器人内部的数据导出来进行分析/编辑. 保存:把机器人内部的数据按所选类型导出到USB存储设备中. 加载:将USB存储设备中的数据按所选类型导入机器人内部存储. 注:正在使用/打开的程序无法加载到机器人内部(提示程序正在运行,加载错误).

机器人内部数据的导出 保存(导出)数据:(R码0201) 首先:进入机器人数据保存菜单 然后:用[↑↓]键移动到文件名输入框 然后:;用手点击(输入文件名),在弹出的(键盘操作页)输入文件名. 注:※文件名不能以数字开头※ 可以是字母+数字,也可以加下划线 输入完毕后点击(保存数据)选择保存的 文件类型. 选择完类型后就可以点击保存了.

工业机器人的主要技术参数

工业机器人的主要技术参数 工业机器人的种类、用途以及用户要求都不尽相同。但工业机器人的主要技术参数应包括以下几种:自由度、精度、工作范围、最大工作速度和承载能力。 1. 自由度 机器人所具有的独立坐标轴运动的数目,一般不包括手爪(或末端执行器)的开合自由度。在三维空间中表述一个物体的位置和姿态需要6个自由度。但是,工业机器人的自由度是根据其用途而设计的,可能小于6个也可能大于6个自由度。例如,日本日立公司生产的A4020装配机器人有4个自由度,可以在印制电路板上接插电子元器件; PUMA562机器人具有6个自由度(见图1.11~图1.13),可以进行复杂空间曲面的弧焊作业。从运动学的观点看,在完成某一特定作业时具有多余自由度的机器人,叫做冗余自由度机器人,又叫冗余度机器人。例如,PUMA562机器人去执行印制电路板上接插元器件的作业时就是一个冗余度自由机器人。利用冗余的自由度可以增加机器人的灵活性,躲避障碍物和改善动力性能。 人的手臂共有7个自由度,所以工作起来很灵巧,手部可回避障碍物,从不同方向到达目的地。 2.精度 工业机器人精度是指定位精度和重复定位精度。定位精度是指机器人手部实际到达位置与目标位置之间的差异,用反复多次测试的定位结果的代表点与指定位置之间的距离来表示。重复定位精度是指机器人重复定位手部于同一目标位置的能力,以实际位置值的分散程度来表示。实际应用中常以重复测试结果的标准偏差值的3倍来表示,它是衡量一列误差值的密集度。图1.14所示为工业机器人定位精度与重复定位精度图例。 (a)重复定位精度的测定 (:b)合理的定位精度,良好的重复定位精度 (C)良好的定位精度,较差的重复定位精度(d)很差的定位精度,良好的重复定位精度 2. 工作范围 工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合,也叫做工作区域。因为末端操作器的形状和尺寸是多种多样的,为了真实地反映机器人的特征参数,一般工作范围是指不安装末端操作器的工作区域。工作范围的形状和大小是十分重要的,机器人在执行某作业时可能会因为存在手部不能到达的作业死区而不能完成任务,如图1.15所示。 3.最大工作速度 最大工作速度,有的厂家指工业机器人自由度上最大的稳定速度,有的厂家指手臂大合成速度,通常欧洲技术参数中就有说明。工作速度越高,工作效率就越高。但是,工作速度越高就要花费更多的时间去升速或降速。 4.承载能力 承载能力是指机器人在工作范围内的任何位置上所能承受的最大质量。承载能力不仅决定于负载的质量,而且与机器人运行的速度、加速度的大小和方向

工业机器人的基本参数和性能指标知识讲解

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。

(2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。 自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。

工业机器人课程设计

河南机电高等专科学校《机器人应用技术》课程作品 设计说明书 作品名称:多功能机械手 专业:机电一体化技术 班级:机电124班 扣号: 姓名:流星 2014 年 10 月 1 日

