遗传算法的研究及应用毕业设计

遗传算法的研究及应用毕业设计
遗传算法的研究及应用毕业设计

毕业设计

遗传算法的研究及应用

摘要

本文分为三部分:第一部分:遗传算法的概述。主要介绍了遗传算法的基本思想、遗传算法的构成要素、遗传算法的特点、遗传算法的基本模型、遗传算法的应用情况及今后的研究方向等等的内容。第二部分:基于Matlab 7.0下的遗传算法求解函数最值问题。遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用。本人选择了函数优化这个应用领域,按照遗传算法的步骤,即编码、解码、计算适应度(函数值)、选择复制运算、交叉运算和变异运算,对函数进行求解最值。第三部分:对遗传算法求函数最值问题的改进。这部分主要针对本文第二部分进行改进,通过改变基本遗传算法运行参数值,如改变交叉概率Pc值和变异概率Pm值,从而使最优值更加接近相对标准下函数的最值。

关键词:遗传算法适应度交叉概率变异概率

目录

1 前言 (1)

2 遗传算法概述 (1)

2.1生物进化理论和遗传学的基本知识 (1)

2.2遗传算法的基本思想 (3)

2.3遗传算法的构成要素 (3)

2.3.1 染色体编码方法 (3)

2.3.2 适应度函数 (4)

2.3.3 遗传算子 (4)

2.3.4 基本遗传算法运行参数 (5)

2.4遗传算法的特点 (6)

2.5遗传算法的基本模型 (7)

2.6遗传算法的应用 (8)

2.7遗传算法今后的研究方向 (10)

3 基于MATLAB 7.0下的遗传算法求解函数最值问题 (11)

3.1遗传算法的标准函数 (11)

3.2解题步骤说明 (12)

3.2.1 编码问题 (12)

3.2.2 选择运算 (12)

3.2.3 交叉运算 (13)

3.2.4 变异运算 (13)

3.3运行参数说明 (14)

3.4对遗传算法求得的最值的分析 (14)

3.5运行程序以及对其解释 (14)

3.6从数学的角度求解函数最优值 (18)

3.6.1 自变量x以0.2为步进单位 (18)

3.6.2 自变量x以0.1为步进单位 (19)

3.6.3 自变量x以更精确的数为步进单位 (21)

4 对遗传算法求解函数最值问题的改进 (21)

4.1寻找求得最优解的运行参数值 (22)

4.1.1 当Pc=0.9和Pm=0.0001 (22)

4.1.2 当Pc=0.9和Pm=0.001 (23)

4.1.3 当Pc=0.9和Pm=0.01 (24)

4.1.4 当Pc=0.9和Pm=0.1 (26)

4.1.5 当Pc=0.4和Pm=0.1 (27)

5 结论 (29)

参考文献 (30)

ABSTRACT (31)

附录 (32)

致谢 (38)

仲恺农业工程学院毕业论文(设计)成绩评定表 (39)

1 前言

生命科学与工程科学的相互交叉、相互渗透和相互促进是近代科学技术发展的一个显著特点,而遗传算法的蓬勃发展正体现了科学发展的这一特征和趋势。

遗传算法(Genetic Algorithm---GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的。J.Holland教授和他的研究小组围绕遗传算法进行研究的宗旨有两个:一是抽取和解释自然系统的自适应过程,二是设计具有自然系统机理的人工系统。毫无疑问,J.Holland 教授的研究无论对自然系统还是对人工系统都是十分有意义的。

众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准最优解。因此,研究能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程,从而得到最优解或准最优解的通用搜索算法一直是令人瞩目的课题。遗传算法就是这种特别有效的算法。它的主要特点是简单、通用、鲁棒性强,适用于并行分布处理,应用范围广。尽管遗传算法本身在理论和应用方法上仍有许多待进一步研究的问题,但它在组合优化问题求解、自适应控制、规划设计、机器学习和人工生命等领域的应用中已发展现了其特色和魅力。

2 遗传算法概述

2.1 生物进化理论和遗传学的基本知识

在介绍遗传算法之前,有必要了解有关的生物进化理论和遗传学的基本知识。

达尔文的生物进化论告诉我们,“适者生存,优胜劣汰”。在生物自然环境中,生物种群的自然繁衍,生存,发展,最终取决于它对自然环境的适应能力。当一个种群相对其他种群,对周围的环境能够显示出良好的适应能力,它将在生物竞争中处于优势地位,获取较大的生存机会,反之,该种群则趋向于消亡。所以,一个种群的优异的适应能力是该种群得以繁衍发展的根本。从达尔文的进化论我们可以看出,生物环境对生物的进化主要通过三个途径来进行:选择,交叉和变异。

遗传算法是一种模拟生物进化过程的学习方法,它操作的对象是由多个个体构成的种群,通过对种群中的成员模拟生物进化的方式来产生下一代种群,新种群总是在旧种群的基础上获得改进和提高,周而复始,从而使得种群的整体质量朝着优良的方向发展。由于遗传算法是借鉴生物进化的思想,所以,遗传算法仍然沿用生物学中的一些术语。

染色体:它是遗传算法中运行的最基本的单位,是特定问题在算法中的表现形式,一般由二进制的数串所组成;

基因:它是染色体的最小组成单位,在二进制数串中它由一个数位来表示;

基因片:多个基因构成基因片;

种群:种群是由多个染色体构成的集合,它的数目称之为种群规模;

适应度:适应度反映了染色体所蕴涵的问题解质量的优劣,一般来说,染色体的适应度是一个非负数;

适应度函数:染色体到适应度之间的映射关系;

选择:遗传算子之一,是算法基于适应度对染色体进行优胜劣汰的操作过程;

交叉:遗传算子之一,是算法产生新个体的途径之一,又称之为基因重组;

变异:遗传算子之一,是算法产生新个体的途径之一,是小概率发生事件。

遗传算法所借鉴的生物学基础就是生物的遗传、变异和进化。

遗传---世间的生物从其父代继承特性或性状,这种生命现象就称为遗传。生物的遗传方式有以下三个:

(1) 复制

生物的主要遗传方式是复制。遗传过程中,父代的遗传物质DNA被复制到子代。即细胞在分裂时,遗传物质DNA通过复制而转移到新生的细胞中,新细胞就继承了旧细胞的基因。

(2) 交叉

有性生殖生物在繁殖下一代时,两个同源染色体之间通过交叉而重组,亦即在两个染色体的某一相同位置处DNA被切断,其前后两串分别交叉组合而形成两个新的染色体。

(3) 变异

在进行细胞复制时,虽然概率很小,仅仅有可能产生某些复制差错,从而使DNA发生某种变异,产生出新的染色体。这些新的染色体表现出新的性状。生物的不同品种都属于变异,在丰富多彩的生物界中,蕴含着形形色色的变异现象。在这些变异现象中,有的仅仅是由于环境因素的影响造成的,并没有引起生物体内的遗传物质的变化,因而不能够遗传下去,属于不遗传的变异。有的变异现象是由于生殖细胞内的遗传物质的改变引起的,因而能够遗传给后代,属于可遗传的变异。

