遗传算法多目标函数优化

多目标遗传算法优化

铣削正交试验结果

说明:

1.建立切削力和表面粗糙度模型

如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1)

a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2)

R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457

10002/c z p e Q v f a a D π=-????(3)

变量约束范围:401000.020.080.25 1.0210c z

e p v

f a a ≤≤??≤≤??≤≤?

?≤≤?

公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8

2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下:

clear; clc;

% 遗传算法直接求解多目标优化

D=8;

% Function handle to the fitness function

F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)];

Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)];

Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

nvars = 4; % Number of decision variables

lb = [40, 0.02,0.25, 2]; % Lower bound

ub = [100,0.08, 1.0,10]; % Upper bound

A = []; b = []; % No linear inequality constraints

Aeq = []; beq = []; % No linear equality constraints

% 遗传算法设定约束

options =

gaoptimset('ParetoFraction',0.3,'PopulationSize',200,'Generations',300,'Sta llGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto);

% the data of Pareto1

FUN=@(X)[F(X);Ra(X)];

[x,fval] = gamultiobj(FUN,nvars,A,b,Aeq,beq,lb,ub,options);

% 开启一个新的图形

figure;

% 画出Pareto1

plot(fval(:,1),fval(:,2),'mp');

% 画出网格

grid on;

% 设定横坐标

xlabel('F');

% 设定纵坐标

ylabel('Ra');

% 设定题目

title('Pareto front 1');

% the data of Pareto2

FUN=@(X)[F(X);Q(X)];

[x,fval] = gamultiobj(FUN,nvars,A,b,Aeq,beq,lb,ub,options);

% 开启一个新的图形

figure;

% 画出Pareto2

plot(fval(:,1),fval(:,2),'mp');

% 画出网格

grid on;

% 设定横坐标

xlabel('F');

% 设定纵坐标

ylabel('Q');

% 设定题目

title('Pareto front 2');

% the data of Pareto3

FUN=@(X)[Ra(X);Q(X)];

[x,fval] = gamultiobj(FUN,nvars,A,b,Aeq,beq,lb,ub,options);

% 开启一个新的图形

figure;

% 画出Pareto3

plot(fval(:,1),fval(:,2),'mp');

% 画出网格

grid on;

% 设定横坐标

xlabel('Ra');

% 设定纵坐标

ylabel('Q');

% 设定题目

title('Pareto front 3');

% the data of Pareto (F,Ra,Q)

FUN=@(X)[F(X);Ra(X);Q(X)];

[x,fval] = gamultiobj(FUN,nvars,A,b,Aeq,beq,lb,ub,options);

% 开启一个新的图形

figure;

% 画出Pareto4

plot3(fval(:,1),fval(:,2),fval(:,3),'m.');

% 画出网格

grid on;

% 设定横坐标

xlabel('F');

% 设定纵坐标

ylabel('Ra');

% 设定竖坐标

zlabel('Q');

% 设定题目

title('Pareto front 4');

% 重新设定遗传算法

options =

gaoptimset('ParetoFraction',0.3,'PopulationSize',5,'Generations',1000,'Stal lGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto);

% 遗传算法求解

[x,fval] = gamultiobj(FUN,nvars,A,b,Aeq,beq,lb,ub,options);

% 显示结果

format shortg

xfval=[x,fval]

% 保存结果到Excel

xfval=round(xfval*10000)/10000;

xlswrite('data.xlsx',xfval,'sheet1','A1')