目录 一课题概述 (2) 1、选题背景 (2) 2、发展现状和趋势 (3) 3、研究调研 (4) 二机械手组成及工作过程 (6) 1、整体结构分析 (6) 2、所需器材 (6) 3、底座部分 (8) 4、躯干部分 (9) 5、上臂部分 (10) 6、手爪部分 (11) 7、机械手系统的总调试 (12) 三软件部分 (13) 1、机械手软件编制流程图 (13) 2、机械手运行控制程序图 (14) 四设计体会 (15) 一课题概述 1、选题背景 随着我国经济的高速发展,各种电子产品和各种创新机械结构的出现,工业机器人的作用在装配制造业产业中的地位更加重要了。另一方面随着人们生活水平的提高传统制造产业劳动力生产成本进一

步提高,这也使企业意识到用高速准确的机械自动化生产代替传统人工操作的重要性。其中机械手是其发展过程中的重要产物之一,它不仅提高了劳动生产的效率,还能代替人类完成高强度、危险、重复枯燥的工作,减轻人类劳动强度,可以说是一举两得。在机械行业中,机械手越来越广泛的得到应用,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更为普遍。目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC中一个重要组成部分。把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。但目前我国的工业机械手技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国机械行业自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计具有重要意义。 在这样一个大的背景下结合自己的专业机电一体化,我们选择多功能机械手来作为我们的设计题目。结合专业特点使用德国慧鱼机器人教学模型作为我们实现这一课题的元件。利用慧鱼模型的各种机械结构组装出机械手的机械部分,用pc编程实现对机械手的自动控制,利用限位开关来保护电机和控制机械手位置的准停。 这个课题可以充分的体现机电一体化的由程序自动控制机械结构的运动,对自己以前的所学的课程也是一种巩固。另一方面这个机械手可以实现一定的搬运功能具有很强的实用性能。 2、发展现状和趋势

Z1 配置福尼斯焊机的机器人系统参数设置说明

配置福尼斯焊机的机器人系统参数设置说明 吴为进2011-10 一、检查系统配置,确认ARC选项为:650-9 Fronius TPS4000/5000 ABB出厂默认选项,如果使用旧机器人ARC选项可能不是650-9 Fronius TPS4000/5000,需重装系统,参考系统安装手册。 二、修改EIO.cfg,配置肯比焊机信号 2.1、EIO_UNIT_TYPE确认福尼斯焊机通讯板定义;如果没有定义,添加如下定义。 -Name "BK5200" -BusType "DNET" -VendorName "BECKHOFF"\ -ProductName "BECKHOFF" -DN_VendorId 108 -DN_ProductCode 5200\ -DN_DeviceType 12 -DN_MajorRev 3 -DN_C1Interval 30 -DN_C1OutputSize -1\ -DN_C1InputSize -1 -Name "BK5250" -BusType "DNET" -VendorName "BECKHOFF"\ -ProductName "BECKHOFF" -DN_VendorId 108 -DN_ProductCode 5250\ -DN_DeviceType 12 -DN_C1Interval 30 -DN_C1OutputSize -1 -DN_C1InputSize -1 2.2、EIO_UNIT添加福尼斯焊机通讯板及虚拟板;红字的“20”为DeviceNet 地址需根据福尼斯的拔码开关确定,不能与系统中已使用的地址重复。

