电子仿真实验报告之晶体管混频

电子仿真实验报告之晶体管混频
电子仿真实验报告之晶体管混频

大连理工大学

本科实验报告

课程名称:电子系统仿真实验

学院(系):信息与通信工程学院

专业:电子与信息工程

班级:

学号:

学生姓名:

2014年月日

一、 实验目的和要求

使用电路分析软件,运用所学知识,设计一个晶体管混频器。要求输入频率为10MHz ,本振频率为16.485MHz 左右,输出频率为6.485MHz 。本振电路为LC 振荡电路。

二、实验原理和内容

混频电路是一种频率变换电路,是时变参量线性电路的一种典型应用。如一个振幅较大的振荡电压(使器件跨导随此频率的电压作周期变化)与幅度较小的差频或和频,完成变频作用。它是一个线性频率谱搬电路。图2.1是其组成模型框图。

中频

图2.1

本地振荡器产生稳定的振荡信号(设其频率为L f )通过晶体管混频电路和输入的高频调幅波信号(设其频率为s f ),由于晶体管的非线性特性,两个信号混合后会产生L f +s

f L f -s f 频率的信号,然后通过中频滤波网络,取出L f -s f 频率的信号,调节好L f -s f 的大

小使其差为中频频率,即所需要的中频输出信号。图 2.2调幅前后的频谱图。

图2.2

本次试验本振电路采用LC 振荡电路。其等效原理图为西勒振荡电路,如图2.3所示。

本振电路

非线性器件

输入

中频滤波

输出

图2.3

混频器采用晶体混频电路,其等效电路图如图2.4。

图2.4

三、主要仪器设备

名称型号主要性能参数

电子计算机宏碁V-531,Windows 7 AMD A10-4600M 2.3GHz,2GB

内存

电路分析软件 Multisim.12 多种电路元件,多种虚拟仪

器多种分析方法

表3.1

四、实验步骤及操作方法

1、设计本振电路。

(1)、本振电路图

图4.1.1

(2)、电路中使用器件:

仪器及器件名称组库属性电阻R1 Basic RESISTOR 20KΩ电阻R2 Basic RESISTOR 27KΩ电阻R3 Basic RESISTOR 50Ω

电阻R4 Basic RESISTOR 4.3KΩ电阻R5 Basic RESISTOR 1KΩ

可调电阻R6 Basic POTENTIOMETER 0-10KΩ电容C1 Basic CAPACIYOR 440pF 电容C2 Basic CAPACIYOR 6pF

电容C3 Basic CAPACIYOR

43pF 可调电容C4 Basic V ARIABLE_CAPACITOR 0-100pF 可调电容C5

Basic

V ARIABLE_CAPACITOR

0-10pF

电容C6 Basic CAPACIYOR 1nF 电容C7 Basic CAPACIYOR

10uF 可调电容C8 Basic VARIABLE_CAPACITOR 0-350pF 电感1

Basic INDUVTOR

10uH 直流稳压电源VCC Sources

POWER_SOURCES

5V 晶体管2N222(1) Transistors TRANSISTORS_VIRTUAL 晶体管2N222(2) Transistors TRANSISTORS_VIRTUAL

表4.1

(3)、调整本振电路元器件的值使得AF>1,使之输出频率为16.454MHz 的正弦波信号。

i.调整C8为65%,则C8=227.5pF, 1

8

3C C C F +==0.61

ii.调整电阻R6为48%,则R6=4.8K Ω,得到合适的静态工作点,以及合适的电压增益。

图4.1.2

iii.调整电容C4为51%,则C4=51pF ,调整电容C5为37%,则C5=3.7pF,最后得到振荡频率为))542(12/(1C C C L Pi f ++==16.8MHz

图4.1.3

(4)、振荡器最后输出波形

图4.1.4 2、设计晶体管混频电路。

(1)、混频电路图

图4.2.1

(2)、电路中使用器件:

仪器及器件名称

组 库

属性

可调电阻R8 Basic POTENTIOMETER 0-300K Ω 电阻R9 Basic RESISTOR 20K Ω 电阻R10 Basic RESISTOR 450Ω 电阻R11 Basic RESISTOR 20.0K Ω 可调电阻R12 Basic POTENTIOMETER 0-100K Ω 电阻R13 Basic RESISTOR

40K Ω 可调电容C9 Basic VARIABLE_CAPACITOR 0-30pF 电容C10 Basic CAPACIYOR 1.5nF 电容C11 Basic CAPACIYOR 910nF 电容C12 Basic CAPACIYOR 1nF 电容C13 Basic CAPACIYOR 10uF 电容C14 Basic CAPACIYOR 56pF 电感L2

Basic INDUVTOR

100uH 稳压电压源VCC1 Sources

POWER_SOURCES

12V 晶体管2N222(3) Transistors TRANSISTORS_VIRTUAL

表4.2

(3)、调整本振电路元器件的值

i.调整电阻R8为70%,则R8=210K Ω,得到合适的静态工作点。

图4.2.2

ii.调整电容C9为0%,则C9=0,谐振频率为))9142(12/(1C C C L Pi f ++==6.45MHz

iii.输入信号Us 调整为f=10MHz,,V=50mV ,移向为0.

(4)、中频滤波输出(上波形为中频输出,下波形为V2输入)。

图4.2.3

中频输出频率:

图4.2.4

3、交流分析

图4.3.1

图4.3.2

4、瞬态分析

图4.4.1

图4.4.2

5、失真分析

图4.5.1

图4.5.2

6、噪声分析

图4.6.1

图4.6.2

五、实验结果与分析

本次试验,总体上是成功的,达到了所要求输入频率为10MHz,本振频率为16.485MHz 左右,输出频率为6.485MHz。

(一)、频率分析

振荡器输入频率为16.484MHz,输入信号频率为10.00MHz,最后中频输出频率为6.484MHz.由于LC振荡器产生频率不够稳定,频率波动在16.484MHz左右,不容易找到晶体管3最合适的非线性区域,最后导致输出频率不稳定,波动在6.484MHz左右。

图5.1.1振荡器频率图5.1.2中频输出频率

(二)波形分析

振荡器波形有些失真(图5.2.1),失真原因可能是因为晶体管的静态工作点没有调整到适合的点,靠手动慢慢调到合适的工作点非常困难。解决方法是设计输出波形更稳定的振荡电路,例如设计石英晶体振荡电路,会有更稳定的频率输出。虽然本振电路输出波形失真,但对最后中频输出没有影响,中频输出波形基本没有失真(图5.2.2)。

图5.2.1 本振电路振荡波形

图5.2.2 混频器输入与输出波形(上为输出,下为输入)(三)、混频电路静态工作点

理论上静态工作点Ieqq应该在0.3-1.0mA最为合适,但实际得到的为48.3uA,与

理论值有很大差距。晶体管特性不一样,所以得到的静态工作点不一样。

图5.3.1

20151060042-贾炜光-混频器仿真实验报告

混频器仿真实验 姓名:贾炜光 学号:20151060042 学院:信息学院 专业:通信工程 指导教师:谢汝生

一、实验目的 (1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握multisim实现混频器混频的方法和步骤; (3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。 二.实验原理 混频器将天线上接收到的射频信号与本振产生的信号相乘,cosαcosβ=[cos(α+ β)+cos(α-β)]/2 可以这样理解,α为射频信号频率量,β为本振频率量,产生和差频。当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后的信号被视频放大器进行放大,然后显示出来。由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。 混频是指将信号从一个频率变换到另外一个频率的过程 ,其实质是频谱线性搬移的过程。在超外差接收机中 ,混频的目的是保证接收机获得较高的灵敏度 ,足够的放大量和适当的通频带 ,同时又能稳定地工作。混频电路包括三个组成部分 : 本机振荡器、非线性器件、带通滤波器。[1] 由于非线性元件( 如二极管、三极管、场效应管等) 的作用,混频过程中会产生很多的组合频率分量 : p f L ±qf S 。一般来讲 ,其中满足需要的仅仅是 f I =f L -f S 或者是f I =f S -f L 。前者产生中频的方式称为高差式混频 , 后者称为低差式混频。在这里 ,混频过程中产生的一系列组合频率分量经过带通滤波器即可以选择输出相应的中频 ,而其他的频率分量会得到抑制。