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

遗传算法在多目标优化的应用:公式,讨论,概述总括

遗传算法在多目标优化的应用:公式,讨论,概述/总括 概述 本文主要以适合度函数为基础的分配方法来阐述多目标遗传算法。传统的群落形成方法(niche formation method)在此也有适当的延伸,并提供了群落大小界定的理论根据。适合度分配方法可将外部决策者直接纳入问题研究范围,最终通过多目标遗传算法进行进一步总结:遗传算法在多目标优化圈中为是最优的解决方法,而且它还将决策者纳入在问题讨论范围内。适合度分配方法通过遗传算法和外部决策者的相互作用以找到问题最优的解决方案,并且详细解释遗传算法和外部决策者如何通过相互作用以得出最终结果。 1.简介 求非劣解集是多目标决策的基本手段。已有成熟的非劣解生成技术本质上都是以标量优化的手段通过多次计算得到非劣解集。目前遗传算法在多目标问题中的应用方法多数是根据决策偏好信息,先将多目标问题标量化处理为单目标问题后再以遗传算法求解,仍然没有脱离传统的多目标问题分步解决的方式。在没有偏好信息条件下直接使用遗传算法推求多目标非劣解的解集的研究尚不多见。 本文根据遗传算法每代均产生大量可行解和隐含的并行性这一特点,设计了一种基于排序的表现矩阵测度可行解对所有目标总体表现好坏的向量比较方法,并通过在个体适应度定标中引入该方法,控制优解替换和保持种群多样性,采用自适应变化的方式确定交叉和变异概率,设计了多目标遗传算法(Multi Objective Genetic Algorithm, MOGA)。该算法通过一次计算就可以得到问题的非劣解集, 简化了多目标问题的优化求解步骤。 多目标问题中在没有给出决策偏好信息的前提下,难以直接衡量解的优劣,这是遗传算法应用到多目标问题中的最大困难。根据遗传算法中每一代都有大量的可行解产生这一特点,我们考虑通过可行解之间相互比较淘汰劣解的办法来达到最 后对非劣解集的逼近。 考虑一个n维的多目标规划问题,且均为目标函数最大化, 其劣解可以定义为: f i (x * )≤f i (x t ) i=1,2,??,n (1) 且式(1)至少对一个i取“<”。即至少劣于一个可行解的x必为劣解。 对于遗传算法中产生大量的可行解,我们考虑对同一代中的个体基于目标函数相互比较,淘汰掉确定的劣解,并以生成的新解予以替换。经过数量足够大的种群一定次数的进化计算,可以得到一个接近非劣解集前沿面的解集,在一定精度要求下,可以近似的将其作为非劣解集。 个体的适应度计算方法确定后,为保证能得到非劣解集,算法设计中必须处理好以下问题:(1)保持种群的多样性及进化方向的控制。算法需要求出的是一组不同的非劣解,所以计算中要防止种群收敛到某一个解。与一般遗传算法进化到

各种优化算法求解函数优化问题

各种优化算法求解函数优化问题 1.遗传算法的简单介绍及流程 1.1遗传算法的基本原理 遗传算法 ( Genetic Algorithm ,简称 GA) 是近年来迅速发展起来的一种全新的随机搜索优化算法。与传统搜索算法不同 ,遗传算法从一组随机产生的初始解 (称为群体 )开始搜索。群体中的每个个体是问题的一个解 ,称为染色体。这些染色体在后续迭代中不断进化 , 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体,称为后 代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择一定数量的个 体 ,作为下一代群体 ,再继续进化 ,这样经过若干代之后 ,算法收敛于最好的染色体 ,它很可能就是问题的最优解或次优解。遗传算法中使用适应度这个概念来度量群体中的各个个体在优化计算中有可能达到最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关。 1.2遗传算法的流程 第一步:确定决策变量及各种约束条件,即确定出个体的表现型X和问题的解空间; 第二步:确定出目标函数的类型,即求目标函数的最大值还是最小值,以及其数学描述形式或量化方法,建立其优化模型; 第三步:确定表示可行解的染色体编码方法,即确定出个体的基因型X和遗传算法的搜 索空间。 第四步:确定解码方法,即确定出个体的基因型 X和个体的表现型 X的对应关系或转换方法; 第五步:确定个体时候适应度的量化评价方法,即确定出由目标函数 f(X) 值到个体适应度F(X) 的转换规则; 第六步:设计遗传算子,即确定出选择运算、交叉运算、变异运算等遗传算子的具体操作方法; 第七步:确定出遗传算法的运行参数,即确定出遗传算法的M、 T、 Pc、 Pm等参数。1.3 遗传算法求解函数优化问题中的参数分析 目前,函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用范 例。对于函数优化中求解实数型变量的问题,一般采用动态编码和实数编码的方法来提高其搜

多目标遗传算法代码

. % function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance

遗传算法在多目标优化中的作用 调研报告

遗传算法在多目标优化中的作用调研报告 姓名: 学院: 班级: 学号: 完成时间:20 年月日 目录 1 .课题分析................................................................................................................................ 0 2 .检索策略................................................................................................................................ 0 2.1 检索工具的选择................................................................................................................................ ......... 0 2.2 检索词的选择................................................................................................................................ ............. 0 2.3 通用检索式................................................................................................................................ .. 0 3.检索步骤及检索结果 0 3.1 维普中文科技期刊数据库 0 3.2 中国国家知识产权局数据