-Name "ioFronius1" -UnitType "BK5250" -Bus "DeviceNet1" -DN_Address 20 -Name "ioFroniusSim1" -UnitType "Virtual" -Bus "Virtual1"\ -UnitLabel "RWArc Simulated welder" 2.3、EIO_SIGNAL添加如下信号,所有信号不能修改; -Name "doFr1ArcOn" -SignalType "DO" -Unit "ioFronius1" -UnitMap "0" -Name "doFr1RobotReady" -SignalType "DO" -Unit "ioFronius1" -UnitMap "1" -Name "doFr1GasTest" -SignalType "DO" -Unit "ioFronius1" -UnitMap "8" -Name "doFr1FeedForward" -SignalType "DO" -Unit "ioFronius1" -UnitMap "9" -Name "doFr1FeedRetract" -SignalType "DO" -Unit "ioFronius1" -UnitMap "10" -Name "doFr1ErrorReset" -SignalType "DO" -Unit "ioFronius1" -UnitMap "11" -Name "doFr1TouchSense" -SignalType "DO" -Unit "ioFronius1" -UnitMap "12" -Name "doFr1TrchBlowOut" -SignalType "DO" -Unit "ioFronius1" -UnitMap "13" -Name "doFr1WeldingSim" -SignalType "DO" -Unit "ioFronius1" -UnitMap "31" -Name "diFr1ArcStable" -SignalType "DI" -Unit "ioFronius1" -UnitMap "0"\ -FiltPas 50 -Name "diFr1ProcessActv" -SignalType "DI" -Unit "ioFronius1" -UnitMap "2" -Name "diFr1MainCurrent" -SignalType "DI" -Unit "ioFronius1" -UnitMap "3" -Name "diFr1TorchColisn" -SignalType "DI" -Unit "ioFronius1" -UnitMap "4" -Name "diFr1WelderReady" -SignalType "DI" -Unit "ioFronius1" -UnitMap "5" -Name "diFr1CommunicRdy" -SignalType "DI" -Unit "ioFronius1" -UnitMap "6" -Name "aoFr1Power" -SignalType "AO" -Unit "ioFronius1" -UnitMap "32-47"\ -EncType "UNSIGNED" -MaxLog 100 -MaxPhys 10 -MaxPhysLimit 10\ -MaxBitVal 65535 -Name "aoFr1ArcLength" -SignalType "AO" -Unit "ioFronius1"\ -UnitMap "48-63" -EncType "UNSIGNED" -MaxLog 30 -MaxPhys 10\ -MaxPhysLimit 10 -MaxBitVal 65535 -MinLog -30 -Name "aoFr1Dynamic" -SignalType "AO" -Unit "ioFronius1" -UnitMap "64-71"\

机器人课程设计报告

机器人课程设计报 告

智能机器人课程设计 总结报告 姓名: 组员: 指导老师: 时间:

一、课程设计设计目的 了解机器人技术的基本知识以及有关电工电子学、单片机、机械设计、传感器等相关技术。初步掌握机器人的运动学原理、基于智能机器人的控制理论,并应用于实践。经过学习,具体掌握智能机器人的控制技术,并使机器人能独立执行一定的任务。 基本要求:要求设计一个能走迷宫(迷宫为立体迷宫)的机器人。要求设计机器人的行走机构,控制系统、传感器类型的选择及排列布局。要有走迷宫的策略(软件流程图)。对于走迷宫小车控制系统设计主要有几个方面:控制电路设计,传感器选择以及安放位置设计,程序设计 二、总体方案 2.1 机器人的寻路算法选择 将迷宫看成一个m*n的网络,机器人经过传感器反馈的信息感知迷宫的形状,并将各个节点的与周围节点的联通性信息存储于存储器中,再根据已经构建好的地图搜索离开迷宫的路径。这里可选择回溯算法。对每个网格从左到右,每个网格具有4个方向,分别定义。并规定机器人行进过程中不停探测前方是否有障碍物,同时探测时按左侧规则,进入新网格后优先探测当前方向的左侧方向。探测过程中记录每个网格的四个方向上的状态:通路、不通或未知,探测得到不同状态后记记录,同时记录当前网