敌酋上的生物,都是经过长期进化而形成的。根据达尔文的自然选择学说,地球上的生物具有很强的繁殖能力。在繁殖过程中,大多数生物通过遗传,使物种保持相似的

后代;部分生物由于变异,后代具有明显差别,甚至形成新物种。正是由于生物的不断繁殖后代,生物数目大量增加,而自然界中生物赖以生存的资源却是有限的。因此,为了生存,生物就需要竞争。生物在生存竞争中,根据对环境的适应能力,适者生存,不适者消亡。自然界中的生物,就是根据这种优胜劣汰的原则,不断地进行进化。

2.2 遗传算法的基本思想

遗传算法实质上是一种繁衍、监测和评价的迭代算法。它一般要包含以下几个处理步骤:(1) 对问题的解进行编码,即用染色体表示问题的可能潜在解,生成经过编码的初始种群,适应度函数因优化问题的目标函数而定;(2) 根据适应度大小挑选个体进行遗传操作; (3) 按照适者生存和优胜劣汰的原理逐代演化,得到问题的最优解或近似最优解。每个个体在种群演化过程中都被评价优劣并得到其适应度值,个体在选择、交叉以及变异算子的作用下向更高的适应度进化以达到寻求问题最优解的目标。

2.3 遗传算法的构成要素

遗传算法中包含五个基本要素,即染色体的编码方法、适应度函数、遗传算子、基本遗传算法运行参数及约束条件的处理。每个要素对应不同的环境有各种相应的设计策略和方法,而不同的策略和方法决定了相应的遗传算法具有不同的特征。

2.3.1 染色体编码方法

遗传算法不能直接处理问题空间的参数,而需要把问题的可行解从其解空间转换到遗传算法所能处理的搜索空间中,这一转换方法就称为编码。

一般来说,由于遗传算法的鲁棒性,它对编码的要求并不苛刻。但由于编码的方法对于个体的染色体排列形式,以及个体从搜索空间的基因型到解空间的表现型的转换和遗传算子的运算都有很大影响,因此编码方法在很大程度上决定了如何进行群体的遗传进化运算以及遗传进化运算的效率。

针对一个具体应用问题,如何设计一种完美的编码方案是遗传算法的应用难点,而目前还没有一套既严密又完整的指导理论及评价准则能帮我们设计编码方案。对于实际应用问题,仍须对编码方法、选择运算方法、交叉运算方法、变异运算方法、解码方法统一考虑,以寻求到一种对问题的描述最为方便、遗传运算效率最高的编码方案。

在目前看来,人们已经提出了许多种不同的编码方法,主要有:二进制编码、格雷码和浮点数编码等等[2]。

2.3.2 适应度函数

适应度函数指为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数。遗传算法在进化搜索中基本不利用外部信息,仅以种群中每个个体的适应度函数值为依据进行搜索,因此适应度函数的选取至关重要。遗传算法常常将目标函数直接作为适应度函数,但由于在执行选择操作时,它要按与个体适应度成正比的概率来决定当前群体中每个个体遗传到下一代群体中的几率,而要正确计算此概率,要求所有个体的适应度值必须非负[3]。

2.3.3 遗传算子

(1) 选择算子

选择操作建立在对个体的适应度进行评价的基础之上,适应度较高的个体被遗传到下一代群体中的概率较大;适应度较低的个体被遗传到下一代群体中的概率较小,因而可以避免有效基因的损失,使高性能的个体得以较大的概率生存,从而提高全局收敛性和计算效率。

最常用的选择算子是比例选择算子,它是以正比于个体适应度值的概率来选择相应的个体。另外还有比较常用的选择算子还有:最优保存策略选择、排序选择和随机联赛选择。

(2) 交叉算子

遗传算法中,在交叉运算之前还必须先对群体中的个体进行随机配对,然后在这些配对个体组中两个个体之间进行交叉操作。

交叉算子用于组合产生新的个体,它要求对个体编码串中的优良模式不能有太多的破坏并且能有效的产生出一些较好的新个体模式,以便在解空间中能进行有效搜索,且保证对有效模式的破坏概率较小。最常用的交叉算子有单点交叉算子和算术交叉算子。

(3) 变异算子

在生物的遗传和进化过程中,生物的某些基因偶尔会发生变异,从而产生出新的个体,虽然其概率比较小,但对新物种的产生也是一个不可忽视的因素。模仿生物遗传和

进化过程中的这种变异现象,在遗传算法中引入了变异算子来产生新的个体。

在遗传运算过程中,当交叉操作产生的后代适应度值不再进化且没有达到最优时,意味着算法陷入了早熟。早熟的根源在于有效基因的缺损,变异算子在一定程度上克服了这种情况,它可以改善遗传算法的局部搜索能力,增加种群的多样性。

2.3.4 基本遗传算法运行参数

遗传算法中有下面几个参数对遗传算法的运行有很大影响,需认真选取,它们是:个体编码串长度l、群体大小M、复制概率Pr、交叉概率Pc、变异概率Pm、终止代数T[4]。

(1) 编码串长度l

使用二进制编码表示个体时,编码串长度l的选取与问题所要求的求解精度有关;使用浮点数编码来表示个体时,编码串长度l与决策变量的个数n相等;另外,也可使用变长度的编码来表示个体。

(2) 群体大小M

当M取值较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,有可能会引起遗传算法的早熟现象;而当M取值较大时,又会使得遗传算法的运行效率降低。一般建议的取值范围是20~100。

(3) 复制概率Pr

复制操作建立在对个体的适应度进行评价的基础之上,适应度较高的个体被遗传到下一代群体中的概率较大;适应度较低的个体被遗传到下一代群体中的概率较小,复制概率不可取的太大,也不可以取的太小。

(4) 交叉概率Pc

交叉概率一般取值较大。但如果太大,它会破坏群体中的优良模式,对进化运算不利。一般建议的取值范围是0.4~0.99。另外,也可使用自适应的思想来确定交叉概率Pc。

(5) 变异概率Pm

如果变异概率Pm取值太大,则容易破坏群体中的优良模式,使得遗传算法的搜索趋于随机性;如果取值过小,则它产生新个体和抑制早熟的能力会较差。一般建议的取值范围是0.0001~0.1。另外也可使用自适应的思想来确定变异概率,如取Pm与其上一代群体间的海明距离成反比,其结果会有效地维持群体的多样性。

(6) 终止代数T

终止代数T是表示遗传算法运行结束条件的一个参数,一般建议的取值范围是100~500。至于遗传算法的终止条件,还可以利用别的判定准则。

2.4 遗传算法的特点

遗传算法利用了生物进化和遗传的基本思想,所以它与许多传统优化算法的特点不同,可以充分的缩短搜索时间。传统的优化方法主要有三种:枚举法、启发式算法和搜索算法。

(1) 枚举法

枚举法是指枚举出可行解集合内的所有可行解,以求得精确的最优解。对于连续的函数,该方法要求先对其进行离散化处理,这样就有可能产生离散误差而永远达不到最优解。但是当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前最先进的计算工具上都无法求解。

(2) 启发式算法

启发式算法是指寻求一种能产生可行解的启发式规则,以找到一个最优解或近似最优解。该方法的求解效率虽然比较高,但是对于每一个需要求解的问题都必须找出其特有的启发式规则,这个启发式规则没有通用性,不适合于所有的问题。