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

高频电子线路实验报告

高频实验报告 班级班级 学号学号 姓名姓名 预习成绩预习成绩 实验成绩实验成绩 实验报告成绩实验报告成绩 总成绩总成绩 2013年 12月

实验一、调幅发射系统实验 一、实验目的与内容: 通过实验了解与掌握调幅发射系统,了解与掌握LC三点式振荡器电路、三极管幅度调制电路、高频谐振功率放大电路。 二、实验原理: 1、LC三点式振荡器电路: 原理:LC三点式振荡器电路是采用LC谐振回路作为相移网络的LC正弦波振荡器,用来产生稳定的正弦振荡。图中5R5,5R6,5W2和5R8为分压式偏置电阻,电容5C7或5C8或5C9或5C10或5C11进行反馈的控制。5R3、5W1、5L2以及5C4构成的回路调节该电路的振荡频率,在V5-1处输出频率为30MHZ 正弦振荡信号。 2、三极管幅度调制电路: 原理:三极管幅度调制电路是通过输入调制信号和载波信号,在它们的共同

作用下产生所需的振幅调制信号。图中7R1,7R4,7W1和7R3为分压式偏置电阻,电容7C10、7C2以及电感7L1构成的谐振滤波网络,7W2控制输出幅度,在信号输出处输出所需的振幅调制信号。 3、高频谐振功率放大电路: 原理:高频谐振功率放大电路是工作频率在几十MHZ 到几百MHZ 的谐振功率放大电路。图中前级高频功放电路中,6R2和6R3分压式偏置电阻,供给三极管6BG1偏置电压,输出采用6C5、6C6、6L1构成的T 型滤波匹配网络,末级高频功放电路中,基极采用由6R4产生偏置电压供给电路,输出采用6C13、6C13、6L3和6L4构成的T 型滤波匹配网络。 4、调幅发射系统: 图1 调幅发射系统结构图 原理:首先LC 振荡电路产生一个频率为30MHZ ,幅度为100mV 的信号源,然后加入频率为1KHZ ,幅度为100mV 的本振信号,通过三极管幅度调制,再经过高频谐振功率放大器输出稳定的最大不失真的正弦波。 本振 功率 放大 调幅 信源

电工和电子技术(A)1实验报告解读

实验一 电位、电压的测定及基尔霍夫定律 1.1电位、电压的测定及电路电位图的绘制 一、实验目的 1.验证电路中电位的相对性、电压的绝对性 2. 掌握电路电位图的绘制方法 三、实验内容 利用DVCC-03实验挂箱上的“基尔霍夫定律/叠加原理”实验电路板,按图1-1接线。 1. 分别将两路直流稳压电源接入电路,令 U 1=6V ,U 2=12V 。(先调准输出电压值,再接入实验线路中。) 2. 以图1-1中的A 点作为电位的参考点,分别测量B 、C 、D 、E 、F 各点的电位值φ及相邻两点之间的电压值U AB 、U BC 、U CD 、U DE 、U EF 及U FA ,数据列于表中。 3. 以D 点作为参考点,重复实验内容2的测量,测得数据列于表中。 图 1-1

四、思考题 若以F点为参考电位点,实验测得各点的电位值;现令E点作为参考电位点,试问此时各点的电位值应有何变化? 答: 五、实验报告 1.根据实验数据,绘制两个电位图形,并对照观察各对应两点间的电压情况。两个电位图的参考点不同,但各点的相对顺序应一致,以便对照。 答: 2. 完成数据表格中的计算,对误差作必要的分析。 答: 3. 总结电位相对性和电压绝对性的结论。 答:

1.2基尔霍夫定律的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 二、实验内容 实验线路与图1-1相同,用DVCC-03挂箱的“基尔霍夫定律/叠加原理”电路板。 1. 实验前先任意设定三条支路电流正方向。如图1-1中的I1、I2、I3的方向已设定。闭合回路的正方向可任意设定。 2. 分别将两路直流稳压源接入电路,令U1=6V,U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至数字电流表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5. 用直流数字电压表分别测量两路电源及电阻元件上的电压值,记录之。 三、预习思考题 1. 根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定电流表和电压表的量程。 答: 2. 实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字电流表进行测量时,则会有什么显示呢? 答:

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电子秒表电路实验报告1

电子技术课程设计 报告 设计题目:电子秒表 院(部):物理与电子信息学院 专业班级:电子信息工程 学生姓名: 学号: 指导教师: 摘要

秒表应用于我们生活、工作、运动等需要精确计时的方面。它由刚开始的机械式秒表发展到今天所常用的数字式秒表。秒表的计时精度越来越高,功能越来越多,构造也日益复杂。 本次数字电路课程设计的数字式秒表的要求为:显示分辨率为1s/100,外接系统时钟频率为100KHz;计时最长时间为60min,五位显示器,显示时间最长为59m59.99s;系统设置启/停键和复位键。复位键用来消零,做好计时准备、启/停键是控制秒表起停的功能键。 针对上述设计要求,先前往校图书馆借阅了大量的数字电路设计方面的书籍,以及一本电子元件方面的工具书,以待查阅各种设计中所需要的元件。其次安装并学习了数字电路设计中所常用的Multisim仿真软件,在课程设计过程的电路图设计与电路的仿真方面帮助我们发现了设计电路方面的不足与错误之处。 关键字:555定时器十进制计数器六进制计数器多谐振荡器

目录 1.选题与需求分析 (1) 1.1设计任务 (1) 1.2 设计任务 (1) 1.3设计构思 (1) 1.4设计软件 (2) 2.电子秒表电路分析 (3) 2.1总体分析 (3) 2.2电路工作总体框图 (3) 3.各部分电路设计 (4) 3.1启动与停止电路 (4) 3.2时钟脉冲发生和控制信号 (4) 3.3 设计十进制加法计数器 (6) 3.4 设计六进制加法计数器 (7) 3.5 清零电路设计 (8) 3.7 总体电路图: (10) 4 结束语与心得体会 (12)

电磁波实验报告

电磁场与微波技术 实验报告 院系: 班级: 姓名: 学号: 指导老师:

实验一线驻波比波长频率的测量 一、实验目的 1、熟练认识和了解微波测试系统的基本组成和工作原理。 2、掌握微波测试系统各组件的调整和使用方法。 3、掌握用交叉读数法测波导波长的过程。 二、实验用微波元件及设备简介 1.波导管:本实验所使用的波导管型号为BJ—100,其内腔尺寸为α=22.86mm,b=10.16mm。其主模频率范围为8.20~12.50GHz,截止频率为6.557GHz。2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图1)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。 3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图2),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。 图 1 隔离器结构示意图图2 衰减其结构示意图 4.谐振式频率计(波长表): 图3 a 谐振式频率计结构原理图一图3 b 谐振式频率计结构原理图二 1. 谐振腔腔体 1. 螺旋测微机构 2. 耦合孔 2. 可调短路活塞 3. 矩形波导 3. 圆柱谐振腔 4. 可调短路活塞 4. 耦合孔 5. 计数器 5. 矩形波导 6. 刻度 7. 刻度套筒 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率

