白光扫描干涉测量

白光扫描干涉测量
白光扫描干涉测量

垂直扫描白光干涉法测量技术

垂直扫描白光干涉法是干涉法的基础上发展起来的一种光学非接触测量方法。结合了白光干涉显微技术和相移干涉技术,也被称为白光干涉条纹扫描法、相干检测法等。

光的干涉是光在传播过程中呈波动性的重要现象之一,1801年,杨氏双缝实验历史长第一次用实验显示了光的干涉现象,其设计构思的精巧之处在于从同一波阵面上取得了两个波源。随后,相继出现了很多类似原理的实验装置。目前,相干光的应用已经遍及各个领域,如光相干探测、相干光通信以及在遥感领域和军事领域的应用等。

光的干涉现象时光的波动性的表现。光的干涉产生干涉条纹,表现为光在遇到障碍物时候出现光的强度或明暗,在空间稳定分布的现象。两束光在相遇的区域内形成稳定的明暗交替或彩色条纹的现象成为光的干涉现象。例如:双缝干涉中将S光源发出的一束光通过S1、S2的双狭缝,分离出两个很小的部分作为相干光源,这两束光为同一光源发出,所以频率,相位都相等。由于两束光源到屏幕上的任意点的距离不等,所以当两束光在屏幕相遇时,相位相等的点就呈现出叠加加强的现象,显示为亮点,而相位相反的点则相互抵消,就显示为暗点。这样在双缝后面的幕上就呈现了明暗相间的条纹——干涉图样,如图1。对干涉现象的产生完全可按照矢量波的合成来分析。显然,不满足相干条件的几列波虽能叠加,但不能干涉。

图1

白光光源包含了整个可见光谱区域的光谱成分,自红光至紫光,波长为4000~7000?,光谱宽度很大,相干长度很长,大约几个微米。只有光程差很小时,两束光才能发生干涉,白光中不同波长的光将产生各自的一组干涉条纹。因

为干涉条纹的间距与光的波长有关,当光程差为零时,白光光谱内各个谱线双光束干涉的零级条纹完全重合,各种波长的光重叠形成白光干涉对比度最大的白色零级条纹,此处可以认为是最佳干涉位置。随着光程差的不断增加,不同波长的干涉条纹光强的极小值相继出现,此是条纹宽度相差较小,重叠后的干涉条纹颜色为黑色。继续增大光程差,不同波长的干涉条纹光强的极大值不断出现,呈现出彩色条纹。由于各波长干涉条纹的错开会使条纹对比度逐步下降,到一定程度时干涉条纹将消失,如图2所示。白光干涉条纹的影响因素较多,光源的特性和两束相干光的强弱影响干涉条纹的对比度,干涉光路的设计决定了干涉条纹的宽度和颜色分布。

图2

干涉显微镜是干涉仪和显微镜的组合,利用干涉条纹的弯曲量来测量表面的微观不平度。与其他光学技术相比,干涉显微镜具有较高的放大倍数和分辨率,而且表面信息直观,测量精度很高。图3为Mirau型干涉显微镜。

图3

相移干涉显微技术是干涉显微镜与相移技术的结合,在干涉显微镜中增加相移器以改变干涉光路中测量光与参考光之间的相位差,由与相位差对应变化的干涉光强值计算得到被测表面上的相位值。相位干涉法的光源为单色光,由于激光的相干性比较好,常在相移干涉法中作为光源。在相移干涉显微镜中,主要是加入单色滤波片,将白光光源发出的光变为带宽很窄的单色光。相移干涉法的测量精度很高,能实现自动测量,已经得到广泛的应用。

垂直扫描白光干涉技术是白光干涉技术、相移干涉显微技术的结合,用白光作为光源,利用白光干涉条纹的特性来进行表面微观形貌的测量。由白光光源产生的光束相干光波间允许的光程差极小,基本上要在等光程位置附近才能观察到干涉条纹,而且条纹也只有为数不多的几条。依据该特征,如果是干涉条纹移动,对于被测表面上的任意一个采样点,其光强的变化曲线如图4所示,即在光程差接近相等时,条纹对比度变化剧烈且呈现非周期性,这样零级条纹很容易与其他级条纹相区别。该特征非常明显,可以利用它来定位零光程差位置、用CCD检测到干涉条纹信号如图4所示,在光程差为零的位置,检测的输出光强有一个最大值,这个光强最大值位置也就对应与物镜的聚焦平面,包含表面的高度信息。

图4

用CCD记录下每次垂直移动时干涉条纹的图像并将这些图像叠加,叠加图像中像素点的白光干涉光强的垂直分布如图5所示,光强的最大值对应光程差为零的位置。垂直扫描白光干涉法测量表面的三维形貌就是通过垂直扫描得到每个被测点在垂直方向光强分布的离散数据,通过定位光强分布的最大值计算得到被

测表面的高度信息值。具体测量过程如下:测量时通过计算机控制工作台或参考竟在垂直光轴方向的位移,使被侧工件表面的不同高度的点与参考镜的光程差相继为零,产生干涉。如果在充足的扫描范围内垂直移动,被测工件表面的整个高度范围都可以通过最佳干涉位置。

图5

由CCD采集到随垂直方向位移而变化的干涉条纹图像,视频信号通过图像采集卡转换成数字信号并存储于计算机中。利用被侧面对应的各像素点相关的干涉数据,基于白光干涉的典型特征,通过采用某种最佳干涉位置识别算法对干涉图样数据进行数据分析处理,提取出特征点位置(最佳干涉位置),从而就很容

易得到各像素点的相对高度,这样便实现了对三维表面形貌的测量。

图6为Mirau干涉显微镜的垂直扫描白光干涉显微测量仪的基本结构。由光源、聚光镜、分光镜、纤维物镜、分光板、压电驱动器、CCD相机、计算机等部分组成。

图6

Mirau垂直扫描白光干涉仪属于分光路结构,使用时,首先由光源发出的光束由聚光镜聚焦成为平行光,再有显微物镜将光线再次聚焦,光线经分光板分成两束,分别照射在参考反射镜和被测表面上,反射光沿原路返回,在分光镜处交汇后产生干涉。光线原路返回经过显微物镜后,由分光镜反射到CCD相机,由CCD相机记录干涉图像并输入计算机中,通过计算机控制压电驱动器驱动被测表面在垂直方向移动,获得一组连续的干涉图像。再通过某种算法计算就可以获得被测表面的围观表面轮廓。