(3) 搜索算法

搜索算法是指寻求一种算法,能在可行解集合的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但是如果适当的利用一些启发知识,就可在近似解的质量和求解效率上达到一种较好的平衡。

而遗传算法既是一种自然进化系统的计算模型,也是一种通用的求解优化问题的适应性搜索方法。随着问题种类的不同以及问题规模的扩大,要寻求一种能以有限的代价来解决搜索和优化的通用方法,遗传算法正是提供了一种有效的途径,它不同于传统的优化方法,它具备的特点主要有以下几个方面:

(1) 遗传算法采用群体搜索寻找最优解,而不是从单个个体搜索寻找最优解。搜索轨道有多条,而非单条,覆盖面大,利于全局择优。这是遗传算法与传统优化算法的最大区别,传统优化算法是从单个个体搜索寻找最优解,效率比较低。

(2) 遗传算法求解时利用适应度函数值信息,并不需要问题导数等与问题直接相关的信息。所以说在所定义的函数不连续、多峰或不可微的情况下,也能以很大的概率收敛

到全局最优解。

(3) 遗传算法是以决策变量的编码作为运算对象。在优化过程中借鉴生物学中染色体和基因等概念,模拟自然界中生物的遗传和进化等机理,应用遗传操作,可方便求解无数值概念或很难有数值概念的优化问题,这样的话,遗传算法就克服了非数值变量的操作。

(4) 遗传算法有极强的容错能力。遗传算法的初始解集本身就带有大量与最优解相差甚远的信息,通过选择、交叉、变异操作能迅速排除与最优解相差极大的解,这是一个强烈的滤波过程。并且是一个并行滤波机制。因此,遗传算法有很高的容错能力,因为它就相当预先就进行了运算,或则说在内部就进行了运算,大大增加了运算的效率。

(5) 遗传算法使用概率搜索技术。它属于一种自适应概率搜索技术,其选择、交叉、变异等运算都是以一定的概率进行的,增加了其搜索过程的灵活性。实践和理论证明了在一定条件下遗传算法总是以概率1收敛于问题的最优解。

(6) 遗传算法具有隐含的并行性。并行性是指两个或多个事件在同一时刻发生,这样就大大增加了运算的速度。

2.5 遗传算法的基本模型

(1) 将问题的解表示为编码串(生物学术语称为染色体),每一码串代表问题的一个可行解。

(2) 随机产生一组串长为m的初始群体,该群体就是问题的一个可行解的集合。

(3) 分别将编码串译码成寻优参数,计算对应的目标函数并变换为适应值。

(4) 根据码串个体适应值的高低,执行应用复制、交换和变异算子产生下一代群体。

(5) 返回步骤3,直到满足停止准则为止。

这样,反复执行步骤3到步骤5,使码串群体一代代不断进化,最后搜索到最适应问题的个体,求得问题的最优解,其流程图如图1所示。

图1 遗传算法流程图

2.6 遗传算法的应用

遗传算法提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域、对问题的种类有很强的鲁棒性,所以广泛应用于很多学科。下面是遗传算法的一些主要应用领域[5]:

1 函数优化

函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用算例。很多人构造出了各种各样的复杂形式的测试函数,有连续函数也有离散函数,有凸函数也有凹函数,有低维函数也有高维函数,有确定函数也有随机函数,有单峰值函数也有多峰值函数等,用这些几何特性各具特色的函数来评价遗传算法的性能,更能反映算法的本质效果。而对于一些非线性、多模型、多目标的函数优化问题,用其他优化方法较难求解,而遗传算法却可以方便地得到较好的结果。

2 组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧扩大,有时在目前的计算机上用枚举法很难或甚至不可能求出其精确最优解。对这类复杂问题,人们已意识到应把主要精力放在寻求其满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法已经在求解旅行商问题、背包问题、装箱问题、布局优化、图形划分问题等各种具有NP难度的问题得到成功的应用。

3 生产调度问题

生产调度问题在很多情况下建立起来的数学模型难以精确求解,即使经过一些简化之后可以进行求解,也会因简化得太多而使得求解结果与实际相差甚远。目前在现实生产中主要是靠一些经验来进行调度。现在遗传算法已成为解决复杂调度问题的有效工具,在单件生产车间调度、流水线生产间调度、生产规划、任务分配等方面遗传算法都得到了有效的应用。

4 自动控制

在自动控制领域中有很多与优化相关的问题需要求解,遗传算法已在其中得到了初步的应用,并显示出良好的效果。例如用遗传算法进行航空控制系统的优化、使用遗传算法设计空间交会控制器、基于遗传算法的模糊控制器的优化设计、基于遗传算法的参数辨识、基于遗传算法的模糊控制规则的学习、利用遗传算法进行人工神经网络的结构优化设计和权值学习等,都显示出了遗传算法在这些领域中应用的可能性。

5 机器人学

机器人是一类复杂的难以精确建模的人工系统,而遗传算法的起源就来自于人工自适应系统的研究,所以,机器人学理所当然地成为遗传算法的一个重要应用领域。例如,遗传算法已经在移动机器人路径规划、关节机器人运动轨迹规划、机器人逆运动学求解、细胞机器人的结构优化和行为协调等方面得到研究和应用。

6 图像处理

图像处理是计算机视觉中的一个重要研究领域。在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求。遗传算法在这些图像处理中的优化计算方面找到了用武之地,目前已在模式识别(包括汉字识别)、图像恢复、图像边缘特征提取等方面得到了应用。

7 人工生命

人工生命是用计算机、机械等人工媒体模拟或构造出的具有自然生物系统特有行为

的人造系统。自组织能力和自学习能力是人工生命的两大主要特征。人工生命与遗传算法有着密切的关系。基于遗传算法的进化模型是研究人工生命现象的重要基础理论,虽然人工生命的研究尚处于启蒙阶段,但遗传算法已在其进化模型、学习模型、行为模型、自组织模型等方面显示出了初步的应用能力,并且必将得到更为深入的应用和发展。人工生命与遗传算法相辅相成,遗传算法为人工生命的研究提供一个有效的工具,人工生命的研究也必将促进遗传算法的进一步发展。

8 遗传编程

1989年,美国Standford大学的Koza教授发展了遗传编程的概念,其基本思想是:采用树型结构表示计算机程序,运用遗传算法的思想,通过自动生成计算机程序来解决问题。虽然遗传编程的理论尚未成熟,应用也有一些限制,但它已成功地应用于人工智能、机器学习等领域,目前公开的遗传编程实验系统有十多个。

9 机器学习

学习能力是高级自适应系统所具备的能力之一,基于遗传算法的机器学习,特别是分类器系统,在很多领域中都得到了应用。例如,遗传算法被用于学习模糊控制规则,利用遗传算法来学习隶属度函数,从而更好地改进了模糊系统的性能;基于遗传算法的机器学习可用来调整人工神经网络的连接权,也可用于人工神经网络结构优化设计;分类器系统也在学习式多机器人路径规划系统中得到了成功的应用。

