新型储氢材料三氢化铝的研究进展_唐安江

新型储氢材料三氢化铝的研究进展_唐安江
新型储氢材料三氢化铝的研究进展_唐安江

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

碳质储氢材料的研究进展

碳质储氢材料的研究进展 摘要 碳质材料由于具备质量轻、吸氢量大等优良特性,近年来引起了学者们的广泛关注。综述了碳质储氢材料的研究进展,介绍了碳质材料的储氢机理,并就近年来研究的热点探讨了影响碳质材料储氢的各种因素。最后,对碳质储氢材料的发展前景进行了展望。 关键词:碳质材料储氢储氢材料进展 Abstract Carbonaceous materials have been arousing increased research attention recently ,due to numerousadvantages such as low density and high storage capacity .Research advances of carbonaceous materials for hydrogenstorage are reviewed ,and hydrogen storage mechanism of carbonaceous materials is introduced .Moreover,based onrecent research highlights ,influence factors on hydrogen storage capacity of carbonaceous materials are discusseck E ventually future development of the carbon materials for hydrogen storage is prospected Key wolds :Carbonaceous materials ,Hydrogen Storage , Hydrogen Storage Materials , Progress 、八、, 前言 能源和资源是人类赖以生存和发展的源泉。随着社会经济的发展,全球能源供应的日趋紧缺,环境污染的日益加剧,已有的能源和资源正在以越来越快的速度消耗。面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。氢能作为一种可储可输的洁净的可再生能源,从长远上看,它的发展可能对能源结构产生重大改变。洁净无污染的氢能利用技术正在以惊人的速度发展,己引起工业界的热切关注。 氢的规模制备是氢能应用的基础,氢的规模储运是氢能应用的关键,氢燃料电池汽车是氢能应用的主要途径和最佳表现形式,三方面只有有机结合才能使氢能迅速走向实用化。但是,由于氢在常温常压下为气态,密度很小,仅为空气的1/14,故氢的储存就成了氢能系统的关键技术。

铝基复合材料的研究发展现状与发展前景

铝基复合材料的研究发展现状与发展前景摘要:铝基复合材料具有很高的比强度、比模量和较低的热膨胀系数,兼具结构材料和功能材料的特点。介绍了铝基复合材料的分类、制造工艺、性能及应用等几个方面,最后对铝基复合材料的研究状况及其发展趋势。做了简单的介绍。 关键词:铝基复合材料,制造工艺,性能,应用 Abstract:Aluminum matrix composite was in capacity of structure materials and function materials for its high specific strength and high specific modulus and low coefficient of thermal expansion.The classification of aluminum matrix composite were introduced and the preparation process、properties and application of aluminum matrix composite was expounded,and then the domestic research status and future development trends of the composite were summed up. Key words:aluminum matrix composites,preparation process,properties,application. 1.发展历史 1.1概述 复合材料是由两种或两种以上物理和化学性质不同的材料通过先进的材料制备技术组合而成的一种多相固体材料。根据基体材料不同,复合材料包括三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)[1]。金属基复合材料在20世纪60年代末才有较快的发展,是复合材料的一个新分支,其以高比强、高比模和耐磨蚀等优异的综合性能,在航空、航天、先进武器系统和汽车等领域有广泛的应用,已成为国内外十分重视发展的先进复合材料。 在金属基复合材料中,铝基复合材料具有密度低、基体合金选择范围广、可热处理性好、制备工艺灵活、比基体更高的比强度、比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工性和价格低廉的优点,更加引起人们的注意[2]。铝基复合材料具有很大的应用潜力,并且已有部分铝基复合材料成功地进入了商业化生产阶段。 铝基复合材料是以金属铝及其合金为基体,以金属或非金属颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等[3]。 然而不管增强物的类型和形状尺寸如何,大多数铝基复台材料具有以优点: ①重量轻、比强度、比刚度高。 ②具有高的剪切强度。 ③热膨胀系数低,热稳定性高,并有良好的导热性和导电性。 ④具有卓越的抗磨耐磨性。 ⑤能耐有机液体,如燃料和溶剂的侵蚀。 ⑥可用常规工艺和设备进行成型和处理。 1.2分类