这种基于白光干涉的测量方法是通过连续改变光程差,干涉条纹扫描过整个被测表面,根据干涉条纹的最大光强值对应着表面的最佳聚焦位置的原理,完成整个表面的测量,因此被称为垂直扫描白光干涉法。垂直扫描白光干涉法适合测量垂直梯度较大的不连续表面,测量精度可以达到纳米级,测量范围分布在0.05um~0.6mm。

白光干涉条纹的调节及研究

迈克尔孙干涉仪 测波长实验报告 班级:计科(2) 学号:090601247 姓名:殷王佳 实验名称:迈克尔孙干涉仪测白光波长 实验目的:1、了解迈克尔孙干涉仪的结构、工作原理和实际应用 2、迈克尔孙干涉仪的调节出白光的干涉条纹 3、用迈克尔孙干涉仪调出激光干涉条纹 4、在上基础上调出白光干涉条纹 5、对白光的相干性进行研究 实验仪器:1、迈克尔孙干涉仪2、半导体激光器3、白炽灯 实验原理:右图为迈克尔孙干涉仪的光路图。从光源S发出的光束射到玻璃板G1上,G1的前后两个表面严格平行,后比表面镀有铝或银的半反射膜。光束被半反射膜分为强度相同的两支,图中(1)表示反射光,(2)表示透射光,两光经全反镜M1和M2反射后,再在E处相遇,形成干涉条纹。G2为一补偿板。 (一)干涉图样的形成和分类:迈克尔孙干涉仪所产生的两相干光束是从M1和M2反射而来,因此可先画出M2被G1反射所成的虚像M2',研究干涉花样时,M2'和M2完全等效。(1)点光源产生的非定域干涉花样:光程差最大时,圆心所对应的级次最高,每生出一个或消失一个圆环,相当于两光距离改变了一个波长,即M1移动了半个波长。设M1移动了距离,相应的生出或消失的圆环数目为N,则有: (1)等倾干涉花样:此时M1与M2'互相平行,如图,入射光经M1和M2'反射成为(1)(2),且相互平行,两光线的光程差. (2)等厚干涉花样:当M1和M2'有一个很小的夹角时,M1与M2'之间形成楔形空气薄层,就会出现等厚干涉条纹,如图所示。如果入射角不大,则

实验步骤: (1)调节迈克尔孙干涉仪,在毛玻璃屏上观察到干涉条纹。 a.两束光之间的光程差要小于光源的相干长度才能干涉。干涉仪上M1的位置应该在30毫米左右(从干涉仪左侧的毫米刻度尺上读出)。 b.两束光之间的夹角需很小,干涉条纹才比较宽,眼睛才能分辨。把半导体激光器前面的扩束镜转向下方,未经扩束的激光M1和M2反射后在毛玻璃片上形成两个光斑,调节M1和M2后面的螺丝,使这两个光斑严格重合,此时两光之间的夹角就很小了。把扩束镜转向上方,让激光扩散成发散光束。这时,毛玻璃屏上应可观察到干涉条纹。 (2)调彩虹条纹 将激光源换成白光,按照调出干涉条纹时微动手轮转动的方向

检测平面度的方法介绍

检测平面度的方法介绍

一、平面度的定义 平面度是指基片具有的宏观凹凸高度相对理想平面的偏差。 平面的平面度公差符号、基本表示方法,如图1所示。 图1 二、平面度误差的检测方法 平面度误差是指被测实际表面相对其理想表面的变动量,理想平面的位置应符合最小条件,平面度误差属于形位误差中的形状误差。 平面度误差的测量方法: 直接测量法 间接测量法 利用太友科技数据采集仪连接百分表法 1、直接测量法 通过测量可直接获得平面上各点坐标值或能直接评定平面度误差值的方法。具体如下: 平晶干涉法 测微表测量法 光轴法、液面法等。 1)平晶干涉法 干涉法测量平面度误差,是把平晶放在它所能覆盖的整个被测平面上,用平晶工作面体现理想平面,根据测量时出现的干涉条纹形状和数目,由计算所得的结果作为平面度误差值,如图所示。

该方法只适合测量精研小平面及小光学元件。 2)测微表测量法 用3个可调支承将被测件支撑在标准平板上,用测微仪指示。调整可调支承,用三点法或四点法(对角线法)进行测量。然后用测微仪读出被测表上各点的最大与最小读数差作为平面度误差值的测量结果。该测量方法适用于车间较低精度、中等尺寸的工件。 3)光轴法 光轴法测量平面度误差是利用准直类仪器2、以它的光轴经转向棱镜3扫描的平面作为测量基准,将瞄准靶1放置在实际被测平面4上,按选定的布点,测出各测点相对于该测量基准的偏离量,再经数据处理评定平面误差值。

2、间接测量法 特点:测量精度高,但数据处理麻烦。因被测平面需测若干个截面,而各截面内的偏差值在测量时不是由同一基准产生,故须经复杂的数据后,才能获得各测量截面相对统一基准的坐标值。 适用于中大平面的测量。 测量方法:水平仪法、自准仪法、互检法 1)水平仪法 原理:以自然水平面作为测量基础。测量时,先把被测表面调到基本水平,然后把水平仪放在桥板上,再把桥板置于被测表面上,按照一定的布线逐渐测量,同时记录各测点的读数,根据测得的读数通过数据处理,即可得平面度误差值。 分类:依布线方法不同又分为水平面法和对角线法。 2)水平面法 采用网格布点,基准平面为过被测表面上的某给定点且与水平面平行的几何平面:测量时应采用同一桥板,各测点的同一坐标值用累积法求得,计算比较简单。测量时选择不同的起始点和不同的测量线,其数据处理的方法、结果不同。存在一个最佳结果。 3)对角线法 采用对角线布点。 过渡基准平面是:过被测表面的一条对角线,且平行于被测表面的另一条对角线的平面。测量时常须用三块长度不同的板桥。数据处理较麻烦。 4)自准仪法