10 数据挖掘

数据挖掘是近几年出现的数据库技术,它能够从大型数据库中提取隐含的、先前未知的、有潜在应用价值的知识和规则。许多数据挖掘问题可看成是搜索问题,数据库看作是搜索空间,挖掘算法看作是搜索策略。因此,应用遗传算法在数据库中进行搜索,对随机产生的一组规则进行进化,直到数据库能被该组规则覆盖,从而挖掘出隐含在数据库中的规则。Sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一。

2.7 遗传算法今后的研究方向

遗传算法是多学科结合与渗透的产物,已经发展成一种自组织、自适应的综合技术,广泛应用在计算机科学、工程技术和社会科学等领域。其研究工作主要集中在以下几个方面[6]:

1 基础理论

它包括进一步发展遗传算法的数学基础,从理论和试验研究它们的计算复杂性。在遗传算法中,群体规模和遗传算子的控制参数的选取非常困难,但它们又是必不可少的试验参数。在这方面,已有一些具有指导性的试验结果。遗传算法还有一个过早收敛的问题,怎样阻止过早收敛也是人们正在研究的问题之一。

2 分布并行遗传算法

遗传算法在操作上具有高度的并行性,许多研究人员都在探索在并行机和分布式系统上高效执行遗传算法的策略。对分布并行遗传算法的研究表明,只要通过保持多个群体和恰当控制群体间的相互作用来模拟并行执行过程,即使不使用并行计算机,也能提高算法的执行效率。

3 分类系统

分类系统属于基于遗传算法的机器学习中的一类,包括一个简单的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统。分类系统被人们越来越多地应用在科学、工程和经济领域中,是目前遗传算法研究中一个十分活跃的领域。

4 遗传神经网络

它包括连接权、网络结构和学习规则的进化。遗传算法与神经网络相结合,正成功地用于从时间序列分析来进行财政预算。在这些系统中,训练信号是模糊的,数据是有噪声的,一般很难正确给出每个执行的定量评价。如果采用遗传算法来学习,就能克服这些困难,显著提高系统性能。

5 进化算法

模拟自然进化过程可以产生鲁棒的计算机算法---进化算法。遗传算法是其三种典型的算法之一,其余两种算法是进化规划和进化策略。这三种算法是彼此独立地发展起来的。

3 基于Matlab 7.0下的遗传算法求解函数最值问题

3.1遗传算法的标准函数

已知函数曲线为:

f(x)=(sin2x+cos3x)3+2,其中(0=< x <=4)

3.2 解题步骤说明

本人基于Matlab 7.0用遗传算法来求函数的最值问题(即最大值和最小值),解决的步骤主要有以下几个方面:(1) 编码;(2) 解码;(3) 计算适应度(函数值);(4) 选择复制运算;(5) 交叉运算;(6) 变异运算[7]。

3.2.1 编码问题

编码是遗传算法要解决的首要问题。Holland的编码方法是二进制编码,但对于许多遗传算法的应用,特别是在工业工程中的应用,这种简单的编码方法很难直接描述问题的性质。近十年来,针对特殊问题,人们提出了其它编码方法。例如:

1 二进制编码它是遗传算法中最常用的一种编码方法。它具有下列一些优点:(1)编码、解码操作简单易行;(

2 )交叉、变异操作便于实现;(3)符合最小字符集编码原则;(4)便于利用模式定理对算法进行理论分析。

2 格雷码编码对于一些连续优化问题,二进制编码由于遗传算法的随机特性而使其局部搜索能力较差。为改进这一特性,人们提出用格雷码进行编码。格雷码编码方法是二进制编码方法的一种变形。它是这样的一种编码方法,其连续的两个整数所对应的编码值之间仅仅只有一个码位是不相同的,其余码位都完全相同。

3 实数编码对于一些多维、高精度要求的连续函数优化问题,使用二进制编码来表示个体将会带来一些不利。为了克服这些缺点,人们提出实数编码方法,即个体的每个基因值用实数表示。

4 符号编码方法是指染色体编码串中的基因值取自一个无数值含义、而只有代码含义的符号集。这些符号可以是字符,也可以是数字。

本文是采用了二进制编码的方法。

3.2.2 选择运算

遗传算法使用选择运算(或称复制运算)来实现对群体中的个体进行优胜劣汰操作,选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。下面介绍几种选择方法:

1 赌盘选择又称比例选择方法。其基本思想是:各个个体被选中的概率与其适应度

大小成正比

2 排序选择该方法的主要思想是:对群体中的所有个体按其适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。

3 随机联赛选择该方法的基本思想是:每次选取N个个体之中适应度最高的个体遗传到下一代群体中。

4 最优个体保留方法它的基本思想是:当前群体中适应度最高的个体不参与交叉和变异运算,而是用它来替换本代群体中经过交叉、变异后所产生的适应度最低的个体。

本文是采用了最优个体保留的方法。

3.2.3 交叉运算

所谓交叉运算,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。交叉运算有以下几种:

1 单点交叉又称为简单交叉,它是指在个体编码串中随机设置一个交叉点,然后在该点相互交换两个配对个体的部分基因。

2 双点交叉它的具体操作过程是:(1) 在相互配对的两个个体编码串中随机设置两个交叉点;(2) 交换两个交叉点之间的部分基因。

3 均匀交叉它是指两个配对个体的每一位基因都以相同的概率进行交换,从而形成两个新个体。

4 算术交叉它是指由两个个体的线性组合而产生出新的个体。

本文是采用了单点交叉的方法。

3.2.4 变异运算

所谓变异运算,是指将个体编码串中的某些基因值用其它基因值来替换,从而形成一个新的个体。变异运算有以下几种:

1 基本位变异它是指对个体编码串以变异概率p随机指定某一位或某几位基因作变异运算。

2 均匀变异它是指分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体中每个基因。

3 高斯变异它是指进行变异操作时,用均值为μ,方差为σ2的正态分布的一个随

机数来替换原有基因值。

4 二元变异它的操作需要两条染色体参与,两条染色体通过二元变异操作后生成两条新个体。新个体中的各个基因分别取原染色体对应基因值的同或/异或。

本文是采用了基本位变异的方法。

3.3 运行参数说明

至于运行参数本人设置了7个参数,它们分别是pop_size、gen_max、code_length、u_max、u_min、probability_crossover、probability_mutation。pop_size表示种群规模,遗传算法每次进化都有一定的规模,也就是有多少组(粒子)在当前寻找;gen_max表示最大进化代数,是表示遗传算法运行结束条件的一个参数,一般建议的取值范围是100~500;code_length表示设定编码长度,它与函数的精度有关;u_max表示最大值的自变量取值范围;u_min表示最小值的自变量取值范围;probability_crossover表示交叉率,一般建议的取值范围是0.4~0.99;probability_mutation表示变异率,一般建议的取值范围是0.0001~0.1。