金属储氢材料研究进展_范士锋

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

铝基复合材料的发展现状与研究

铝基复合材料的发展现状与研究 摘要:随着现代生产技术的发展,对材料的性能要求越来越高,目前,铝基复合材料由于其优良的性能已经成为现时研究的热点。阐述了铝基复合材料的基本性能及应用情况,总结了近几年关于铝基复合材料的主要研究成果与发展趋势。 关键词:铝基复合材料,材料性能,研究成果,趋势 Development and progress of aluminium matrix composites Tang nong-j Abstract:With the development of modern manufacturing technology, The material performance requirements more and more high,The development of aluminum matrix composite materials was reviewed with their properties. Espectively in accordance with the classes to which they belong. The fundamental property and application field of aluminum matrix composite were briefly introduced. The main research achievements and development were summarized in recent years. Meanwhile, the outlook of its development was put forward. Key words:aluminium matrix composites,material properties,research findings,trend

储氢材料的发展现状、应用与制备综述

储氢材料的发展现状、应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。本文简要讲述了储氢材料的发展现状、主要应用与制备技术。 关键词:储氢材料、性质、应用、发展、制备 1引言 当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。 2储氢材料的基本性质 储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属 →MHx+ΔH(生成热)。 氢化物(MHx):M+XH 2 2.1储氢材料应具备的基本条件 作为储存能量的材料,储氢材料应具备以下条件: (1)易活化,氢的吸储量大; (2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大; (3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压; (4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小; 、水分等的耐中毒能力强; (5)对不纯物如氧、氮、CO、CO 2 (6)当氢反复吸储和释放时,微粉化少,性能不会劣化; (7)金属氢化物的有效热导率大,储氢材料价廉; (8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。 2.2影响储氢材料吸储能力的因素

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.360docs.net/doc/27369735.html, 收稿日期:2009-01-13 33

金属基复合材料的发展与研究现状_李凤平

收稿日期:2003207221 作者简介:李凤平(1956-),男,副教授,从事产品造型设计。 金属基复合材料的发展与研究现状 李凤平 (辽宁工程技术大学机械学院,辽宁阜新 123000) 摘要: 本文对金属基复合材料的分类、制造方法进行了综述,阐述了国内外研究现状,提出了在重金属基复合材料的研究中存在的问题,探讨了重金属基复合材料的研究方向。 关键词: 金属基复合材料;制造方法;分类;研究现状;研究方向 中图分类号:TB331 文献标识码:A 文章编号:1003-0999(2004)01-0048 近20年来,伴随航空航天工业和宇宙空间技术及民用行业技术的进步,金属基复合材料获得惊人的发展。在航天、机器人、核反应堆等高技术领域,镁基、铝基、钛基等轻质复合材料起到了支撑作用[1],SiC 晶须增强的铝基复合材料薄板将用于先进战斗机的蒙皮和机尾的加强筋,钨纤维增强高温合金基复合材料可用于飞机发动机部件,石墨/铝、石墨/镁复合材料具有很高的比刚度和抗热变形性,是卫星和宇宙飞行器用的良好的结构材料。美国航天航空局采用石墨/铝复合材料作为航天飞机中部长20m 的货舱架。此外,金属基复合材料还可以用于光学与精密仪器,美国把金属基复合材料高性能反光镜用于红外探测系统,航天激光系统及超轻量太空望远镜,通过改变SiC 强化颗粒占铝基合金的比例,能使反光镀层的热膨胀系数与复合材料相同,有助于提高跟踪和命中率。 在民用工业中,复合材料的应用领域十分广阔。以碳氮化物或金属间化合物颗粒为强化剂的钢基复合材料,能明显提高强度、韧性、耐磨、耐蚀和切削性能。美国在各类合金钢中用适当工艺加入TiC ,称之为TiC 2铁基复合材料,前苏联称这类复合材料为碳化物钢。这类材料的特点是重量轻、尺寸稳定、硬度高、摩擦系数小。根据不同基钢,可使复合材料具有耐蚀、耐磨、耐热性能,也可做成无磁材料。尤其是工具、模具钢、高温合金、夹具和耐磨件,采用这类复合材料能有效提高寿命和性能,日本和前苏联将用粉末冶金制取得这类材料称为新型硬质合金。用Al 2O 3或SiC 晶须或纤维强化的复合材料,由于耐 高温和高强度,可用于发动机和泵的叶轮,也可加工成模具。如果工程机械用刮板及铲斗和冶金行业用磨损件由普通耐磨钢改为陶瓷复合材料,则可明显 提高材料使用寿命。在汽车制造行业中,20~60% 的零件可以用碳纤维复合材料制造,一般可减重40~80%[1]。氧化铝增强铝合金已成功地制成镶圈,用于活塞环槽及顶部,以代替含镍奥氏体铸铁,不仅耐磨性相当,而且还可以减轻重量,简化工艺和降低成本。另外,发动机钢套、连杆、连销、刹车盘等也在使用金属基复合材料制造,如果能打开市场,将会有较大的产量。其他方面,如运动器材、自行车架、各种型材以及装甲车履带、轻质防弹装甲车等也初步应用复合材料。 1 金属基复合材料的分类 金属基复合材料可分为宏观组合型和微观强化型两大类[2]。宏观组合型指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);微观强化型指其组分需用显微镜才能分辨的以提高强度为主要目的的材料。根据复合材料基体可划分为铝基、镁基、钢基、铁基及铝合金基复合材料等。按增强相形态的不同可划分为颗粒增强金属复合材料、晶须或短纤维增强金属基复合材料及连续纤维增强金属基复合材料。颗粒增强金属基复合材料是利用颗粒自身的强度,基体起着把颗粒组合在一起的作 用,颗粒平均直径在1 μm 以上,强化相的容积比(Vf )可达90%[4]。纤维增强金属基复合材料是利用无机纤维(或晶须)及金属细线等增强金属得到轻 而强的材料,纤维直径从3 μm 到150μm (晶须直径小于1 μm ),纵横比(长度/直径)在102以上。2 金属基复合材料的制备方法 金属基复合材料的复合工艺相对比较复杂和困难。这是由于金属熔点较高,需要在高温下操作;同时不少金属对增强体表面润湿性很差,甚至不润湿,加上金属在高温下很活泼,易与多种增强体发生反 FRP/CM 2004.No.1