实验6-5-迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M 1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来? 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S 2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?cos 2 ② A 点为第k级亮条纹。 由公式②知当i 增大时c osi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M 1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉 ②.M 1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i =0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对应

白光扫描干涉测量

垂直扫描白光干涉法测量技术 垂直扫描白光干涉法是干涉法的基础上发展起来的一种光学非接触测量方法。结合了白光干涉显微技术和相移干涉技术,也被称为白光干涉条纹扫描法、相干检测法等。 光的干涉是光在传播过程中呈波动性的重要现象之一,1801年,杨氏双缝实验历史长第一次用实验显示了光的干涉现象,其设计构思的精巧之处在于从同一波阵面上取得了两个波源。随后,相继出现了很多类似原理的实验装置。目前,相干光的应用已经遍及各个领域,如光相干探测、相干光通信以及在遥感领域和军事领域的应用等。 光的干涉现象时光的波动性的表现。光的干涉产生干涉条纹,表现为光在遇到障碍物时候出现光的强度或明暗,在空间稳定分布的现象。两束光在相遇的区域内形成稳定的明暗交替或彩色条纹的现象成为光的干涉现象。例如:双缝干涉中将S光源发出的一束光通过S1、S2的双狭缝,分离出两个很小的部分作为相干光源,这两束光为同一光源发出,所以频率,相位都相等。由于两束光源到屏幕上的任意点的距离不等,所以当两束光在屏幕相遇时,相位相等的点就呈现出叠加加强的现象,显示为亮点,而相位相反的点则相互抵消,就显示为暗点。这样在双缝后面的幕上就呈现了明暗相间的条纹——干涉图样,如图1。对干涉现象的产生完全可按照矢量波的合成来分析。显然,不满足相干条件的几列波虽能叠加,但不能干涉。 图1 白光光源包含了整个可见光谱区域的光谱成分,自红光至紫光,波长为4000~7000?,光谱宽度很大,相干长度很长,大约几个微米。只有光程差很小时,两束光才能发生干涉,白光中不同波长的光将产生各自的一组干涉条纹。因

为干涉条纹的间距与光的波长有关,当光程差为零时,白光光谱内各个谱线双光束干涉的零级条纹完全重合,各种波长的光重叠形成白光干涉对比度最大的白色零级条纹,此处可以认为是最佳干涉位置。随着光程差的不断增加,不同波长的干涉条纹光强的极小值相继出现,此是条纹宽度相差较小,重叠后的干涉条纹颜色为黑色。继续增大光程差,不同波长的干涉条纹光强的极大值不断出现,呈现出彩色条纹。由于各波长干涉条纹的错开会使条纹对比度逐步下降,到一定程度时干涉条纹将消失,如图2所示。白光干涉条纹的影响因素较多,光源的特性和两束相干光的强弱影响干涉条纹的对比度,干涉光路的设计决定了干涉条纹的宽度和颜色分布。 图2 干涉显微镜是干涉仪和显微镜的组合,利用干涉条纹的弯曲量来测量表面的微观不平度。与其他光学技术相比,干涉显微镜具有较高的放大倍数和分辨率,而且表面信息直观,测量精度很高。图3为Mirau型干涉显微镜。 图3

一文读懂白光干涉原理

一文读懂白光干涉原理 在白光干涉中,光谱中各色光都有可能参加干涉,并将干涉光强叠加到最后形成的干涉图样上,因此在表面形貌测量中白光干涉形成的干涉条纹是由各色光干涉图样叠加形成的。被测表面的深度不同,两束光的干涉光强不同,干涉条纹的对比度不同,组成干涉条纹的光谱成分也不同。可见,在白光干涉表面形貌测量中,被测表面的深度信息被调制到干涉图样的强度、对比度及光谱成分等信息中,因此可利用干涉图样的强度、对比度以及光谱成分信息扩展深度测量范围。1.干涉条纹扫描法 干涉条纹扫描法扩展深度测量范围的理论根据是被测表面上各点深度不同所形成的干涉光强不同。在双光束干涉显微镜中,如果从分束器到被测表面上某一点的距离等于从分束器到参考面的距离,那么对应的两束干涉光的光程差为0,所形成的干涉光强最小(或最大)。如果用压电陶瓷(PZT)等微位移驱动器沿光轴方向移动样品台或参考镜进行扫描,那么干涉图样上每一点的强度将随着变化。在扫描时,如果记录下或计算出被测面上每一点对应的干涉光强达到最小(或最大)时微位移驱动器的位置,那么在完成扫描后各点间的深度就能计算出来。对于一个具体的干涉显微系统,用干涉条纹扫描法测量形貌,其深度测量范围与干涉光频谱成分有关,大小与干涉长度的一半相当;深度测量分辨率与干涉图样测量系统的分辨率有关,取决于A/D 转换器的位数,可达纳米量级;而测量精度则取决于微位移驱动器。恰当的数据处理方法也可以提高分辨率以及测量精度。 2.干涉条纹对比度法 在白光干涉中,两束相干光形成的干涉光强可表达成一般的形式: Φ Φ++=cos )(**2m S R S R I 式中,R 和S 是两束相干光的光强,Φ是与被测表面深度有关的位相,m 可看作是对比度,它与位相Φ干涉光频谱成分有关。如果干涉图样没有剪切并且干涉光频谱曲线是平滑的,那么m 与位相之间或与被测表面深度之间存在着一一对应的关系。当分束器到被测表面上某一点的距离等于分束器到参考面的距离时,值最大且近似等于1;当距离之差超过干涉光相干长度时,m 值最小,等于0。 由于在一定条件下条纹对比度m 与被测表面深度之间存在着一一对应的关系,因此如果通过某种方法测出m,便可测出被测表面的高度信息。?90相移法便是其中一种典型的测量方法。其原理是,首先测出一幅干涉图样,然后相移?90,测出另一幅干涉图样,从干涉图样中去掉直流成分分量,算出)cos()(??m 和))sin(2m(?π?+,再根据)cos()(??m 和