3.4 对遗传算法求得的最值的分析

最优解谁都不知道是多少,本人只是把自变量在0到4之间取的10000个均匀间隔数,函数值就是这些间隔数(自变量)相应的适应度(函数值),y_1_max就是这些适应度(函数值)中最大的一个,y_1_min就是这些适应度(函数值)中最小的一个。可是因为本人取的点有间隔,所以求得的8.1608可能只是最大值附近的某个点,最大值可能在左边,也可能在右边,同样求得的0.2020也可能只是最小值附近的某个点,最小值可能在左边,也可能在右边。同理遗传算法在寻找最优解的时候,因为计算精度的问题也会找到这样一个点,这个点同样可能不是最优的,但是这也是没有办法的,因为毕竟受计算机的影响,所以我们只能希望求最大值时,取到的值越大越好,求最小值时,取到的值越小越好,故认为最优解就是最最大的或者最最小的。

3.5 运行程序以及对其解释

>> ga_maxmin(80,100,10,4,0,0.6,0.1)%当种群规模为80,最大进化代数为

100,编码长度为10,自变量的最大值

为4,自变量的最小值为0,交叉率为

0.6,变异率为0.1时,求得的函数最值y_Max = %遗传算法求解函数后的最大值

8.1608

BestS = %遗传算法求解函数后的最大值

所对应的自变量编码

1 1 1 1 1 1 1 1 1 1

x_max = %遗传算法求解函数后的最大值

4 所对应的自变量

y_min = %遗传算法求解函数后的最小值

0.2032

BestS_min = %遗传算法求解函数后的最小值

所对应的自变量编码

0 1 1 1 0 1 1 1 0 1

x_min = %遗传算法求解函数后的最小值

2.9326 所对应的自变量

y_1_max = %相对标准下的最大值

8.1608

y_1_min = %相对标准下的最小值

0.2020

其最大值与进化次数关系如图2所示:

图2 最大值与进化次数关系图其最小值与进化次数关系图如图3所示:

图3 最小值与进化次数关系图

其原函数和遗传算法求得的最值点的综合图像如图4所示:

图4 原函数和遗传算法求得的最值点的综合图像

从运行的结果看,用遗传算法求得的y_Max =8.1608(最大值)和y_1_max =8.1608(相对标准下的最大值)一样大,而用遗传算法求得的y_min =0.2032(最小值)和y_1_min =0.2020(相对标准下的最小值)很相近,只是相差0.0012,这样的结果算是不错的啦。

至于上面三个图形本人也来简单介绍一下:最大值与进化次数关系图,从图上可以看出经过多少代后,最大值将趋向平稳;最小值与进化次数关系图,从图上可以看出经过多少代后,最小值将趋向平稳;原函数和遗传算法求得的最值点的综合图像,原函数是指用数学的角度在Matlab 7.0下求得的函数曲线,图中的点或小圆圈就是用遗传算法求得的最值点。本身遗传算法就是输出一个值,它不能像遗传算法中嵌套神经网络那样的算法,可以拟和画出函数曲线。至于图中的点或小圆圈为什么才几个,因为进化多少次就有多少个点,如果这些点都画出来的话,将会使得整个图都布满小点,不过后面8、90个都重合了,所以只画出一部分,重合的就没画出来,免得太乱了。

另外,有关于BestS = 1 1 1 1 1 1 1 1 1 1,BestS_min =0 1 1 1 0 1 1 1 0 1,是怎么一回事呢,BestS表示输出最大函数值所对应自变量编码,BestS_min表示输出最小函数值所对应自变量编码,0对应0 0 0 0 0 0 0 0 0 0,4对应1 1 1 1 1 1 1 1 1 1,为什么要那么多位呢,因为考虑到实数范围的对应编码,例如:x_max =4,x_min =2.9326。

遗传算法的研究及应用毕业设计

毕业设计 遗传算法的研究及应用 摘要 本文分为三部分:第一部分:遗传算法的概述。主要介绍了遗传算法的基本思想、遗传算法的构成要素、遗传算法的特点、遗传算法的基本模型、遗传算法的应用情况及今后的研究方向等等的内容。第二部分:基于Matlab 7.0下的遗传算法求解函数最值问题。遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用。本人选择了函数优化这个应用领域,按照遗传算法的步骤,即编码、解码、计算适应度(函数值)、选择复制运算、交叉运算和变异运算,对函数进行求解最值。第三部分:对遗传算法求函数最值问题的改进。这部分主要针对本文第二部分进行改进,通过改变基本遗传算法运行参数值,如改变交叉概率Pc值和变异概率Pm值,从而使最优值更加接近相对标准下函数的最值。 关键词:遗传算法适应度交叉概率变异概率

目录 1 前言 (1) 2 遗传算法概述 (1) 2.1生物进化理论和遗传学的基本知识 (1) 2.2遗传算法的基本思想 (3) 2.3遗传算法的构成要素 (3) 2.3.1 染色体编码方法 (3) 2.3.2 适应度函数 (4) 2.3.3 遗传算子 (4) 2.3.4 基本遗传算法运行参数 (5) 2.4遗传算法的特点 (6) 2.5遗传算法的基本模型 (7) 2.6遗传算法的应用 (8) 2.7遗传算法今后的研究方向 (10) 3 基于MATLAB 7.0下的遗传算法求解函数最值问题 (11) 3.1遗传算法的标准函数 (11) 3.2解题步骤说明 (12) 3.2.1 编码问题 (12) 3.2.2 选择运算 (12) 3.2.3 交叉运算 (13) 3.2.4 变异运算 (13) 3.3运行参数说明 (14) 3.4对遗传算法求得的最值的分析 (14) 3.5运行程序以及对其解释 (14) 3.6从数学的角度求解函数最优值 (18) 3.6.1 自变量x以0.2为步进单位 (18) 3.6.2 自变量x以0.1为步进单位 (19) 3.6.3 自变量x以更精确的数为步进单位 (21)

遗传算法的优缺点

遗传算法属于进化算法( Evolutionary Algorithms) 的一种, 它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子: 选择、交叉和变异. 。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法( GA)。算法中称遗传的生物体为个体( individual ),个体对环境的适应程度用适应值( fitness )表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因 (gene)。一定数量的个体组成一个群体(population )。对所有个体进 行选择、交叉和变异等操作,生成新的群体,称为新一代( new generation )。遗传算法计算程序的流程可以表示如下[3]:第一步准备工作 (i)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m。通常用二 进制编码。 (2 )选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm (3、确定适应值函数f (x、。f (x、应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂 面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi ,同时计算群体的总适应值。 第四步选择 计算每一串的选择概率Pi=fi/F 及累计概率。选择一般通过模拟旋转滚花轮 ( roulette ,其上按Pi大小分成大小不等的扇形区、的算法进行。旋转M次即可选出M个串来。在计算机 上实现的步骤是:产生[0,1]间随机数r,若rpc ,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。 (2)对每一对,产生[1 , m]间的随机数以确定交叉的位置。 第六步变异 如变异概率为Pm则可能变异的位数的期望值为Pm x mx M,每一位以等概率变异。具体为 对每一串中的每一位产生[0 , 1]间的随机数r,若r