储氢材料的研究与发展前景

目录 1.前言 (3) 2.储氢材料 (4) 2.1金属储氢材料 (4) 2.1.1镁基储氢材料 (5) 2.1.2钛基(Fe-Ti)储氢材料 (8) 2.1.3稀土系合金储氢材料 (9) 2.1.4锆系合金储氢材料 (10) 2.1.5金属配位氢化物 (11) 2.2碳质储氢材料 (11) 2.3液态有机储氢材料 (12) 3.储氢方式 (14) 3.1气态储存 (14) 3.2液化储存 (14) 3.3固态储存 (15) 4.氢能前景 (15) 参考文献 (17)

储氢材料的研究与发展前景 摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料, 如镁基储氢材料钛碳基储氢材料、稀土储氢材料、碳质储氢等材料的研究进展、发展前景和方向。 关键字:储氢材料,储氢性能,储氢方式,发展前景 1.前言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)

昆明理工大学材料学院学生大四上学期专业课论文_颗粒增强铝基复合材料

铝基复合材料的研究发展现状与发展前景——颗粒增强铝基复合材料 课程名称:复合材料 学生:XX 学号:XXXXX 班级:XX 日期:20XX年X月X日

铝基复合材料的研究发展现状与发展前景 ——颗粒增强铝基复合材料 XX (刚理工大学,省市,650093) 摘要:介绍了颗粒增强铝基复合材料的发展历史、制备工艺、性能及应用,以碳化硅颗粒增强铝基复合材料为例指出了颗粒增强铝基复合材料这一行业存在的问题,并对这种材料的未来发展趋势做了预测。 关键词:颗粒增强铝基复合材料;历史;工艺;性能;应用;趋势 0.引言 近年来在金属基复合材料领域, 铝基复合材料(包括纤维增强和颗粒增强)的发展尤为迅速。这不仅因为它具有重量轻、比强度、比刚度高、剪切强度高、热膨胀系数低、良好的热稳定性和导热、导电性能, 以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等一系列优点, 而且因为在世界围有丰富的铝资源, 加之可用常规设备和工艺加工成型和处理, 因而制备和生产铝基复合材料比其他金属基复合材料更为经济, 易于推广和应用,因此, 这种材料在国外受到普遍重视。而其中的颗粒增强铝基复合材料解决了纤维增强铝基复合材料增强纤维制备成本昂贵的问题, 而且材料各向同性, 克服了制备过程中出现的诸如纤维损伤、微观组织不均匀、纤维与纤维相互接触、反应带过大等影响材料性能的许多缺点。所以颗粒增强铝基复合材料已成为当今世界金属基复合材料研究领域中的一个最为重要的热点, 并日益向工业规模化生产和应用的方向发展。 1.发展历史 金属基复合材料(复合材料)自60年代初期开始研究,现在已经取得了突破性的进展。初期研究的工作主要集中在连续纤维增强复合材料]1[,但由于连续长纤维本身的制造工艺复杂、价格昂贵,再加上纤维的预处理以及纤维增强复合材料制造工艺限制,使连续纤维增强复合材料成本极高,仅限用于要求极高性能的场合。 因此,进入80年代,研究重点转向了成本较低的SiC、Al 2O 3 等颗粒或晶须作为增 强材料的不连续增强复合材料,这种材料具有比刚度、比强度强,耐磨性、抗蠕变性好、热膨胀系数小等特点]2[,其比刚度超过了钢和钛合金,而价格不到钛合金的十分之一]3[,用以取代钢、钛等材料,对减轻产品结构重量,降低成本具有明显的经济效益,尤其是取代航空、航天飞行器中的合金钢、钛合金构件,更具有巨大的潜力。 20世纪70年代末,美国政府开始将复合材料列入武器研究清单,并对其研究成果限制发表。日本通产省在20世纪80年代初期开始实施的“下世纪产业基础技术”规划中,把发展铝基复合材料放在了主要位置,并在财力、物力上向有关院所、高校和公司倾斜。我国从20世纪80年代中期开始经过十几年的努力,在颗粒增强铝基复合材料的组织性能、复合材料界面等方面的研究工作已接近国际先进水平,铝基复合材料已列为国家“863”新型材料研究课题。