格的四个方向是否已被探测过。若某网格四个方向全部探测过则利用标志位表示该网格已访问。为了寻找到从起点到终点的最佳路径,记录当前网格在四个方向上的邻接网格序号,由此最后可在机器人已探测过的网格中利用Dijkstra算法找到最佳路径。并为计算方便,记录网格所在迷宫中行号、列号。并机器人探索过程中设置一个回溯网格栈记录机器人经过的迷宫网格序号及方向,此方向是从一个迷宫网格到下一个迷宫网格经过的方向。设置一个方向队列记录机器人在某网格内探测方向的顺序。设置一个回溯路径数组记录需要回溯时从回溯起点到回溯终点的迷宫网格序号及方向。 考虑到迷宫比较简单,且主要为纵横方向的直线,可采用让小车在路口始终左转或者始终右转的方法走迷宫,也就是让小车沿迷宫的边沿走。这样最终也能走出迷宫。本次课程设计采用此方法。即控制策略为机器人左侧有缺口时,向左进入缺口,当机器人前方有障碍是,向右旋转180°,其余情况保持前进。 2.2 传感器的选择 由于需要检测机器人左侧和前方是否有通路,采用红外传感器对机器人行进方向和左侧进行感知。红外避障传感器是依据红外线的反射来工作的。当遇到障碍物时,发出的红外线被反射面反射回来,被传感器接收到,信号输出引脚就会给出低电平提示信号。本机器人系统的红外避障信号采用直接检测的方式进行,直接读取引脚电平。传感器感应障碍物的距离阈值能够经过调节

焊接机器人主要技术指标

焊接机器人主要技术指标 选择和购买焊接机器人时,全面和确切地了解其性能指标十分重要。使用机器人时,掌握其主要技术指标更是正确使用的前提。各厂家在其机器人产品说明书上所列的技术指标往往比较简单,有些性能指标要根据实用的需要在谈判和考察中深入了解。 焊接机器人的主要技术指标可分为两大部分,机器人的通用指标和焊接机器人的专门指标。 (1) 机器人通用技术指标 1) 自由度数这是反映机器人灵活性的重要指标。一般来说,有3 个自由度数就可以达到机器人工作空间任何一点,但焊接不仅要达到空间某位置,而且要保证焊枪( 割具或焊钳) 的空间姿态。因此,对弧焊和切割机器人至少需要5 个自由度,点焊机器人需要6 个自由度。 2) 负载指机器人末端能承受的额定载荷,焊枪及其电缆、割具及气管、焊钳及电缆、冷却水管等都属负载。因此,弧焊和切割机器人的负载能力为6 ~10kg,点焊机器人如使用一体式变压器和焊钳一体式焊钳,其负载能力应为60 ~90kg ,如用分离式焊钳,其负载能力应为40 ~50kg。 3) 工作空间厂家所给出的工作空间是机器人未装任何末端操作器情况下的最大可达空间,用图形来表示。应特别注意的是,在装上焊枪( 或焊钳) 等后,又需要保证焊枪姿态。实际的可焊接空间,会比厂家给出的小一层,需要认真地用比例作图法或模型法核算一下,以判断是否满足实际需要。 4) 最大速度这在生产中是影响生产效率的重要指标。产品说明书给出的是在各轴联动情况下,机器人手腕末端所能达到的最大线速度。由于焊接要求的速度较低,最大速度只影响焊枪( 或焊钳) 的到位、空行程和结束返回时间。一般情况下,焊接机器人割机器人要视不同的切割方法而定。 5) 点到点重复精度这是机器人性能的最重要指标之一。对点焊机器人,从工艺要求出发,其精度应达到焊钳电极直径的1/2 以下,即+ 1 ~2mm 。对弧焊机器人,则应小于焊丝直径的1/2 ,即0.2 ~0.4mm 。 6) 轨迹重复精度这项指标对弧焊机器人和切割机器人十分重要,但各机器人厂家都不给出这项指标,因为测量比较复杂。但各机器人厂家内部都做这项测量,应坚持索要其精度数据,对弧焊和切割机器人,其轨迹重复精度应小于