大学课件--遗传算法应用的分析与研究-

遗传算法应用的分析与研究 福州八中钱自强 【摘要】 随着科技水平的不断发展,人们在生产生活中遇到的问题也日益复杂,这些问题常常需要在庞大的搜索空间内寻找最优解或近似解,应用传统算法求解已经显得相当困难。而近年来,生物学的进化论被广泛地应用于工程技术、人工智能等领域中,形成的一类有效的随机搜索算法——进化算法,有效的解决了诸多生产生活中的难题而显得越来越流行。 本文的首先将介绍进化算法的原理以及历史使大家对进化算法有一个初步的了解,其次将详细介绍应用遗传算法解题的步骤,并提出有效改进和应用建议。紧接着通过一个NP难题的优化实例让大家对遗传算法有更深刻的了解,最后通过数据分析证明其方法的有效性。 【关键词】 人工智能;进化算法;遗传算法(GA);多目标最小生成树 目录 一、进化算法理论 1.1进化算法概述- 2- 1.2遗传算法介绍- 2- 二、遗传算法 2.1遗传算法基本流程- 3- 2.2遗传算法中各重要因素分析- 3- 2.3重要参数设置- 6- 三、遗传算法在多目标最小生成树问题中的应用 3.1多目标最小生成树- 7- 3.2应用遗传算法解决多目标最小生成树- 9- 3.3测试-11- 四、结束语-15- 附录-16-

一. 进化算法理论 1.1进化算法概述 从远古时代单细胞开始,历经环境变迁的磨难,生命经历从低级到高级,从简单到复杂的演化历程。生命不断地繁衍生息,产生出具有思维和智能的高级生命体。人类得到生命的最佳结构与形式,它不仅可以被动地适应环境,更重要的是它能够通过学习,模仿与创造,不断提高自己适应环境的能力。 进化算法就是借鉴生物自然选择和遗传机制的随机搜索算法。进化算法通过模拟“优胜劣汰,适者生存”的规律激励好的结构,通过模拟孟德尔的遗传变异理论在迭代过程中保持已有的结构,同时寻找更好的结构。作为随机优化与搜索算法,进化算法具有如下特点:进化算法不是盲目式的乱搜索,也不是穷举式的全面搜索,它根据个体生存环境即目标函数来进行有指导的搜索。进化算法只需利用目标的取值信息而不需要其他信息,因而适用于大规模、高度非线性的不连续、多峰函数的优化,具有很强的通用性;算法的操作对象是一组个体,而非单个个体,具有多条搜索轨迹。 1.2遗传算法 遗传算法(Genetic Algorithm)是进化算法的一个重要分支。它由John Holland提出,最初用于研究自然系统的适应过程和设计具有自适应性能的软件。近来,遗传算法作为问题求解和最优化的有效工具,已被非常成功地应用与解决许多最优化问题并越来越流行。 遗传算法的主要特点是群体搜索策略和群体中个体之间的信息互换,它实际上是模拟由个体组成的群体的整体学习过程,其中每个个体表示问题搜索空间中的一个解点.遗传算法从任一初始的群体出发,通过随机选择,交叉和变异等遗传操作,使群体一代代地进化到搜索空间中越来越好的区域,直至抵达最优解点. 遗传算法和其它的搜索方法相比,其优越性主要表现在以下几个方面:首先,遗传算法在搜索过程中不易陷入局部最优,即使在所定义的适应度函数非连续.不规则也能以极大的概率找到全局最优解,其次,由于遗传算法固有的并行性,使得它非常适合于大规模并行分布处理,此外,遗传算法易于和别的技术(如神经网络.模糊推理.混沌行为和人工生命等)相结合,形成性能更优的问题求解方法.

遗传算法经典MATLAB代码

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗传算法的研究及应用

龙源期刊网 https://www.360docs.net/doc/273413792.html, 遗传算法的研究及应用 作者:彭志勇邓世权 来源:《计算机光盘软件与应用》2013年第07期 摘要:遗传算法是一种典型的优化搜索算法,它的构造是使用人工的方式,并对生物遗传学和自然选择机理来进行模仿,是一种典型的数学仿真,而这种数学仿真是通过生物进化的过程来进行的,它是进化计算的一种非常重要的形式,它可以应用与生活中的很多领域。 关键词:遗传算法;函数优化;生产调度;自动控制 中图分类号:TP183文献标识码:A文章编号:1007-9599 (2013) 07-0000-02 遗传算法是一种典型的优化搜索算法,它的构造是使用人工的方式,并对生物遗传学和自然选择机理来进行模仿,是一种典型的数学仿真,而这种数学仿真是通过生物进化的过程来进行的,它是进化计算的一种非常重要的形式。与传统的数学模型进行比较,遗传算法有很多的不同的地方,因为它能够解决很多复杂的问题,而传统的数学模型却没办法做到。 1遗传算法的理论研究 1.1遗传算法的由来。美国密西根大学的霍兰德(Holland)将该算法应用于自然和人工系统的自适应行为的研究之中,并且在二十世纪七十年代中期,出版他的第一部著作《自然与人工系统中的适应》。随后,Holland与他的学生们将该算法进行了大力的推广,并把它应用到优化及机器学习等问题之中,而且正式定名为遗传算法。 1.2遗传算法的发展。遗传算法的兴起于20世纪70年代,而到了20世纪80年代的时 候,它正好属于一个发展中的过程,到了20世纪90年代时,它已经发展到了颠疯时刻。为一种实用性较强而又很有效率的优化技术,遗传算法的发展还是非常迅速,在国内外已经造成了非常大的影响力。 1.3遗传算法的基本思想。遗传算法是从一个种群(population)开始的,而这个种群代表问题可能潜在解集的,一个种群是由经过基因(gene)编码(coding)的一定数目的个体(individual)所组成。染色体是遗传物质的主要载体,它是由多个基因的集合,其内部表现是某种基因组合决定的。自从初始种群产生以后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度(fitness)大小来挑选(selection)个体,遗传算法是采纳了选择、交叉、变异、迁移、局域 与邻域等自然进化模型,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),从而产生出代表新的解集的种群。 遗传算法和传统搜索算法有很大的不同,它是通过一组随机产生的初始解开始搜索过程。染色体是类似于二进制串的一串符号,对于染色体的测量,我们通常是用适应度来它的好坏