2平面度误差测量的实验报告

平面度误差测量的实验报告 一实验内容及目的: 1.学会用千分表测量一个平面的平 面度 2..学会千分表的使用 二实验仪器: 千分表:测量范围0—1mm. 最小 分度值0.001mm 0级大平板 三实验原理: 千分表是利用齿条齿轮传动,将 测杆的直线位移变为指针的角位移的计量器具。主要用于工件尺寸和形位误差的测量,或用作某些测量装置的测量元件。 一.使用前检查 1.检查相互作用:轻轻移动测杆,测 杆移动要灵活,指针与表盘应无摩 擦,表盘无晃动,测杆、指针无卡阻 或跳动。 2.检查测头:测头应为光洁圆弧面。 3.检查稳定性:轻轻拨动几次测头, 松开后指针均应回到原位。 二. 读数方法 读数时眼睛要垂直于表针,防止偏视造成读数误差。 小指针指示整数部分,大指针指示小数部分,将其相加即得测量数据。 三. 正确使用 1.将表固定在表座或表架上,稳定可靠。装夹指示表时,夹紧力不能过大, 以免套筒变形卡住测杆。 2.调整表的测杆轴线垂直于被测平面,对圆柱形工件,测杆的轴线要垂直于 工件的轴线,否则会产生很大的误差并损坏指示表。 3.测量前调零位。绝对测量用平板做零位基准,比较测量用对比物(量块)

做零位基准。 调零位时,先使测头与基准面接触,压测头使大指针旋转大于一圈,转动刻度盘使0线与大指针对齐,然后把测杆上端提起1-2mm再放手使其落下,反复2-3次后检查指针是否仍与0线对齐,如不齐则重调。 4.测量时,用手轻轻抬起测杆,将工件放入测头下测量,不可把工件强行推 入测头下。显著凹凸的工件不用指示表测量。 5.不要使测量杆突然撞落到工件上,也不可强烈震动、敲打指示表。 6.测量时注意表的测量范围,不要使测头位移超出量程,以免过度伸长弹簧, 损坏指示表。 7.不使测头测杆做过多无效的运动,否则会加快零件磨损,使表失去应有精 度。 8.当测杆移动发生阻滞时,不可强力推压测头,须送计量室处理。 四实验数据记录及处理

一文读懂白光干涉仪

一文读懂白光干涉仪 SuperView W1白光干涉仪是一款用于对各种精密器件及材料表面进行亚纳米级测量的检测仪器。它是以白光干涉技术为原理、结合精密Z向扫描模块、3D 建模算法等对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌3D测量的光学检测仪器。 白光干涉仪原理 光源发出的光经过扩束准直后经分光棱镜后分成两束,一束经被测表面反射回来,另外一束光经参考镜反射,两束反射光最终汇聚并发生干涉,显微镜将被测表面的形貌特征转化为干涉条纹信号,通过测量干涉条纹的变化来测量表面三维形貌。

白光干涉仪应用 SuperView W1白光干涉仪可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料及制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、国防军工、科研院所等领域中。可测各类从超光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等,提供依据ISO/ASME/EUR/GBT四大国内外标准共计300余种2D、3D参数作为评价标准。 应用范例: 白光干涉仪性能特色 1、高精度、高重复性

1)采用光学干涉技术、精密Z向扫描模块和优异的3D重建算法组成测量系统,保证测量精度高; 2)独特的隔振系统,能够有效隔离频率2Hz以上绝大部分振动,消除地面振动噪声和空气中声波振动噪声,保障仪器在大部分的生产车间环境中能稳定使用, 获得极高的测量重复性; 2、一体化操作的测量分析软件 1)测量与分析同界面操作,无须切换,测量数据自动统计,实现了快速批量测量的功能; 2)可视化窗口,便于用户实时观察扫描过程; 3)结合自定义分析模板的自动化测量功能,可自动完成多区域的测量与分析过程; 4)几何分析、粗糙度分析、结构分析、频率分析、功能分析五大功能模块齐全; 5)一键分析、多文件分析,自由组合分析项保存为分析模板,批量样品一键分析,并提供数据分析与统计图表功能; 6)可测依据ISO/ASME/EUR/GBT等标准的多达300余种2D、3D参数。 3、精密操纵手柄 集成X、Y、Z三个方向位移调整功能的操纵手柄,可快速完成载物台平移、Z向聚焦、找条纹等测量前工作。 4、双通道气浮隔振系统 既可以接入客户现场的稳定气源也可以采用便携加压装置直接加压充气的双通道气浮隔振系统,在无外接气源的条件下也可稳定工作。 白光干涉仪主要技术指标:

平面度等误差检测

平面度误差检测 一、中小型零件 1、检测工具:平面平晶 2、检测方法:(1)对量块工作面、千分尺测蛅平面等高精度的小平面工件,一般多用平面平晶以光波干涉原理测量平面度;(2)测量时,将平面平晶贴在被测表面上,并稍加压力,当干涉条纹的数目为最少时,方可进行读数;(3)被测平面的平面度误差为封闭的干涉条纹数乘以光波波长λ的一半,即f=n*0.5λ;(4)对不封闭的干涉条纹,平面度误差为条纹的弯曲度与相邻两条纹间距之比乘以光波波长λ的一半,即f=0.5λ*a/b;(5)当干涉条纹为直线时,则说明被测表面是平整的。注:比值a/b是靠目力估计的,其中:a:干涉带变曲度,b:干涉带宽度 轴类零件圆度误差的检测 1、两点法对圆度误差的检测 (1)检测工具:检验平板、指示表、表架、支承。 (2)检测方法:a被测零件轴线应垂直于测量截面,同时固定轴向位置; B在被测件回转一周过程中,指示表读数的最大差值的一半为单个截面的圆度误差; C按上述方法,测量若干个截面,取其最大的误差值,为该零件的圆度误差; D转动时,可以转动被测零件,也可以转动量具。f=0.5(M max-M min) 2、三点法测量圆度误差 (1)检测工具:V形块(90°、120°;72°、108°)或鞍形块、检验平板、指示表、表架 (2)检测方法:适用于测量内外表面的奇数棱形状误差 A、将被测零件放在V形块上,使其轴线垂直于测量截面、同时固定轴向位置; B、在被测件回转一周过程中,指示表读数的最大差值的一半为单个截面的圆度误差; C、按上述方法,测量若干个截面,取其最大的误差值,为该零件的圆度误差; D、此法测量结果的可靠性,取决于截面形状误差和V形块夹角的综合效果,通常用α=90°和120°或72°和108°两块V形块,分别测量;f=0.5(M max-M min) 轴类零件圆柱度误差的检测计算 一、三点法测量