机器人创新设计课程总结

机器人创新设计课程总结 苏登自动化1509 学号20153800 记得当初选择机器人创新设计这门课程有很多原因,其一是自己喜欢机械结构,对和机械自动化有关的课题感兴趣,还有一个原因是刚刚看完BAYMAX这部好评如潮的电影,被其中各色各样的机器人所打动。在选择这门课程时心里还是有一些犹豫,担心自己在这方面毫无基础,难以跟上课程进度,再者担心考试太难,拿不到好成绩。然而事实证明,我当初选择这门选修课的决定是正确的,期间不但接触到了最新的机器人概念和进展,还认识到了专业的老师,很多有想法有能力的朋友,最重要的是我完全是因为兴趣而不是为了完成修学分的任务,因此哪怕期间有所困难,哪怕偶尔感觉枯燥,我都觉得没有白费时间。 如果说这门课程给我留下的最深的印象是什么,我的总结是:实践,参与。机器人不是纸上谈兵的东西,机器人从开端到如今的繁荣,都是一个个实验,一个个失败铸造的结果。对此,我对我们的指导老师李海龙老师深感敬佩。短短半个学期的时间,不多的上课机会,李海龙老师拿出两节课的时间给我们做课堂展示,又拿出两节课的时间给我们组装,展示机器人,更不用说课下我们在网上查找资料,为机器人编程这类直接接触机器人的时间。很多人把选修课看作水课,我想说的是,咋们的机器人创新设计不是水课。 在课堂展示的PPT中,我负责的是智能机器人这一部分。期间花了很多的时间上网查找资料。在我以往的印象中,真正智能的机器人应该可以具有自我学习的功能,而不仅仅是依靠事先储存的数据。比如可以自己根据实际问题,根据发生过的事件自动储存记忆更新数据库。在我整理完智能机器人这一部分的资料后,我发现现在的机器人技术尚未达到这一高度,机器人做出的判断也仅仅只是基于现有的数据,无法自己学习,更不用说产生灵感之类的智慧了。舍友问我:“你上网查这些资料有什么意义?”,可能这些东西不会对我产生直接的影响,但是作为自动化的学生,在以后系统地接触到机器人的时候,甚至自己有点小小的成绩的时候,我可以在心里提醒自己:我离真正的智能机器人还差的很远。正如乔布斯所说,当初我在大学选修书法课,我看不到任何的直接作用,但是若干年后,我把在书法上的知识运用到了苹果电脑里,如果当初我没有选择书法课,那么现在你们的电脑里就不会有如此美丽的字体。为自己的兴趣,为团队的成果而投入地做一件事情,本来就非常值得。 认清团队的力量,这是我在机器人创新设计课程上的第二个收获。在最后的机器人组装上,没有专门的讲解,仅仅是一百四十多页的图纸。然而在这种情况下,我们的组长曹旭分工明确,组装的工作进行的井井有条,期间有各种错误,盲区,但是我们没有松懈,没有气儽,正如之前所说,机器人是一门实践的科学。在组装机器人的过程中,我们被机器人的魅力深深吸引,似乎一个个零件都有了自己的生命,最重要的是,我们在发现问题解决问题的过程中一步步的提高了自己的能力。例如在第一个机器人完成后,我们经过讨论决定该做一个分拣机,但是在分拣机完成后出现了识别失误,物品分拣不可靠的情况。面对这一问题,我们积极讨论,分析原因,在多方面作出了改进,在原图纸的基础上实现创新,最终完美地解决了这一问题,最后在课堂展示上向全班同学展示了我们的成果。组装机器人这一段时间向我展示了团队的力量,无论是在以后的生活还是科研中,团队至上将是我的座右铭。 最后,作为九组的一员,我衷心感谢我们九组的所有组员和曹组长所做出的努力,正是因为你们,让这堂趣味无穷的课程增添了几分感动和思念。最后付几张组装机器人的照片:

6关节机器人介绍

BONMET ROBOT 在当今高度竞争的全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受的压力日益增大,既要应付低成本国家的对手,还要面临发达国家的劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 自动化的优势 机器人自动化一系列广受好评的优势,可参见”投资机器人的10大理由”。许多行业尤其是工程、食品等传统行业,普遍面临劳动力老龄化、对年轻人缺乏吸引力的问题。引入机器人解决方案之后,可减轻对传统技术人员的依赖,充分发挥IT、计数机等新兴技术的优势,相关人才也更容易在年轻一代中物色。 改善困难的工作条件与安全性 在高温、腐蚀等高危环境中,高柔性的自动化系统能够代替工作