氢气储存方法的现状及发展

2018年第2期 作者简介:于忠华(1990-),男,辽宁大连人,主要从事对于气体的存放、监测,做系统的统计工作。 时代农机 TIMES AGRICULTURAL MACHINERY 第45卷第2期Vol.45No.2 2018年2月Feb.2018 氢气储存方法的现状及发展 于忠华1,云建2 (1.,116600; 2.(),116600) 摘要:氢能是当前一项重要新能源,如何有效存储氢是一个非常重要环节。为此文章将对几种常用的氢气储存方法及其现状进行分析,并探讨其发展趋势,以供广大同行参考与交流。 关键词:氢气;储存;方法;现状;发展 1氢气储存方法的现状 (1)压缩储氢。当前,一种较为常见的氢气储存方法就是加压压缩储氢,一般来说都是使用质量较大的钢瓶作为容器。但是因为其氢气密度较低,所以储氢效率不高,将压力增加到15MPa 时,质量储氢密度在3%以下。而对于移动用途来说,将氢气压力提高来增加其携氢量则容易致使氢脆情况出现或是氢分子在容器壁逸出。所以近几年对该种存储方法进行研究,一方面是优化容器材料,让使用的容器耐压更高,且自重更轻,并能够降低氢分子透过容器壁的几率,切实防止氢脆情况出现。当前主要使用的是外面包覆浸有树脂,锻压铝合金为内胆的碳纤维作为储氢容器。另一方面研究在于将部分吸氢物质添加至容器内,用以将储氢密度有效提升,一旦压力减小,便能够自动释放氢出来。 (2)液化储氢。在一般压力情况下,液氢熔点在-253℃,而在-253℃和正常压力情况下气态氢能够液化成液态氢,而液态氢密度是气态氢的845倍,且每kg 液氢热量是汽油的3倍,所以液态储氢非常适合用在储存空间较为有限的场所,例如汽车发动机、航天飞机用的火箭发动机等运输工具当中。但是液化储氢需要使用到超低温用的特殊容器,如若所使用的容器绝热与装料达不到相应要求则容易致使大量蒸发损失。所以当前研究重点在于研究高度绝热的储氢容器。 (3)空心玻璃微球储氢。结合实践来看,空心玻璃微球具有一个特点,即高温状态(300~400℃)呈现出多孔性而常温状态则是非渗透性。而空心玻璃微球的这个特点在当前技术水平下可以用于储存氢气。首先,空气玻璃微球放到10~200MPa 的高压状态中,然后利用设备将氢气加热到200~300℃压进玻璃微球里面,最后待压力和温度降低下来氢气扩散性便因此降低了,这样空心玻璃微球中便完成了氢气储存。通过对相关实验研究可知,空心玻璃微球在一定条件下(比如62MPa 或370℃等情况),微球之中储氢含量可达95%左右。而要想使用氢气的时候只需使用加热储器即可。相较于别的储氢方法,空心玻璃微球具有使用较低成本、稳定性强以及储氢能力高等优点,使其成为了当前氢气储存行业一个重点研究方向。 (4)金属氢化物储氢。氢几乎能够和元素周期表上的惰性气体外的其他元素发生反应生产氢化物,而部分金属间化合物、合金、过渡金属等因为其特殊的晶格结构等因素,在特定 条件下,氢原子能够进到金属晶格的四面体或八面体间隙中生成金属氢化物。在1×106Pa 压力下,金属氰化物有着储氢能力在100kg/m 3以上不过因为金属具有较大密度,从而使得氢的质量在2%~7%左右。除此之外,因为氢不可逆损伤,所以在使用金属储氢方式是常常会出现氢沉淀、高温氢腐蚀、氢化物致使的脆性、氢化物析出而导致的弹性畸变、氢致马氏相变等大大缩短了储氢金属的使用寿命。当前,该项技术正朝着研发更便宜、更轻的金属材料、缩短金属氢化物对氢的充放市场、降低因为充放氢频率过快而损害到储存系统、有效结合压缩储氢与金属氢化物以更好的提高氢气存储数量与效率等方向发展。 2氢气储存的发展探究 总得来说,作为氢能利用的一项关键技术,氢气储存的成本、效率以及含量等等都直接决定着氢能是否得到更好地利用。虽然从实际情况来看,现阶段氢气存储在技术、材料等方面距离氢能实用化还有很长的道路要走。但在科学技术不断发展进步的背景之下,氢气储存领域也取得了不小的进步。以氢气储存方式来说,在现实中氢气储存行业上有着多种方式。①压缩的方式相比于液化具有众多优点,比如效率高、成本低以及带来环境污染低等等;②液化储氢方式虽然成本相比于压缩成本要高的多,但其能量密度却很高,所以它被应用在航空以及军事领域当中;③金属氢化物方式缺点在于成本较高、质量大,但其优点则是储氢密度是当前所有方式最大的,高达100kg/m 3;④碳质吸附方式。该方式是氢气储存领域最新的技术,虽然其仍处在初期研究时期,但碳质吸附方式所具有储氢机理、条件简单以及含量高等诸多优点是使成为了氢气储存行业中的一个重点研究及发展方向。另外,氢气储存今后一个重点发展方向在于实现更高的安全性,为此当前在存储介质材料、安全标准等方面都有着很大的研究。 3结语 总而言之,在能源极为紧缺的今天,氢气作为一种来源广泛、储量丰富、具有较高能量密度的绿色能源正逐步受到社会的关注。在常温常压装填下,氢是以气态形式存在,密度是空气的1/14,所以如何有效储氢是一个关键问题。文章对当前我国氢气储存方法的现状及发展进行分析与探讨,希望能起到 抛砖引玉作用。 参考文献 [1]张超,鲁雪生,顾安忠.天然气和氢气吸附储存吸附热研究现状[J ]. 太阳能学报,2004,25(2):249-253. 95