白光干涉表面三维轮廓仪原理及应用

白光干涉表面三维轮廓仪原理及应用 表面三维微观形貌测量意义 在生产中,表面三维微观形貌对工程零件的许多技术性能的评价具有最直接的影响,而且表面三维评定参数由于能更全面、更真实地反映零件表面的特征及衡量表面的质量而越来越受到重视,因此表面三维微观形貌的测量就越显重要。通过对三维形貌的测量可以比较全面地评定表面质量的优劣,进而确认加工方法的好坏及设计要求的合理性,这样就可以反过来通过指导加工、优化加工工艺以加工出高质量的表面,确保零件使用功能的实现。 表面三维微观形貌的测量方法非常丰富,通常可分为接触式和非接触式两种,其中以非接触式测量方法为主。下面介绍其中一种近年来国际上研究比较多的、发展也相对比较成熟的技术:扫描白光干涉法测量表面三维微观形貌技术。 白光干涉扫描原理 在利用白光干涉测量表面三维形貌的过程中,对于被测表面上某一点来说,为了定位其零光程差位置,必须采用某种扫描方式改变参考镜或者被测表面的位置,以此来获得该点光强变化的离散数据,然后依据白光干涉的典型特征来判别并提取最佳干涉位置。因此称这种方法为扫描白光干涉测量法。 图1(a)所示为白光干涉仪架构图,图1(b)所示为仪器测量原理图,光学系统可采用基本的Michelson式干涉仪结构,只是在参考镜后安装有微驱动装置.而被测表面代替了另一个反射镜。测量时通过计算机控制徽驱动装置的进给带动参考镜的进给,这样被测样本表面的不同高度平面就会逐渐进入干涉区,如果在充足的扫描范围内进给,被测样本表面的整个高度范围都可以通过最佳干涉位置。将每步的干涉图样由图像传感器(CCD摄像头)采集,视频信号通过图像采集卡转换成数字信号并存储于计算机内存中,利用与被测面对应的各像素点相关的干涉数据,基于白光干涉的典型特征,通过采用某种最佳干涉位置识别算法对干涉图样数据进行分析处理,提取出特征点位置(最佳干涉位置J,进而就很容易得到各像素点的相对高度,这样便实现了对三维形貌的测量。

白光干涉仪工作原理

白光干涉仪工作原理 白光干涉仪是一款用于对各种精密器件及材料表面进行亚纳米级测量的检测仪器。它是以白光干涉技术为原理、结合精密Z向扫描模块、3D 建模算法等对器件表面进行非接触式扫描并建立表面3D图像,通过系统软件对器件表面3D图像进行数据处理与分析,并获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌3D测量的光学检测仪器。 白光干涉仪可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料及制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、国防军工、科研院所等领域中。可测各类从超光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等,提供依据ISO/ASME/EUR/GBT 四大国内外标准共计300余种2D、3D参数作为评价标准。 白光干涉仪工作原理 白光扫描干涉测量法是一种非接触的测量方式,通过干涉条纹,来比较样品测试表面跟理想参考面的偏差。 白光干涉扫描对于测量粗糙,不连续表面很有帮助。因为白光扫描的测试结果是基十每个像素点上的光强信号单独分析,其结果是基于绝对物理高度的结果。单波长激光干涉系统在测量粗糙样品时,就没有这样的优点,移相法在处理每个像素的数据时候会结合邻近像素

相位结果,并且得到的原始结果是基十相位的而不是物理距离。这使在测量处理粗糙样品表而的数据时候,白光干涉扫描具有很大优势,能测量粗糙或者有台阶跳跃结构的表而;而在测量光滑样品表面时,单色光移相法则相对具有速度快的优势。 正如上图所示,每条信号线代表了每个像素在扫描过程中光强信号的变化。 ·每条信号线包络的峰值即为这个像素的完美等光程点。 ·每个像素点的物理绝对高度都是以这个等光程点为参考的。 ·如图把等光程点连接起来就形成了样品表而的而形。