人员勇挑重担。工作人员从事高度重复性的操作,稍有不慎就会造成经济或质量损失等。而实现自动化作业之后,工作人员便可以转调到对技能要求更高的岗位,工作成就感也将随之上升。恻然解决了招人难、留人难、老龄化这些问题。 优质稳定的产品与工艺降低生产成本 高度柔性的机器人自动化系统能根据市场需求的波动灵活性增减产量;每逢订单激增,即可安排夜班或周末班,而只负担有限的加班成本。机器人自动化还能加快产品转换,在确保品质恒定如一的同时,实现小批量、短周期、多频次供货,从而提升服务水准。自动化系统的重复定位精度与一致性俱优,加工公差更小,工艺控制更严,能长期确保优异的产品质量、最大限度降低生产和劳动力成本。 提高生产效率 机器人是开源节流的得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺和产品质量的恒定一致,显著提高产量。自动化将人类从枯燥繁重的重复性劳动中解放出来,让人类的聪明才智和应变能力得以释放,从而生产更大的经济回报。

机器人简单配置

机器人初始化★进入系统菜单 →机器人冷启动 →然后按住PREV和NEXT键 ★选择3 Controlled Start →将菜单中的 改为ENABLE →单击ENTER ★选择1 Start Setup Wizard →选择Body Shop →选择Spot Welding →选择One WeldControl →选择EtherNet IP →选择Robot Held Gun →选择“YES”(伺服枪,否则选择“NO”) →选择“YES”(是否要选择伺服电机型号) →选择“1”(选择伺服电机型号) →填入枪的速比(在枪的铭牌上) →填入枪的最大压力(在枪的铭牌上) →填入枪的最大开口(在枪的铭牌上) →选择“C”&“X”型枪 →选择伺服放大器(一把枪选择“2”) →选择是否有温控(根据实际情况) →选择是否有修磨机(标准配置有) →选择修磨机电机型号(根据实际情况) →选择“YES”(Tip-Dress after Cap Changing) →选择“YES”(第一次配置时Pressure Table Setup)**配置完成** ★选择2 Set Cell I/O to PLC →选择EtherNet IP **配置完成** ★选择5 EXIT ★选择FUNCTION →选择Cold Start ***机器人初始化完成***

焊枪初始化 ★初始化设置 →MENUS→UTILITES→GUNSETUP →依次按ENTER键进行一下设定 [SET GUN MOTION SIGN] (设定枪的方向) →关枪→按[F5]CLOSE→按[F3]COMP [SET GUN SPACE,MASTER,GUN] (设定枪的基本参数) →在“******”处填入相应参数(在枪的铭牌上找) →关枪至零位→按[F3]COMP [AUTO TUNE] (自动计算一些参数) →按SHIFT+[F3] EXEC (运行过程中SHIFT必须一直按住) [THICKNESS CHECK CABIBRATION](◆必须在压力标定完成后再做◆) →按SHIFT+[F3] EXEC (运行过程中SHIFT必须一直按住)**设置完成** ★焊枪压力标定 →MENUS →Setup→Servo Gun →选择<*DETAIL*> (第二行)→ENTER (没有标定会现实INCOMP) →选择Pressure cal 后的<*DETAIL*>→ENTER →填写以下内容: [Pressuring Time (sec)] = 2.0 加压时间2" [Thickness of Gauge (mm)]压力计厚度请如实填写 [Pushing Depth (mm)]压入深度,填20mm [Gun Open Value (mm)]标定时枪口每次张开的大小 →尝试输入适当的扭矩值,从低扭矩开始(5%);直到到达匹配的压力 →SHIFT-[F3: Pressure] →填入压力值 →所有扭矩测量完毕后点击-[F3: comp] **设置完成** →运行程序TW_SETG1(宏)使本目录下Tip wear standard 为COMP ★零位设置 →MENUS→0→SYSTEM→GUN MASTER →BZAL→FUNCTION→0→POWER CYCLE(清除报警,否则机器人无法运动)→把焊枪上下电极杆开到相碰按下(该点即为焊枪零位) →SHIFT+EXEC(记入) **设置完成** ***焊枪初始化完成***