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

遗传算法程序代码--多目标优化--函数最值问题

函数最值问题:F=X2+Y2-Z2, clear clc %%初始化 pc=0.9; %交叉概率 pm=0.05; %变异概率 popsize=500; chromlength1=21; chromlength2=23; chromlength3=20; chromlength=chromlength1+chromlength2+chromlength3; pop=initpop(popsize,chromlength);% 产生初始种群 for i=1:500 [objvalue]=calobjvalue(pop); %计算目标函数值 [fitvalue]=calfitvalue(objvalue);%计算个体适应度 [newpop]=selection(pop,fitvalue);%选择 [newpop1]=crossover(newpop,pc) ; %交叉 [newpop2]=mutation(newpop1,pm) ;%变异 [newobjvalue]=newcalobjvalue(newpop2); %计算最新代目标函数值 [newfitvalue]=newcalfitvalue(newobjvalue); % 计算新种群适应度值[bestindividual,bestfit]=best(newpop2,newfitvalue); %求出群体中适应值最大的个体及其适应值 y(i)=max(bestfit); %储存最优个体适应值 pop5=bestindividual; %储存最优个体 n(i)=i; %记录最优代位置 %解码 x1(i)=0+decodechrom(pop5,1,21)*2/(pow2(21)-1); x2(i)=decodechrom(pop5,22,23)*6/(pow2(23)-1)-1; x3(i)=decodechrom(pop5,45,20)*1/(pow2(20)-1); pop=newpop2; end %%绘图 figure(1)%最优点变化趋势图 i=1:500; plot(y(i),'-b*') xlabel('迭代次数'); ylabel('最优个体适应值'); title('最优点变化趋势'); legend('最优点');

基本遗传算法及其在函数优化中的作用

《人工智能及其应用大作业(一)》 题目:基本遗传算法及其在函数优化中的作用 学号: 姓名:

基本遗传算法及其在函数优化中的应用 摘要: 从遗传算法的编码、遗传算子等方面剖析了遗传算法求解无约束函数优化问题的一般步骤,并以一个实例说明遗传算法能有效地解决函数优化问题。本文利用基本遗传算法求解函数优化问题,选用f(x)=xsin(10πx)+2.0,取值范围在]2,1 [ 中,利用基本遗传算法求解两个函数的最优值,遗传算法每次100代,一共执行10次,根据运算结果分析得到最优解。 关键字:遗传算法选择交叉变异函数优化 1.前言 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。遗传算法是一种群体型操作,该操作以群体中的所有个体为对象。选择(Selection)、交叉(Crossover)和变异(Mutation)是遗传算法的3个主要操作算子,它们构成了所谓的遗传操作(genetic operation),使遗传算法具有了其它传统方法所没有的特性。 1.2 遗传算法的特点 其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。 1.3遗传算法的应用 函数优化,组合优化,机器人智能控制,及组合图像处理和模式识别等。 2.基本遗传算法 2.1简单遗传算法的求解步骤 Step1:参数设置及种群初始化; Step2:适应度评价; Step3:选择操作; Step4:交叉操作; Step5:变异操作; Step6:终止条件判断,若未达到终止条件,则转到Step3; Step7:输出结果。 2.2停机准则

多目标遗传算法代码

% function nsga_2(pro) %% Main Function % Main program to run the NSGA-II MOEA. % Read the corresponding documentation to learn more about multiobjective % optimization using evolutionary algorithms. % initialize_variables has two arguments; First being the population size % and the second the problem number. '1' corresponds to MOP1 and '2' % corresponds to MOP2. %inp_para_definition=input_parameters_definition; %% Initialize the variables % Declare the variables and initialize their values % pop - population % gen - generations % pro - problem number %clear;clc;tic; pop = 100; % 每一代的种群数 gen = 100; % 总共的代数 pro = 2; % 问题选择1或者2,见switch switch pro case 1 % M is the number of objectives. M = 2; % V is the number of decision variables. In this case it is % difficult to visualize the decision variables space while the % objective space is just two dimensional. V = 6; case 2 M = 3; V = 12; case 3 % case 1和case 2 用来对整个算法进行常规验证,作为调试之用;case 3 为本工程所需; M = 2; %(output parameters 个数) V = 8; %(input parameters 个数) K = 10; end % Initialize the population chromosome = initialize_variables(pop,pro); %% Sort the initialized population % Sort the population using non-domination-sort. This returns two columns % for each individual which are the rank and the crowding distance % corresponding to their position in the front they belong. 真是牛X了。 chromosome = non_domination_sort_mod(chromosome,pro); %% Start the evolution process