纳米储氢材料研究

纳米储氢技术 摘要:氢能是未来最有发展前景的绿色能源之一,致力于发展以氢作为能源载体的清洁可再生能源技术已成为全球的共识,然而氢的安全高效存储一直是制约氢利用的瓶颈。因此,探寻新型的具有高容量储氢性能和良好吸放氢动力学性能的储氢材料是目前国际上高度关注的研究课题。正在研究的储氢技术主要包括高压储氢、金属氢化物材料、配位氢化物材料、化学氢化物材料、金属有机框架材料等,但目前它们均无法完全满足储氢量高、吸放氢速度较快、吸放氢温度适中、循环性能较好、安全和价格经济等储氢材料的要求。因此,研究者的方向转向了具有多孔和高比表面积的纳米储氢材料。研究者发现,将氢原子在吸放氢的过程中所需要运动的活动范围限制到纳米级,储氢材料能够体现出良好的动力学性能。此外,理论计算结果表明,当颗粒尺寸减少到纳米级时,金属氢化物会因为表面能的急剧增加,使其热力学性能大大改善。因此,制备纳米级的储氢材料是提高材料吸放氢性能的重要途径。例如,碳基纳米结构以其具有轻质量和大比表面积的特点受到关注;使用金属原子对纳米结构的表面进行修饰,包括过渡金属元素、碱金属元素或碱土金属元素等都可以显著的提高纳米结构的化学活性,从而提高储氢量。 关键词:多孔、低维纳米材料、碳纳米管、硼纳米管、金属原子修饰