数控机床检修:几何精度检验 GBT 17421-1-1998 平面度测量方法

检验内容、公差测量方法、工具测量原理示意图平面度确定平面或者代表面的总方向,是为了获得平面度的最小偏差,通常采用的方法有:- 一个被检平面内适当选择的三点,在靠近边缘部分上存在无关紧要的局部缺陷可以忽略不计。- 按划分的点用最小二乘法计算的平面。 在被检面上涂上红丹或者用轻油稀释的氧化铬。将平板放在被检面上进行恰当的往复运动,取下平板并记录被检面每单位面积接触点的分布情况。在表面的整个范围内接 触点的分布均匀,并不少于一个规定值。这种方法适用于小尺寸较精密的平面(刮过或者磨过的平面)。 用移动平尺所得的一组直线测量 首先用一些基准点建立一个理论平面。在检 验面上选择a、b、c三点作为零位标记,将三 个等高块放在这三点上。 将平尺放在a、c点上,在检验面的e点放置可 调量块,使其与平尺的下表面接触。再将平 尺放在b、e点上即可找到d点的偏差。 用平尺、精密水平仪和千分表测量 测量基准由两根借助精密水平仪到达平行放 置的平尺提供。平尺R1、R2应有足够的刚 度,使基准平尺的重量产生的挠度忽略不计 。 建立一个测量基准,根据测量基准测量出偏 差并加以标绘。标绘是在有规律的方格的不 同节点上进行的。 矩形表面的测量基准平面由两条直线OmX和OO'Y确定,此时 O、m、O'是被检面上的三个点。 圆形轮廓表面的测量 采用沿边缘的圆周和直径进行测量 - 在两个垂直直径上 - 在连接边缘点的正方形的四边上 圆周检验:在一个均衡座A上放置水平仪,并 以匀称的间隔绕平板周边移动。 直径检验:按照对一条线的直线度测量的任 何一种方法进行。用平板测量用平板和千分表测量 测量装置由平板和千分表组成,千分表装在具有一个基座的支架上,基座在平板上运动。有两种测量方法: - 被测部件放在平板上:平板尺寸和千分表支架开度足够大使整个表面都能测量。- 平板与被测面相对放置:用一个尺寸与被测面尺寸相似的平板进行测量。 用平尺测量平面度用精密水平仪测量平面度 当测量工具从一个位置移向另一个位置时, 这是目前所知的能够保持测量基准方向恒定 (水平)的唯一方法。 用角度偏差方法测量一条线的直线度是这项 测量的基础。在规定的测量范围内,当所有点被包含在与该平面的总方向平形并相距给定值得两个平面内时,则认为该面是平的。 平面度公差 平面度的公差带用相隔距离为t,且平行于该平面(代表平面)总方向的两个平面限定。测量范围及公差相对于代表平面的位置应予规定。 - 平面度公差:当表面两端点间允许凹和凸时。 - 凹(或凸):当表面两端点间只许凹(或者凸)时。 - 局部公差:当它被规定且允许凹或者凸时。

白光干涉仪的工作原理

白光干涉仪的工作原理 测控3班姓名:陈超学号:20090106 干涉仪是一种对光在两个不同表面反射后形成的干涉条纹进行分析的仪器。其基本原理就是通过不同光学元件形成参考光路和检测光路。干涉仪是利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。 白光干涉仪利用时间相关性非常低的白光通过分光板作为参考光和样品照射光,两路光束很容易被测量。接着光经过反射,相互叠加干涉,记录下干涉图,同时开始高低形貌的测量,物镜在Z轴方向上不断微小的移动,在每个移动位置上都会拍照记录,收集图片用于形成整个三维形貌数据。由于白光有低的相关性,白光干涉仪的特点就是高分辨率逐层地测量反光粗糙面。 白光干涉仪的主要功能:观察、分析、应用特点: 1 、非接触式测量:避免物件受损。2 、三维表面测量:表面高度测量范围为1nm ---200μm。 3 、多重视野镜片:方便物镜的快速切换。 4 、纳米级分辨率:垂直分辨率可以达0.1nm。5、高速数字信号处理器:实现测量仅需几秒钟。 6 、扫描仪:闭环控制系统。7、工作台:气动装置、抗震、抗压。8 、测量软件:基于windows 操作系统的用户界面,强大而快速的运算。

光纤传感白光干涉

光纤白光干涉 摘要 光纤干涉型传感器是光纤传感器中的一个重要分支,而白光干涉测量技术是一种被广泛应用的光学干涉测量技术。白光干涉测量技术应用于光纤干涉型传感器,能够测量光纤干涉仪的绝对光程差,且动态测量范围大,测量分辨率高。本论文分别阐述了扫描白光干涉测量技术和光谱域光纤白光干涉测量技术的原理与研究现状,分析和总结了不同的光纤白光干涉测量的结构和特点。 关键词:光纤传感器;光纤干涉仪;白光干涉测量术; Abstract Fiber optic interferometric sensor is an important branch of the fiber optic sensor. White-light interferometry is a widely used technique of the optical interferometry. The white-light interferometry, which is applied to fiber optic interferometric sensor can measure the absolute optical path difference (OPD) and possess the abilities to provide large dynamic measurement range and high measurement resolution.In this dissertation, the principles and research status of scanning white-light interferometry and spectral-domain optical fiber white-light interferometry are described respectively. The structures and characteristics of different optical fiber white-light interferometry are analyzed and summarized. Keywords:Fiber optic sensor;fiber optic interferometer; white-light interferometry; 1、绪论 光纤传感技术是20世纪70 年代末新兴的一项技术,近年来,光纤传感技术在当代科技领域及实际应用中占有十分重要的地位。光纤具有体积小、质量轻、抗电磁干扰、防腐蚀、电绝缘性好、灵敏度高等优点,可以构成传感网络。光纤传感器的主要工作原理[1]是将来自光源的光信号经过光纤送入调制器,待测物理量与光发生相互作用后,导致光的部分光学性质发生变化(例如光的波长、强度、频率、偏振态、相位等),称为被调制的光信号,信号光再经过光纤送入光探测器通过解调后获得被测参数。 光纤传感器通常可以分为强度调制型光纤传感器,光纤光栅传感器(波长调

激光平面度测量仪简介

激光平面度检测仪一、产品特点 二、技术参数

三、测量软件介绍 1、激光测量界面 2、测量准备 第一次使用时要进行校正,以后关闭软件之后再次使用要进行激活。 2-1、激活 点击界面上的,使影像视窗有光点显示。 2-2、选择光点 校正之前应该选择用左边光点或右边光点参与计算(测量玻璃平面度时会出现两个光点)。 2-3、调节 调节阈值,来调整图像效果。 通过“图像处理调整”调节阈值来实现。如下图

调解后(加大阈值)(1) 2-4、校正 调节Z轴,使光点出现在影像视窗,上下调节Z轴,使光点位于靠近黄色方框右边且在黄框内,校正之前要调节阈值,使其如上图(1)效果。 调节好之后点一下界面上的,移动Z轴使光点向左移动,每移动 一段距离点一下,直到移动到黄色方框的左边,点击OK 。 此时会有一条误差曲线出来,如果误差较大修改校正阶数,一般往高阶修改, 修改好之后,点击旁边的,查看误差曲线,如果误差可以接收,点击曲线旁边的OK。软件会自动保存校正档,切记。如果误差一直