满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。(图3a) 或从刻度套筒直接读出输入微波的频率(图3b)。两种结构方式都是以活塞在腔体中位移距离来确定电磁波的频率的,不同的是,图3a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。而见图3b直读频率刻度,由于在频率刻度套筒加工受到限制,频率读取精度较低,一般只能做到3×10-3左右且价格较高。 5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。 6.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 7.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 8.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。 三、实验内容及过程 1.微波信号源的调整: 频率表在点频工作下,显示等幅波工作频率,在扫频工作下显示扫频工作频率,在教学下,此表黑屏。电压表显示体效应管的工作电压,常态时为12.0 0.5V,教学工作下可通过“电压调节钮”来调节。电流表显示体效应管的工作电流,正常情况小于500毫安。 2.测量线探针的调谐: 我们使用的是不调谐的探头,所以在使用中不必调谐,只是通过探头座锁紧螺钉可以将不调谐探头活动2mm。 3.用波长计测频率: (1)在测量线终端接上全匹配负载。 (2)仔细微旋波长计的千分尺,边旋边观测指示器读数。由于波长计的q值非常 高,谐振曲线非常尖锐,千分尺上0.01mm的变化都可能导致失谐与谐振两种状态之间切换,因此,一定慢慢地仔细微旋千分尺。记下指示器读数为最小时(注意:如果检流指示器出现反向指示,按下其底部的按钮,读数即可)的千分尺读数并使波长计失谐。 (3)由读得的千分尺刻度可在该波长计的波长表频率刻度对照表上读得信号源的工作频率。 4.交叉读数法测量波导波长: (1)检查系统连接的平稳,工作方式选择为方波调制,使信号源工作于最佳状态。 (2)用直读式频率计测量信号频率,并配合信号源上的频率调谐旋钮调整信号源的工作频率,使信号源的工作频率为9370MHz。

电子技术基础实验报告要点

电子技术实验报告 学号: 222014321092015 姓名:刘娟 专业:教育技术学

实验三单级交流放大器(二) 一、实验目的 1. 深入理解放大器的工作原理。 2. 学习测量输入电阻、输出电阻及最大不失真输出电压幅值的方法。 3. 观察电路参数对失真的影响. 4. 学习毫伏表、示波器及信号发生器的使用方法。 二. 实验设备: 1、实验台 2、示波器 3、数字万用表 三、预习要求 1、熟悉单管放大电路。 2、了解饱和失真、截止失真和固有失真的形成及波形。 3、掌握消除失真方法。 四、实验内容及步骤 ●实验前校准示波器,检查信号源。 ●按图3-1接线。 图3-1 1、测量电压参数,计算输入电阻和输出电阻。 ●调整RP2,使V C=Ec/2(取6~7伏),测试V B、V E、V b1的值,填入表3-1中。 表3-1 Array ●输入端接入f=1KHz、V i=20mV的正弦信号。 ●分别测出电阻R1两端对地信号电压V i及V i′按下式计算出输入电阻R i : ●测出负载电阻R L开路时的输出电压V∞,和接入R L(2K)时的输出电压V0 , 然后按下式计算出输 出电阻R0;

将测量数据及实验结果填入表3-2中。 2、观察静态工作点对放大器输出波形的影响,将观察结果分别填入表3-3,3-4中。 ●输入信号不变,用示波器观察正常工作时输出电压V o的波形并描画下来。 ●逐渐减小R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真的波形描 画下来,并说明是哪种失真。( 如果R P2=0Ω后,仍不出现失真,可以加大输入信号V i,或将R b1由100KΩ改为10KΩ,直到出现明显失真波形。) ●逐渐增大R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真波形描画 下来,并说明是哪种失真。如果R P2=1M后,仍不出现失真,可以加大输入信号V i,直到出现明显失真波形。 表 3-3 ●调节R P2使输出电压波形不失真且幅值为最大(这时的电压放大倍数最大),测量此时的静态工 作点V c、V B、V b1和V O 。 表 3-4 五、实验报告 1、分析输入电阻和输出电阻的测试方法。 按照电路图连接好电路后,调节RP2,使Vc的值在6-7V之间,此时使用万用表。接入输入信号1khz 20mv后,用示波器测试Vi与Vi’,记录数据。用公式计算出输入电阻的值。在接入负载RL和不接入负载时分别用示波器测试Vo的值,记录数据,用公式计算出输出电阻的值。 2、讨论静态工作点对放大器输出波形的影响。 静态工作点过低,波形会出现截止失真,即负半轴出现失真;静态工