用于函数优化的遗传算法

一、遗传算法介绍 1.综述 遗传算法(Genetic Algorithm)是由美国Michigan 大学Holland 教授和他的学生发展建立起来的,其思想是起源于生物遗传学适者生存的自然规律,是一种新兴的自适应随机搜索方法,它对优化对象既不要求连续,也不要求可微,并具有极强的鲁棒性和内在的并行计算的机制,特别适合于非凸空间中复杂的多极值优化和组合优化问题。 2.基本原理 传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。遗传算法的搜索结果会有很大的差异。遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。遗传算法实质上是在群体空间中寻求较优解。 3.主要构成 遗传算法主要由编码、适应度、遗传算子(选择算子、交叉算子、变异算子)构成,包含的主要进化参数有编码长度、种群规模、交叉概率、变异概率、终止进化代数。 4.基本步骤 (1)初始化:确定种群规模,交叉概率 P,变异概率m P和终止进化准则,随 c 机生成初始种群() X t;置0 t ; (2)个体评价:计算或估计() X t中各个个体的适应度。 (3)选择:从() X t运用选择算子选择出一些母体。 (4)交叉:对所选个体依概率 P执行交叉,形成新的种群。 c (5)变异:随所选个体依概率 P执行变异,形成新的种群。 m 反复执行步骤(2)-(4),直到满足终止进化准则为止。

遗传算法解决函数优化问题

实验一 遗传算法解决函数优化问题 XXX XXX XXXX 一、实验目的 1. 掌握遗传算法的基本原理和步骤。 2. 复习VB 、VC 的基本概念、基本语法和编程方法,并熟练使用VB 或VC 编写遗 传算法程序。 二、实验设备 微机 三、实验原理 遗传算法是一类随机优化算法,但它不是简单的随机比较搜索,而是通过对染色体的评价和对染色体中基因的作用,有效地利用已有信息来指导搜索有希望改善优化质量的状态。 标准遗传算法流程图如图1.1所示,主要步骤可描述如下: ① 随机产生一组初始个体构成初始种群。 ② 计算每一个体的适配值(fitness value ,也称为适应度)。适应度值是对染色体(个体) 进行评价的一种指标,是GA 进行优化所用的主要信息,它与个体的目标值存在一种对应关系。 ③ 判断算法收敛准则是否满足,若满足,则输出搜索结果;否则执行以下步骤。 ④ 根据适应度值大小以一定方式执行复制操作(也称为选择操作)。 ⑤ 按交叉概率p c 执行交叉操作。 ⑥ 按变异概率p m 执行变异操作。 ⑦ 返回步骤②。 四、实验内容及步骤 1. 上机编写程序,解决以下函数优化问题:()221min 10i i i f x x =??=≤ ??? ∑X 2. 调试程序。 3. 根据实验结果,撰写实验报告。

图1.1 标准遗传算法流程图 五、实验程序 % % 清工作空间workspace,清屏幕显示 % clear all; clc; % % tic; % 启动计时器%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 参数赋值 PopSize =30; % 种群规模 Pc =0.65; % 交叉概率 Pm =0.01; % 变异概率 precision =22; % 根据精度要求,二进制字符串长度为22 iterative_thre =20; % 若连续iterative_thre次解无改进,则退出遗传算法 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 初始化变量 fitness = zeros(PopSize,1); % 存放所有染色体的适应度值SelectRate = zeros(PopSize,1); % 存放染色体的选择概率AccumulateRate = zeros(PopSize,1); % 存放染色体的累积概率 num =0; % 结束遗传算法控制量 bestfitness = 0; % 存放进化过程中最优的适应度值 bestX =0; % 存放进化过程中最优解 population = dec2bin(rand(PopSize,1)*(2^precision));