智能机器人综合设计

项目设计报告撰写要求及说明 一、撰写内容要求 撰写内容必须包括但不限于以下内容: 1.概述 2.需求分析 3.概要设计 4.详细设计 5.系统实现 6.系统测试 7.结论 8.参考文献 二、撰写格式要求 1.目录 目录由设计(论文)的章、节、条、附录等的序号、名称和页码组成。章节既是设计(论文)的提纲,也是其组成部分的标题。目录的序号一律采用阿拉伯数字。 “目录”两字采用一级标题排版;章题目和结尾内容题目采用二级标题排版;节题目采用四号宋体字,1.5倍行距,居左;条题目采用小四号宋体字,1.5倍行距,左缩进2个字符。须注明各题目的起始页码,页码为小四号“Times New Roman”字体,题目与页码用“……”相连。 2.正文部分 正文内容必须实事求是、客观真实、准确完备、合乎逻辑、结论严谨、层次分明、语言流畅,符合学科、专业的有关要求。结论:准确、完整、明确、精练。但仍可以在结论或讨论中提出建议、设想、尚待解决的问题等。 ●装订规格要求 纸张大小:纸的尺寸为标准A4纸。 页边距:上、下、左、右各25mm。 装订:封面、目录和参考文献单面打印,其余部分双面打印,沿长边装订。 正文字体字号:中文小4号宋体,英文小四号“Times New Roman”字型,全文统一。 页码:页码用阿拉伯数字连续编页,字号与正文字体相同,页底居中,数字两侧用一字横线修饰,如-3-。 页眉:自正文页起加页眉,眉体使用单线,页眉字体为5号楷体。 封面:采用统一的标准封面。 ●标题要求 主体部分按章、节、条、项分级,在不同级的章、节、条、项阿拉伯数字编号之间用“

●主体部分 (a)绪论、正文、结论部分除有标题要求外,汉字字体采用小四号宋体,1.5倍行距。外文、数字字号与同行汉字字号相同,字体用“Times New Roman”字体。 (b)插图:插图包括图解、示意图、构造图、框图、流程图、布置图、地图、照片、图版等。插图注明项有图号、图题、图例。图号编码用章序号。如“图3.1”表示第3章第1图。图号与图题文字间置一字空格,置于图的正下方,图题用5号宋体,须全文统一。图中标注符号文字字号不大于图题的字号。 (c)表:表的一般格式是数据依序竖排,内容和项目由左至右横读,通版排版。表号也用章序号编码,如:表3.1是第3章中的第1表。表应有表题,与表号之间置一字空格,置于表的上方居中,用5号宋体,须全文统一。表中的内容和项目字号不大于表题的字号。 (d)公式:公式包括数学、物理和化学公式。正文中引用的公式、算式或方程式等可以按章序号用阿拉伯数字编号,如式(3-1)表示第3章第1式,公式一般单行居中排版与上下文分开,式号与公式同行居公式右侧排版。 ●参考文献 参考文献格式规范如下: 书籍:[1] 作者1,作者2.书名[M],出版社,出版年 网址:[2] 作者.名称[EB/OL],网址,年.月 期刊:[3] 作者1,作者2.论文名称[J],期刊名称,年代,卷(期): 起止页码 例如: [1] 作者1,作者2.Eclipse从入门到精通[M],清华大学出版社,2005 [2] 作者.软件设计模式[EB/OL],https://www.360docs.net/doc/ef12844069.html,/10289.htm,2004.3 [3] 作者1,作者2.论文名称[J],清华大学学报,2005,4(1):26-35