目录 纳米储氢技术 (1) 1.研究背景 (3) 1.1燃料电池汽车的发展概况 (3) 2.研究现状 (3) 2.2.1高压储氢技术 (5) 2.2.2液化储氢技术 (8) 2.2.3金属氢化物储氢技术 (8) 2.2.4有机液体储氢材料 (9) 3纳米储氢技术 (10) 3.1碳复合纳米材料 (11) 3.1.1碳纳米管或纤维 (11) 3.1.2Ti掺杂碳纳米管 (12) 3.2镁基储氢材料的纳米改性 (15) 3.2.1复合材料储氢性能及温度对储氢性能的影响 (17) 3.3硼基纳米材料储氢 (19) 3.3.1硼化锂低维结构 (19) 3.3.2硼氮纳米结构储氢 (20) 3.3.3金属硼烷结构储氢 (22) 4总结与展望 (22)

储氢材料研究现状和发展前景

储氢材料研究现状和发展前景摘要:氢能作为一种新型的能量密度高的绿色能源, 正引起世界各国的 重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一, 也是 氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材 料, 如镁基储氢材料、碳基储氢材料、纳米储氢材料、稀土储氢材料、氨硼烷基 储氢材料的研究进展、发展前景和方向。 关键词:储氢材料、研究现状、发展前景、研究方向 Research and development prospects of the hydrogen storage materials Abstract: As a new type of green energy with high energy density, hydrogen has at tracted extensive attentionon research and applicat ions al l over the world. Consequently, hydrogen storage materials, which are important carriers in hydrogen storage and transport , are one of the hot research topics nowadays.This article reviews the hydrogen storage materials ,such as magnesium based hydrogen storage materials, carbon-based hydrogen storage materials, nanotechnology, hydrogen storage materials, rare earth hydrogen storage materials, ammonia boron alkyl hydrogen storage materials. we review the development prospects and direction. Keywords: hydrogen storage materials; Research; Prospects for development; Research Orientation 引言 当今世界, 化石燃料储量正在迅速减少, 现存储量不能满足日益增长的需求。目前世界能源的80%来源于化石燃料, 但化石燃料的使用产生了大量有害物质, 对环境造成巨大影响。因此, 加速能源系统向可再生能源转换以适应当前和未来世界能源需求, 是迫切需要解决问题。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体, 正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视, 以期在21 世纪中叶进入氢能经济时代。氢能的利用需要解决三个问题:

铝基复合材料的研究进展(或现状)

铝基复合材料的研究进展(或现状) 姓名:苑光昊 摘要:本文介绍了铝基复合材料的设计与制备、性能、应用,重点讲述了国内外的研究现状和发展趋势。 关键词:设计与制备性能应用研究现状及发展 复合材料是应现代科学发展需求而涌现出具有强大生命力的材料,在金属基复合材料中表现尤为明显。金属基复合材料有铝基、镍基、镁基、抬基、铁基复合材料等多种,其中铝基复合材料发展最快而成为主流。本文主要对国内外铝及复合材料的研究现状进行简要评述,主要包括材料的设计与制备、界面、性能、应用等方面。 一、铝基复合材料的设计与制备 1基体材料的选择 铝基复合材料的基体可以是纯铝也可以是铝合金,其中采用铝合金居多。工业上常采用的铝合金基体有Al-Mg、Al-Si、Al-Cu、Al-Li 和Al-Fe等。如希望减轻构件质量并提高刚度,可以采用Al-Li合金做基体【1】;用高温的零部件则采用Al-Fe合金做基体【2】;经过处理后的Al-Cu合金强度高、且有非常好的塑性、韧性和抗蚀性、易焊接、易加工,可考虑作这些要求高的基体【3】。材料的使用要求是选用基体金属材料的首要条件,如要求材料具有良好的耐磨性、耐热性及低的膨胀系数时(活塞材料),选择基体为Al-Si合金;为进一步减轻零部件的重量,可考虑选用Al-Li合金作为基体;为了提高材料的高性能,可选用Al-Fe系合金。 2铝基复合材料增强体选择 针对材料的具体应用,增强体首先具有明显提高金属基体应具备的特殊性能,如作为结构材料时,增强体应具有高强度、高弹性模量、低密度等性能。而作为耐磨材料时,硬度、耐磨性是主要选择依据。由于金属基体有良好的浸润性可保证增强体与基体金属良好复合和均匀分布 B、Al2O3、Si、和C纤维等是最早的纤维材料,该材料的性能优异,但高昂的成本限制了它们的广泛发展及应用。但在航空及军事等方面有研究应用潜力。

相关文档
最新文档