遗传算法解决函数优化问题

实验一 遗传算法解决函数优化问题 一、实验目的 1.掌握遗传算法的基本原理和步骤。 2. 复习VB 、VC 的基本概念、基本语法和编程方法,并熟练使用VB 或VC 编写遗传算法程序。 二、实验内容 1. 上机编写程序,解决以下函数优化问题: ()1021min 100i i i f x x =?? =≤ ? ?? ∑X 2. 调试程序。 3. 根据实验结果,撰写实验报告。 三、实验原理 遗传算法是一类随机优化算法,但它不是简单的随机比较搜索,而是通过对染色体的评价和对染色体中基因的作用,有效地利用已有信息来指导搜索有希望改善优化质量的状态。 标准遗传算法流程图如下图所示,主要步骤可描述如下: ① 随机产生一组初始个体构成初始种群。 ② 计算每一个体的适配值(fitness value ,也称为适应度)。适应度值是对染色体(个体) 进行评价的一种指标,是GA 进行优化所用的主要信息,它与个体的目标值存在一种对应关系。 ③ 判断算法收敛准则是否满足,若满足,则输出搜索结果;否则执行以下步骤。 ④ 根据适应度值大小以一定方式执行复制操作(也称为选择操作)。 ⑤ 按交叉概率p c 执行交叉操作。 ⑥ 按变异概率p m 执行变异操作。 ⑦ 返回步骤②。

图1.1 标准遗传算法流程图四、程序代码 #include #include #include #include #define byte unsigned char #define step 200 //步长 #define MAX 50 #define N 10 //随机数个数 #define Pc 0.74 //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理 #define Pt 0.25 //交叉的概率,个数 =Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉 #define Pm 0.01 //变异的概率,个数 =Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机 数%(n2+1)=该个体基因位置 #define n2 15//2的15次方,共16位 #define next_t (int)(Pt*N)//交叉个数#define next_m (int)(Pm*N+1)//变异个数向后约等于 #define e 0.001//次数限制阈值 /* int N=10; //随机数个数 float Pc=0.74; //被选择到下一代的概率,个数=Pc*N,小于N 下一代数=上一代,不用处理 float Pt=0.25; //交叉的概率,个数=Pt*N 舍,小于N 0~(n2+1)随机数,之后部分开始交叉 float Pm=0.01; //变异的概率,个数 =Pm*N*n2 入,小于N 0~(N*(n2+1))随机数/(n2+1)=个体,0~(N*(n2+1))随机 数%(n2+1)=该个体基因位置 */ byte bitary[N][n2+1],bitary0[N][n2+1];//二进制 int src1[N];

用于函数优化的遗传算法

用于函数优化的遗传算法

一、遗传算法介绍 1.综述 遗传算法(Genetic Algorithm )是由美国Michigan 大学Holland 教授和他 的学生发展建立起来的,其思想是起源于生物遗传学适者生存的自然规律,是一种新兴的自适应随机搜索方法,它对优化对象既不要求连续,也不要求可微,并具有极强的鲁棒性和内在的并行计算的机制,特别适合于非凸空间中复杂的多极值优化和组合优化问题。 2.基本原理 传统的优化理论都是通过调整模型的参数来得到期望的结果,而遗传优化算法是根据生物界的遗传和自然选择的原理来实现的,它的学习过程是通过保持和修改群体解中的个体特性,并且保证这种修改能够使下一代的群体中的有利于与期望特性相近的个体在整个群体份额中占有的比例越来越多。与基于代数学的优化方法一样,遗传算法是通过连续不断地队群体进行改进来搜索函数的最大值。遗传算法的搜索结果会有很大的差异。遗传学习的基本机理是使那些优于群体中其他个体的个体具有生存、繁殖以及保持更多基因给下一代的机会。遗传算法实质上是在群体空间中寻求较优解。 3.主要构成 遗传算法主要由编码、适应度、遗传算子(选择算子、交叉算子、变异算子)构成,包含的主要进化参数有编码长度、种群规模、交叉概率、变异概率、终止进化代数。 4.基本步骤 (1)初始化:确定种群规模,交叉概率c P ,变异概率m P 和终止进化准则, 随机生成初始种群() X t ;置0t ; (2)个体评价:计算或估计() X t 中各个个体的适应度。 (3)选择:从()X t 运用选择算子选择出一些母体。 (4)交叉:对所选个体依概率c P 执行交叉,形成新的种群。 (5)变异:随所选个体依概率m P 执行变异,形成新的种群。 反复执行步骤(2)-(4),直到满足终止进化准则为止。