很大,请重新做校正。 3、开始测量 显示当前取点的数量 点测量,取点工具 面测量 点面距离 面面距离 3-1、点测量 使用工具,在坐标显示区域会显示当前光点的XYZ数据。 3-2、面测量

点击工具,然后点击取点工具取点,此时显示取 点的数目,取点数量满足需要后,再次点击。此时物件列表有面元素出现。 点面距离测量 通过面测量已经测得已知面,在物件列表里面选中该面,点鼠标右键,在出现的右键菜单中选择“作为基准面”。然后移动工作台到到目标位置,点击界面上的 按钮。如下, 3-3、面面距离测量 如上方法测量两个面,按下,选择其中一个面作为基准面,本例选择面1为基准面,然后选中面2右键在菜单中选择呼出输入。如下, 结果如下,

《白光干涉》word版

白光干涉 1.白光干涉相关理论 所谓白光是相对理想单色光的一个概念,是指具有一定谱宽,相干长度较短的低相干光源。相干长度是与光源的时间相干性相关的一个概念,表明光源发出的一束光被延迟后的部分与未被延迟的光束本身在干涉场中相叠加发生干涉的能力。对一准单色光,从干涉条纹最清晰到消失所对应的光程差变化长度称为相干长度,相干长度L c 为: 2 c L λλ =? 其中λ为中心波长,?λ为光谱的半高全宽。当光程差大于相干长度时,条纹可见度迅速趋近于0。单色光和白光干涉可用下图表示: 图1光源非单色性对干涉条纹的影响 白光干涉原理是利用白光同调性短不易产生干涉的特性,透过频率与振幅相近的光波,可以形成低同调性白光干涉波包。 各波长同调示意图 白光干涉波包 图2白光干涉波包示意图 低相干光源与单色光源不同,单色光源的条纹对比度在任意光程差内是不变的,因此其动态范围被限制在2π相位内;而低相干光源谱宽?λ内的每一条谱线都各自形成一组干涉条纹,除零光程差位置外,相互有偏移,叠加的效果使整体条纹可见度随光程差的增大而减小,大于相干长度时,干涉现象消失,成为简单的光强叠加。

图3典型低相干光源光谱分布 光场的时间相干性,源于光源的有限光谱宽度。具有有限光谱宽度的光源,它所发出的光可看作许多不同波长的单色光成分的组合,每个单色成分产生各自的干涉图样。当光程差从零开始增大时。因波长不同,各单色条纹图样之间的相对位移不断增大,它们按强度叠加的结果,使合成的干涉条纹的对比度下降。在光频波段里,通常认为?λ~lnm量级的谱线单色性较差;?λ~0.0lnm量级时单色性已较好。干涉条纹的反衬度与光源谱宽相联系,是由相应程序生成的不同线宽对应下的干涉图样,干涉图样条纹反衬度越小。下图是白光干涉时光程差与干涉强度之间关系。可见在0光程差时,干涉强度最大,之后不断减小。 图6 白光干涉时光程差与干涉强度关系 2.迈克尔逊干涉原理 图5迈克尔逊干涉原理图 在干涉仪中,补偿板 G2 的作用是消除分光板分出的两束光Ⅰ和Ⅱ的不对称性。不加

平面度测量仪

https://www.360docs.net/doc/269898535.html, ·来源: 中国仪器超市 目前的直线度与平面度坐标测量只是给出最小二乘检验的结果,并没有给出检验结果的不确定度。根据直线度与平面度最小二乘检验的基本原理和ISO14253-2给出的不确定度传递公式,了一种直线度与平面度坐标测量的不确定度的计算方法。这种方法的特点是将直线或平面方程的系数看作一个随机向量,通过计算该随机向量的均值和协方差矩阵来确定直线或平面的方程和检验结果及其不确定度。这不仅保证了直线度与平面度检验结果的完整性,而且符合新一代GPS标准的检验要求,从而可以提高直线度和平面度坐标测量的准确性。 按150/R23o一1961的规定,测定平面度时应在平面上平行两侧边取若干个排列整齐的点,其间距为100~50。毫米。测出这些点到理想平面的高度,两个平行于理想平面且与实际平面接触的平行平面之间的距离就是该实际平面的平面度误差。 无论在机械工业部还是在电子工业部关于线切割机床的产品标准中,都规定要测定台面平面度。规定的检测方法为:用两块等高块垫在平尺下,按一定规则放在台面不同位置上,再用过与不过验规来测定平面度是否在公差范围内,或者用一系列高差为1微米的验规(或用验规加塞尺)来测定其数值。但是这样做既麻烦又不易准确。更重要的还是这种方法不符合国际标准ISO/R230-1961“机床检验通则”(等同于JB2670-82“机床检验通则”)的规定,也不符合形位公差中平面度的基本概念。因此,我们应该改用正确的方法。本文的目的就是讨论平面度的测量和数据处理方法,重点放在数据处理。任何平面的平面度其几何定义都是一样的,所以本方法适 智泰集团平面度测量仪主要由大理石台面、基座、置于大理石台面上激光侧头、电脑及电器控制柜组成。其功能主要用来检测、观察、分析,测量范围在1500mm*1200mm。其主要应用在对大尺寸(400mm*250mm)平面型工件:PDP背板,平板型冲压件,大尺寸硬质塑料等行业。激光平面度检测仪LFM主要具有以下几个特点: 1、高速的图像采集卡+优化的图像处理算法,检测时间可以控制在2.5s之内。 2、单点测量的重复性<10μm,整机重复性<50μm。 3、均布激光三角测头,实现非接触测量。 4、00级的大理石台面提供统一的测量基准。