工业机器人的结构与技术参数

工业机器人的结构与技术参数 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统(FMS)、自动化工厂(FA)、计算机集成制造系统(CIMS)的自动化工具。 广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 一、常用运动学构形 1、笛卡尔操作臂

优点:很容易通过计算机控制实现,容易达到高精度。缺点:妨碍工作, 且占地面积大, 运动速度低, 密封性不好。 ①焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、分类、装配、贴标、喷码、打码、(软仿型)喷涂、目标跟随、排爆等一系列工作。 ②特别适用于多品种,便批量的柔性化作业,对于稳定,提高产品质量,提高劳动生产率,改善劳动条件和产品的快速更新换代有着十分重要的作用。 2、铰链型操作臂(关节型) 关节的关节全都是旋转的,类似于人的手臂,工业机器人中最常见的结构。它的工作范围较为复杂。

①汽车零配件、模具、钣金件、塑料制品、运动器材、玻璃制品、陶瓷、航空等的快速检测及产品开发。 ②车身装配、通用机械装配等制造质量控制等的三坐标测量及误差检测。 ③古董、艺术品、雕塑、卡通人物造型、人像制品等的快速原型制作。 ④汽车整车现场测量和检测。 ⑤人体形状测量、骨骼等医疗器材制作、人体外形制作、医学整容等。 3、SCARA操作臂

机器人课程设计报告材料

智能机器人课程设计 总结报告 姓名: 组员: 指导老师: 时间:

一、课程设计设计目的 了解机器人技术的基本知识以及有关电工电子学、单片机、机械设计、传感器等相关技术。初步掌握机器人的运动学原理、基于智能机器人的控制理论,并应用于实践。通过学习,具体掌握智能机器人的控制技术,并使机器人能独立执行一定的任务。 基本要求:要求设计一个能走迷宫(迷宫为立体迷宫)的机器人。要求设计机器人的行走机构,控制系统、传感器类型的选择及排列布局。要有走迷宫的策略(软件流程图)。对于走迷宫小车控制系统设计主要有几个方面:控制电路设计,传感器选择以及安放位置设计,程序设计 二、总体方案 2.1 机器人的寻路算法选择 将迷宫看成一个m*n的网络,机器人通过传感器反馈的信息感知迷宫的形状,并将各个节点的与周围节点的联通性信息存储于存储器中,再根据已经构建好的地图搜索离开迷宫的路径。这里可选择回溯算法。对每个网格从左到右,每个网格具有4个方向,分别定义。并规定机器人行进过程中不停探测前方是否有障碍物,同时探测时按左侧规则,进入新网格后优先探测当前方向的左侧方向。探测过程中记录每个网格的四个方向上的状态:通路、不通或未知,探测得到不同状态后记记录,同时记录当前网格的四个方向是否已被探测过。若某网格四个方向全部探测过则利用标志位表示该网格已访问。为了寻找到从起点到终点的最佳路径,记录当前网格在四个方向上的邻接网格序号,由此最后可在机器人已探测过的网格中利用Dijkstra算法找到最佳路径。并为计算方便,记录网格所在迷宫中行号、列号。并机器人探索过程中设置一个回溯网格栈记录机器人经过的迷宫网格序号及方向,此方向是从一个迷宫网格到下一个迷宫网格经过的方向。设置一个方向队列记录机器人在某网格内探测方向的顺序。设置一个回溯路径数组记录需要回溯时从回溯起点到回溯终点的迷宫网格序号及方向。 考虑到迷宫比较简单,且主要为纵横方向的直线,可采用让小车在路口始终左转或者始终右转的方法走迷宫,也就是让小车沿迷宫的边沿走。这样最终也能走出迷宫。本次课程设计采用此方法。即控制策略为机器人左侧有缺口时,向左进入缺口,当机器人前方有障碍是,向右旋转180°,其余情况保持前进。 2.2 传感器的选择

相关文档
最新文档