多目标规划遗传算法

%遗传算法解决多目标函数规划 clear clc syms x; %Function f1=f(x) f1=x(:,1).*x(:,1)/4+x(:,2).*x(:,2)/4; %function f2=f(x) f2=x(:,1).*(1-x(:,2))+10; NIND=100; MAXGEN=50; NV AR=2; PRECI=20; GGPA=0.9; trace1=[]; trace2=[]; trace3=[]; FielD=[rep([PRECI],[1,NV AR]);[1,1;4,2];rep([1;0;1;1],[NV AR])]; Chrom=crtbp(NIND,NV AR*PRECI); v=bs2rv(Chrom,FielD); gen=1; while gen

实验 利用遗传算法进行函数优化

实验利用遗传算法进行函数优化 一、实验目的 1 了解及掌握遗传算法的基本操作 2 利用遗传算法解决实际问题 3 熟悉MATLAB编程语言 二、实验内容 编写一个基于遗传算法的函数寻优程序,完成如下任务: 1、在区间[-1,2]上搜索函数f1=x*sin(10πx)+2的最大值。 2、搜索函数f2=x12+x22的最小值 (其中,-5.12

第一题: figure(1); fplot('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 %定义遗传算法参数 NIND=40; %个体数目 MAXGEN=25; %最大遗传代数 PRECI=20; %变量的二进制位数 GGAP=0.9; %代沟 trace=zeros(2, MAXGEN); %寻优结果的初始值 FieldD=[20;-1;2;1;0;1;1]; %区域描述器 Chrom=crtbp(NIND, PRECI); %初始种群 gen=0; %代计数器 variable=bs2rv(Chrom, FieldD); %计算初始种群的十进制转换 ObjV=variable.*sin(10*pi*variable)+2.0; %计算目标函数值 while gen

多变量多目标的遗传算法程序

这是我在解决电梯动力学参数写的简单遗传算法(程序带目标函数值、适应度值计算,但是我的适应度函数因为目标函数的计算很特殊,一起放在了程序外面计算,在此不提供)。 头文件: // CMVSOGA.h : main header file for the CMVSOGA.cpp // 本来想使用链表里面套链表的,程序调试比较麻烦,改为种群用链表表示 //染色体固定为16的方法。 #if !defined(AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767_ _INCLUDED_) #define AFX_CMVSOGA_H__45BECA_61EB_4A0E_9746_9A94D1CCF767__INCLUDED _ #if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000 #include "Afxtempl.h" #define variablenum 16 class CMVSOGA { public: CMVSOGA(); void selectionoperator(); void crossoveroperator(); void mutationoperator(); void initialpopulation(int, int ,double ,double,double *,double *); //种群初始化 void generatenextpopulation(); //生成下一代种群 void evaluatepopulation(); //评价个体,求最佳个体 void calculateobjectvalue(); //计算目标函数值 void calculatefitnessvalue(); //计算适应度函数值 void findbestandworstindividual(); //寻找最佳个体和最差个体 void performevolution(); void GetResult(double *); void GetPopData(double **); void SetValueData(double *); void maxandexpectation(); private: struct individual { double chromosome[variablenum]; //染色体编码长度应该为变量的个数 double value; double fitness; //适应度 };

遗传算法简单一元函数优化实例

1.遗传算法简单一元函数优化实例 利用遗传算法计算最大值 f(x)=x sin(10*pi*x)+2, x in [-1,2] 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MATLAB代码 figure(1); fplot('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 %定义遗传算法参数 NIND=40; %个体数目(Number of individuals) MAXGEN=25; %最大遗传代数(Maximum number of generations) PRECI=20; %变量的二进制位数(Precision of variables) GGAP=0.9; %代沟(Generation gap) trace=zeros(2, MAXGEN); %寻优结果的初始值 FieldD=[20;-1;2;1;0;1;1]; %区域描述器(Build field descriptor) Chrom=crtbp(NIND, PRECI); %初始种群 gen=0; %代计数器 variable=bs2rv(Chrom, FieldD); %计算初始种群的十进制转换 ObjV=variable.*sin(10*pi*variable)+2.0; %计算目标函数值 while gen