遗传算法

遗传算法的基本理论 一、起源: 早在20世纪50年代和60年代,就有少数人几个计算机科学家独立地进行了所谓的“人工进化系统”研究,其出发点是进化的思想可以发展成为许多工程问题的优化工具。早期的研究形成了遗传算法的雏形,如大多数系统都遵循“适者生存”的仿自然法则,有些系统采用了基于群体(population)的设计方案,并且加入了自然选择与变异操作,还有一些系统对生物染色体编码进行了抽象处理,应用二进制编码。由于缺乏一种通用的编码方案,人们只能依赖变异而非交叉来产生新的基因结构,早期的算法收敛甚微。20世纪60年代中期,美国Michigan大学的John Holland在A.S.Fraser和H.J.Bremermann等人工作的基础上提出了位串编码技术。这种编码既适用于变异操作,又适用于交叉(即杂交)操作。并且强调将交叉作为主要的遗传操作。随后,Holland将该算法用于自然和人工系统的自适应行为的研究中,并于1975年出版了其开创性著作“Adaption in Natural and Artificial System”。以后,Holland等人将该算法加以推广,应用到优化及机器学习等问题中,并正式定名为遗传算法。遗传算法的通用编码技术和简单有效的遗传操作作为其广泛、成功地应用奠定了基础。Holland早期有关遗传算法的许多概念一直沿用至今,可见Holland对遗传算法的贡献之大。他认为遗传算法本质上是适应算法,应用最多的是系统最优化的研究。 二、发展: 年份贡献者内容 1962Holland程序漫游元胞计算机自适应系统框架 1968Holland模式定理的建立 1971Hollstein具有交配和选择规则的二维函数优化 1972Bosworth、Foo、Zeigler提出具有复杂变异、类似于遗传算法的基因操作1972Frantz位置非线性和倒位操作研究 1973Holland遗传算法中试验的最优配置和双臂强盗问题 1973Martin类似遗传真法的概率算法理论 1975De Jong用于5个测试函数的研究基本遗传算法基准参数 1975Holland 出版了开创性著作《Adaptation in Natural and Artificial System》 1981Bethke应用Walsh函数分析模式 1981Brindle研究遗传算法中的选择和支配问题 1983Pettit、Swigger遗传算法应用于非稳定问题的粗略研究1983Wetzel用遗传算法解决旅行商问题(TSP) 1984Mauldin基本遗传算法小用启发知识维持遗传多样性1985Baker试验基于排序的选择方法 1985Booker建议采用部分匹配计分、分享操作和交配限制法1985Goldberg、Lingle TSP问题个采用部分匹配交叉 1985Grefenstette、Fitzpattrick对含噪声的函数进行测试 1985Schaffer多种群遗传算法解决多目标优化问题1986Goldberg最优种群大小估计 1986Grefenstette元级遗传算法控制的遗传算法 1987Baker选择中随机误差的减少方法 1987Goldberg复制和交叉时最小欺骗问题(MDP) 1987Goldberg、Richardson借助分享函数的小生境和物种归纳法

遗传算法理论及其研究进展

遗传算法理论及其应用研究进展 摘要:本文阐述了遗传算法的基本原理以及求解问题的一般过程,讨论了遗传算 法存在的不足和针对其不足采取的弥补措施,概述了遗传算法常见的应用领域。最后,讨论了遗传算法的未来研究方向。 关键词:遗传算法;算子;优化 Development on Genetic Algorithm Theory And Its Application Liu Jun (201320620181) (College of Mecha ni cal Engin eeri ng of Un iversity of South Chi na Hen gya ng Hunan 421001) Abstract: This paper stated the basic theory of Genetic Algorithm (GA) and the process of sol ving the problem, discussed the weak ness of gen etic algorithm and the impro ving measures about gen etic algorithm. Then summarized the com mon applicati on fields of gen etic algorithm. Fin ally, poin ted out the gen etic algorithm ' research direct ions in the future. Keywords: gen etic algorithm (GA); operator; optimizati on 遗传算法是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法。它来源于达尔文的进化论、魏茨曼的物种选择学说和孟德尔的群体遗传学说。遗传算法是模拟自然界生物进化过程与机制求解极值问题的一类自组织、自适应人工智能技术,其基本思想是模拟自然界遗传机制和生物进化论而形成的一种过程搜索最优解的算法,具有坚实的生物学基础;它提供从智 能生成过程观点对生物智能的模拟,具有鲜明的认知学意义;它适合于无表达或有表达的任何类函数,具有可实现的并行计算行为;它能解决任何种类实际问题,具有广泛的应用价值。因此,遗传算法广泛应用于自动控制、计算科学、模式识别、工程设计、智能故障诊断、管理科学和社会科学等领域,适用于解决复杂的非线性和多维