白光干涉测量仪的测量应用以及工作原理

白光干涉仪目前在3D检测领域是精度最高的测量仪器之一,在同等系统放大倍率下检测精度和重复精度都高于共聚焦显微镜和聚焦成像显微镜,在一些纳米级和亚纳米级的超精密加工领域,除了白光干涉仪,其它的仪器无法达到其加工精度要求。 光学显微干涉测量的基本原理: 光源发出的光经过扩束准直后经分光棱镜后分成两束,一束经被测表面反射回来,另外一束光经参考镜反射,两束反射光最终汇聚并发生干涉,显微镜将被测表面的形貌特征转化为干涉条纹信号,通过测量干涉条纹的变化来测量表面三维形貌。 白光干涉三维形貌仪是利用光学干涉原理研制开发的超精密表面轮廓测量仪器。照明光束经半反半透分光镜分成两束光,分别投射到样品表面和参考镜表面。从两个表面反射的两束光再次通过分光镜后合成一束光,并由成像系统在CCD相机感光面形成两个叠加的像。由于两束光相互干涉,在CCD相机感光面会观察到明暗相间的干涉条纹。干涉条纹的亮度取决于两束光的光程差,根据白光干涉条纹明暗度以及干涉条文出现的位置解析出被测样品的相对高度。 白光干涉测量法已被用来测量微间隙的厚度。采用这种方法来颜值浮动块。浮动块作为磁传感器的载体,它与磁盘表面考得很近。如果正确设计浮动块的表面形状,并在其上施加适当的载荷,由于在旋转的盘片上存在附面层,于是在浮动块下形成自起作用的空气轴承。 白光干涉仪的测量应用: 以测量单刻线台阶为例,在检查仪器的各线路接头都准确插入对应插孔后,

开启仪器电源开关,启动计算机,将单刻线台阶工件放置在载物台中间位置,先手动调整载物台大概位置,对准白光干涉仪目镜的下方。 在计算机上打开光学3D表面轮廓仪测量软件,在软件界面上设置好目镜下行的最低点,再微调镜头与被测单刻线台阶表面的距离,调整到计算机屏幕上可以看到两到三条干涉条纹为佳,此时设置好要扫描的距离。按开始按钮,光学3D表面轮廓仪可自动进行扫描测量,测量完成后,软件自动生成3D图像,测量人员可以对3D图像进行数据分析,获得被测器件表面线、面粗糙度和轮廓的2D、3D参数。 光学3D表面轮廓仪具有测量精度高、操作便捷、功能全面、测量参数涵盖面广的优点,测量单个精密器件的过程用时2分钟以内,确保了高效率检测。光学3D表面轮廓仪独有的特殊光源模式,可以广泛适用于从光滑到粗糙等各种精密器件表面的测。

Linnik白光干涉仪自动对焦及光程差最小化

第39卷第11期 光电工程V ol.39, No.11 2012年11月Opto-Electronic Engineering Nov, 2012 文章编号:1003-501X(2012)11-0008-09 Linnik白光干涉仪自动对焦及光程差最小化 李勇,吴奎,卢荣胜,董敬涛 ( 合肥工业大学仪器科学与光电工程学院,合肥 230009 ) 摘要:众所周知由于两个干涉臂光路不匹配和参考镜面与被测表面的离焦,要得到相干长度非常短的Linnik白光干涉仪的干涉条纹是非常困难的。本文提出了一种自动调节的方法来解决这个问题。为了实现参考镜面和被测表面的对焦,在商用DVD读取头的基础上,对其像散法进行改进,具体方法是对和信号SS设定一个阈值,通过此阈值对归一化后的FES曲线(NFES)进行裁剪,从而获得一个与离焦距离成单调关系的曲线(TNFES),其过零点对应的就是焦点。经过实验证明,改进后的自动对焦系统的动态范围为190 μm,平均灵敏度70 mV/μm,平均标准偏差0.041 μm,分辨率4.4 nm,不确定度55 nm。此外为了最小化两个干涉臂的光程差,本文采用均方根RMSFC 算法来计算成像在CCD上的干涉条纹的对比度,通过找到其最大值来最小化光程差。实验证明本文提出的自动方法可以有效地获得Linnik白光干涉仪的干涉条纹。 关键词:自动对焦;Linnik白光干涉仪;DVD读取头;FES曲线 中图分类号:TP273 文献标志码:A doi:10.3969/j.issn.1003-501X.2012.11.002 Automated Method of Focusing and Minimizing OPD in Linnik White Light Interferometry LI Yong,WU Kui,LU Rong-sheng,DONG Jing-tao ( School of Instrument Science and Opto-electric Engineering, Hefei University of Technology, Hefei 230009, China ) Abstract: It is difficult, as we know, to search for interference fringes in Linnik white light interferometry with an extremely short coherence length because of the optical path mismatch of two interference arms and out of focus of the reference mirror and the test surface. An automated method to tackle this problem is presented. The determination of best foci of the reference mirror and the test surface is implemented by the astigmatic method based on a modified commercial DVD pickup head. The astigmatic method is improved by setting a threshold value in the Sum Signal (SS) to truncate the Normalized Focus Error Signal (NFES). The Truncated NFES (TNFES) has a monotonic relationship with the displacement of the test surface and the zero crossing point identifies true focus. The developed autofocus system is confirmed experimentally with a dynamic range of 190 μm, average sensitivity of 70 mV/μm, average standard deviation of 0.041 μm, displayed resolution of 4.4 nm and accuracy of 55 nm. The minimization of Optical Path Difference (OPD) of two interference arms is carried out by finding the maximum fringe contrast of the image captured by a CCD camera with the Root Mean Square Fringe Contrast (RMSFC) function. Experimental tests show that the automated method can be effectively utilized to search for interference fringes in Linnik white light interferometry. Key words: autofocus; Linnik white light interferometry; DVD pickup head; FES curve 0 引 言 一个典型的Linnik白光干涉仪包括两个相同的显微物镜,并且分别聚焦在参考镜面和被测表面。从两 收稿日期:2012-05-02;收到修改稿日期:2012-06-30 基金项目:国家青年基金资助(50905053) 作者简介:李勇(1975-),男(汉族),安徽淮南人。博士,副教授,主要研究方向精密机械与测量。E-mail:liyong_ly123@https://www.360docs.net/doc/269898535.html,。

相关文档
最新文档