多目标遗传算法中文【精品毕业设计】(完整版)

一种在复杂网络中发现社区的多目标遗传算法 Clara Pizzuti 摘要——本文提出了一种揭示复杂网络社区结构的多目标遗传算法。该算法优化了两个目标函数,这些函数能够识别出组内节点密集连接,而组间连接稀疏。该方法能产生一系列不同等级的网络社区,其中解的等级越高,由更多的社区组成,被包含在社区较少的解中。社区的数量是通过目标函数更佳的折衷值自动确定的。对合成和真实网络的实验,结果表明算法成功地检测到了网络结构,并且能与最先进的方法相比较。 关键词:复杂网络,多目标聚类,多目标进化算法 1、简介 复杂网络构成了表示组成许多真实世界系统的对象之间关系的有效形式。协作网络、因特网、万维网、生物网络、通信传输网络,社交网络只是一些例子。将网络建模为图,节点代表个体,边代表这些个体之间的联系。 复杂网络研究中的一个重要问题是社区结构[25]的检测,也被称作为聚类[21],即将一个网络划分为节点组,称作社区或簇或模块,组内连接紧密,组间连接稀疏。这个问题,如[21]指出,只有在建模网络的图是稀疏的时候才有意义,即边的数量远低于可能的边数,否则就类似于数据簇[31]。图的聚类不同于数据聚类,因为图中的簇是基于边的密度,而在数据聚类中,它们是与距离或相似度量紧密相关的组点。然而,网络中社区的概念并未严格定义,因为它的定义受应用领域的影响。因此,直观的理解是同一社区内部边的数量应该远多于连接图中剩余节点的边的数量,这构成了社区定义的一般建议。这个直观定义追求两个不同的目标:最大化内部连接和最小化外部连接。 多目标优化是一种解决问题的技术,当多个相互冲突的目标被优化时,成功地找到一组解。通过利用帕累托最优理论[15]获得这些解,构成了尽可能满足所有目标的全局最优解。解决多目标优化问题的进化算法取得成功,是因为它们基于种群的特性,同时产生多个最优解和一个帕累托前沿[5]的优良近似。 因此,社区检测能够被表述为多目标优化问题,并且帕累托最优性的框架可以提供一组解对应于目标之间的最佳妥协以达到最优化。事实上,在上述两个目标之间有一个折衷,因为当整个网络社区结构的外部连接数量为空时,那它就是最小的,然而簇密度不够高。 在过去的几年里,已经提出了许多方法采用多目标技术进行数据聚类。这些方法大部分在度量空间[14], [17],[18], [28], [38], [39], [49], [51]聚集目标,虽然[8]中给出了分割图的一个方法,并且在[12]中描述了网络用户会议的一个图聚类算法。 本文中,一个多目标方法,名为用于网络的多目标遗传算法(MOGA-Net),通过利用提出的遗传算法发现网络中的社区。该方法优化了[32]和[44]中介绍的两个目标函数,它们已被证实在检测复杂网络中模块的有效性。第一个目标函数利用了community score的概念来衡量对一个网络进行社区划分的质量。community score值越高,聚类密度越高。第二个目标函数定义了模块中节点fitness的概念,并且反复迭代找到节点fitness总和最大的模块,以下将这个目标函数称为community fitness。当总和达到最大时,外部连接是最小。两个目标函数都有一个正实数参数控制社区的规模。参数值越大,找到的社区规模越小。MOGA-Net利用这两个函数的优点,通过有选择地探索搜寻空间获得网络中存在的社区,而不需要提前知道确切的社区数目。这个数目是通过两个目标之间的最佳折衷自动确定的。 多目标方法的一个有趣结果是它提供的不是一个单独的网络划分,而是一组解。这些解中的每一个都对应两个目标之间不同的折衷,并对应多种网络划分方式,即由许多不同簇组成。对合成网络和真实网络的实验表明,这一系列帕累托最优解揭示了网络的分层结构,其中簇的数目较多的解包含在社区数目较少的解中。多目标方法的这个特性提供了一个很好的机会分析不同层级

相关文档
最新文档