遗传算法的应用研究_赵夫群

2016年第17期 科技创新科技创新与应用 遗传算法的应用研究 赵夫群 (咸阳师范学院,陕西咸阳712000) 1概述 遗传算法(Genetic Algorithms,GA)一词源于人们对自然进化系统所进行的计算机仿生模拟研究,是以达尔文的“进化论”和孟德尔的“遗传学原理”为基础的,是最早开发出来的模拟遗传系统的算法模型。遗传算法最早是由Fraser提出来的,后来Holland对其进行了推广,故认为遗传算法的奠基人是Holland。 随着遗传算法的不断完善和成熟,其应用范围也在不断扩大,应用领域非常广泛,主要包括工业控制、网络通讯、故障诊断、路径规划、最优控制等。近几年,出现了很多改进的遗传算法,改进方法主要包括:应用不同的交叉和变异算子;引入特殊算子;改进选择和复制方法等。但是,万变不离其宗,都是基于自然界生物进化,提出的这些改进方法。 2遗传算法的原理 遗传算法是从某一个初始种群开始,首先计算个体的适应度,然后通过选择、交叉、变异等基本操作,产生新一代的种群,重复这个过程,直到得到满足条件的种群或达到迭代次数后终止。通过这个过程,后代种群会更加适应环境,而末代种群中的最优个体,在经过解码之后,就可以作为问题的近似最优解了。 2.1遗传算法的四个组成部分 遗传算法主要由四个部分组成[1]:参数编码和初始群体、适应度函数、遗传操作和控制参数。编码方法中,最常用的是二进制编码,该方法操作简单、便于用模式定理分析。适应度函数是由目标函数变换而成的,主要用于评价个体适应环境的能力,是选择操作的依据。遗传操作主要包括了选择、交叉、变异等三种基本操作。控制参数主要有:串长Z,群体大小size,交叉概率Pc,变异概率Pm等。目前对遗传算法的研究主要集中在参数的调整中,很多文献建议的参数取值范围一般是:size取20~200之间,Pc取0.5~1.0之间,Pm取0~0.05之间。 2.2遗传算法的基本操作步骤 遗传算法的基本操作步骤为: (1)首先,对种群进行初始化;(2)对种群里的每个个体计算其适应度值;(3)根据(2)计算的适应度,按照规则,选择进入下一代的个体;(4)根据交叉概率Pc,进行交叉操作;(5)以Pm为概率,进行变异操作;(6)判断是否满足停止条件,若没有,则转第(2)步,否则进入(7);(7)得到适应度值最优的染色体,并将其作为问题的满意解或最优解输出。 3遗传算法的应用 遗传算法的应用领域非常广泛,下面主要就遗传算法在优化问题、生产调度、自动控制、机器学习、图像处理、人工生命和数据挖掘等方面的应用进行介绍。 3.1优化问题 优化问题包括函数优化和组合优化两种。很多情况下,组合优化的搜索空间受问题规模的制约,因此很难寻找满意解。但是,遗传算法对于组合优化中的NP完全问题非常有效。朱莹等[2]提出了一种结合启发式算法和遗传算法的混合遗传算法来解决杂货船装载的优化问题中。潘欣等[3]在化工多目标优化问题中应用了并行遗传算法,实验结果表明该方法效果良好。王大东等[4]将遗传算法应用到了清运车辆路径的优化问题求解中,而且仿真结果表明算法可行有效。 3.2生产调度 在复杂生产调度方面,遗传算法也发挥了很大的作用。韦勇福等[5]将遗传算法应用到了车间生产调度系统的开发中,并建立了最小化完工时间目标模型,成功开发了车间生产调度系统模块,并用实例和仿真验证了该方法的可行性。张美凤等[6]将遗传算法和模拟退火算法相结合,提出了解决车间调度问题的混合遗传算法,并给出了一种编码方法以及建立了相应的解码规则。 3.3自动控制 在自动控制领域中,遗传算法主要用于求解的大多也是与优化相关的问题。其应用主要分为为两类,即离线设计分析和在线自适应调节。GA可为传统的综合设计方法提供优化参数。 3.4机器学习 目前,遗传算法已经在机器学习领域得到了较为广泛的应用。邢晓敏等[7]提出了将遗传算子与Michigan方法和基于Pitt法的两个机器学习方法相结合的机器学习方法。蒋培等[8]提出了一种基于共同进化遗传算法的机器学习方法,该方法克服了学习系统过分依赖于问题的背景知识的缺陷,使得学习者逐步探索新的知识。 3.5图像处理 图像处理是一个重要的研究领域。在图像处理过程中产生的误差会影响图像的效果,因此我们要尽可能地减小误差。目前,遗传算法已经在图像增强、图像恢复、图像重建、图像分形压缩、图像分割、图像匹配等方面应用广泛,详见参考文献[9]。 4结束语 遗传算法作为一种模拟自然演化的学习过程,原理简单,应用广泛,已经在许多领域解决了很多问题。但是,它在数学基础方面相对不够完善,还有待进一步研究和探讨。目前,针对遗传算法的众多缺点,也相继出现了许多改进的算法,并取得了一定的成果。可以预期,未来伴随着生物技术和计算机技术的进一步发展,遗传算法会在操作技术等方面更加有效,其发展前景一片光明。 参考文献 [1]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1999,6. [2]朱莹,向先波,杨运桃.基于混合遗传算法的杂货船装载优化问题[J].中国船舰研究,2015:10(6):126-132. [3]潘欣,等.种群分布式并行遗传算法解化工多目标优化问题[J].化工进展,2015:34(5):1236-1240. [4]王大东,刘竞遥,王洪军.遗传算法求解清运车辆路径优化问题[J].吉林师范大学学报(自然科学版),2015(3):132-134. [5]韦勇福,曾盛绰.基于遗传算法的车间生产调度系统研究[J].装备制造技术,2014(11):205-207. [6]黄巍,张美凤.基于混合遗传算法的车间生产调度问题研究[J].计算机仿真,2009,26(10):307-310. [7]邢晓敏.基于遗传算法的机器学习方法赋值理论研究[J].软件导刊[J].2009,8(11):80-81. [8]蒋培.基于共同进化遗传算法的机器学习[J].湖南师范大学自然科学学报,2004,27(3):33-38. [9]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389-396. [10]周剑利,马壮,陈贵清.基于遗传算法的人工生命演示系统的研究与实现[J].制造业自动化,2009,31(9):38-40. [11]刘晓莉,戎海武.基于遗传算法与神经网络混合算法的数据挖掘技术综述[J].软件导刊,2013,12(12):129-130. 作者简介:赵夫群(1982,8-),女,汉族,籍贯:山东临沂,咸阳师范学院讲师,西北大学在读博士,工作单位:咸阳师范学院教育科学学院,研究方向:三维模型安全技术。 摘要:遗传算法是一种非常重要的搜索算法,特别是在解决优化问题上,效果非常好。文章首先介绍了遗传算法的四个组成部分,以及算法的基本操作步骤,接着探讨了遗传算法的几个主要应用领域,包括优化、生产调度、机器学习、图像处理、人工生命和数据挖掘等。目前遗传算法以及在很多方面的应用中取得了较大的成功,但是它在数学基础方面相对还不够完善,因而需要进一步研究和完善。 关键词:遗传算法;优化问题;数据挖掘 67 --

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

遗传算法应用论文

论文 题目:遗传应用算法 院系:计算机工程系 专业:网络工程 班级学号: 学生姓名: 2014年10月23日

摘要: 遗传算法是基于自然界生物进化基本法则而发展起来的一类新算法。本文在简要介绍遗传算法的起源与发展、算法原理的基础上,对算法在优化、拟合与校正、结构分析与图谱解析、变量选择、与其他算法的联用等方面的应用进行了综述。该算法由于无需体系的先验知识,是一种全局最优化方法,能有效地处理复杂的非线性问题,因此有着广阔的应用前景。 关键词: 遗传算法; 化学计量学; 优化 THEORY AND APPL ICATION OF GENETIC AL GORITHM ABSTRACT: Genetic Algo rithm( GA) is a kind of recursive computational procedure based on the simulation of principle principles of evaluati on of living organisms in nature1Based on brief int roduction of the principle ,the beginning and development of the algorithms ,the pape r reviewed its applications in the fields of optimization ,fitting an d calibration,structure analysis and spectra interpretation variable selection ,and it s usage in combination with othersThe application o f GA needs no initiating knowledge of the system ,and therefore is a comprehensive optimization method with extensive application in terms of processing complex nonlinear problems。 KEY WORDS : Genetic Algorithm( GA) Chemometrics Optimization 遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法,它于1962年被提出,直到1989年才最终形成基本框架。遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法, 由美国J. H. Ho llad教授提出, 其主要特点是群体搜索策略和群体中个体之间的信息交换。该算法尤其适用于处理传统搜索方法难以解决的复杂和非线性问题, 可广泛用于组合优化、机器学习、自适应控制、规划设计和人工生命等领域。 顾名思义,遗传算法(Genetic Algorithm ,GA)是模拟自然界生物进化机制的一种算法 ,即遵循适者生存、优胜劣汰的法则 ,也就是寻优过程中有用的保留 ,无用的则去除。在科学和生产实践中表现为 ,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法 ,即找出一个最优解。这种算法是 1960 年由

matlab基本遗传算法应用实例

基本遗传算法应用实例。用基本遗传算法求下面函数的最大值 10090060)(23++-=x x x x f 300≤≤x 个体数目取50,最大进化代数取100,离散精度取0.001,杂交概率取0.9,变异概率取0.004 1、在editor 中建立基本遗传算法函数:GA 程序如下: function[xv,fv]=GA(fitness,a,b,NP,NG,pc,pm,eps) %待优化的目标函数:fitness %自变量下界:a %自变量上界:b %种群个体数:NP %最大进化代数:NG %杂交概率:pc %自变量概率:pm %自变量离散精度:eps %目标函数取最小值时的自变量值:xm %目标函数的最小值:fv L=ceil(log2((b-a)/eps+1)); %根据离散精度,确定二进制编码需要的码长 x=zeros(NP,L); for i=1:NP x(i,:)=Initial(L);%种群初始化 fx(i)=fitness(Dec(a,b,x(i,:),L)); %个体适应值 end for k=1:NG sumfx=sum(fx); %所有个体适应值之和 px=fx/sumfx; %所有个体适应值的平均值 ppx=0; ppx(1)=px(1); for i=2:NP %用于轮盘赌策略的累加 ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; %根据轮盘赌策略确定的父亲 break; end end Selmother=floor(rand()*(NP-1))+1; %随机选择母亲 posCut=floor(rand()*(L-2))+1; %随机选择交叉点 r1=rand(); if r1<=pc %交叉

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

相关文档
最新文档