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

电子电路实验三 实验报告

实验三负反馈放大电路 实验报告 一、实验数据处理 1.实验电路图 根据实际的实验电路,利用Multisim得到电路图如下: (1)两级放大电路 (2)两级放大电路(闭环)

2.数据处理 (1)两级放大电路的调试 第一级电路:调整电阻参数,使得静态工作点满足:IDQ约为2mA,UGDQ<-4V。记录并计 第二级电路:通过调节Rb2,使得静态工作点满足:ICQ约为2mA,UCEQ=2~3V。记录电 输入正弦信号Us,幅度为10mV,频率为10kHz,测量并记录电路的电压放大倍数 A u1=U o1 U s 、A u= U o U s (2)两级放大电路闭环测试 在上述两级放大电路中,引入电压并联负反馈。合理选取电阻R的阻值,使得闭环电压放大倍数的数值约为10。 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。

输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数 A usf=U o/U s 输入电阻Rif和输出电阻Rof。 3.误差分析 利用相对误差公式: 相对误差=仿真值?实测值 实测值 ×100% 得各组数据的相对误差如下表: 误差分析: (1)由上表可得知,两级放大电路实验中,开环输出电阻Ro及闭环输出电阻Rof仿真值与实测值的相对误差较大;电流并联负反馈电路中,三组数据仿真值与实测值的相对误差均较大。 (2)两级放大电路中,输出电阻测量的相对误差较大,原因可能是实际实验中使用的晶体管与仿真实验中的晶体管的特性相差较大,而且由理论分析知输出电阻会随温度的变化而变化(晶体管rbe阻值随温度的增大而增大),这导致了输出电阻实测值与仿真值相差较大。(3)电流并联负反馈电路中,电压放大倍数测量的相对误差较大,原因也应该是实际实验中的晶体管放大倍数与仿真中的不同,仿真实验中晶体管的β为280,实际实验的相关参数达不到这么大,故电压放大倍数较小。

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真

目录 一、综述 .......................... 错误!未定义书签。 二、实验内容 ...................... 错误!未定义书签。 1.常规调幅AM ................... 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 (3)结论: ...................... 错误!未定义书签。 2.双边带调制DSB ................ 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 3.单边带调制SSB ................ 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 4.调频电路FM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 5.调相电路PM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图............ 错误!未定义书签。 三、实验感想 ...................... 错误!未定义书签。

电子仿真实验报告之晶体管混频

大连理工大学 本科实验报告 课程名称:电子系统仿真实验 学院(系):信息与通信工程学院 专业:电子与信息工程 班级: 学号: 学生姓名: 2014年月日

一、 实验目的和要求 使用电路分析软件,运用所学知识,设计一个晶体管混频器。要求输入频率为10MHz ,本振频率为16.485MHz 左右,输出频率为6.485MHz 。本振电路为LC 振荡电路。 二、实验原理和内容 混频电路是一种频率变换电路,是时变参量线性电路的一种典型应用。如一个振幅较大的振荡电压(使器件跨导随此频率的电压作周期变化)与幅度较小的差频或和频,完成变频作用。它是一个线性频率谱搬电路。图2.1是其组成模型框图。 中频 图2.1 本地振荡器产生稳定的振荡信号(设其频率为L f )通过晶体管混频电路和输入的高频调幅波信号(设其频率为s f ),由于晶体管的非线性特性,两个信号混合后会产生L f +s f L f -s f 频率的信号,然后通过中频滤波网络,取出L f -s f 频率的信号,调节好L f -s f 的大 小使其差为中频频率,即所需要的中频输出信号。图 2.2调幅前后的频谱图。 图2.2 本次试验本振电路采用LC 振荡电路。其等效原理图为西勒振荡电路,如图2.3所示。 本振电路 非线性器件 输入 中频滤波 输出

图2.3 混频器采用晶体混频电路,其等效电路图如图2.4。 图2.4 三、主要仪器设备 名称型号主要性能参数 电子计算机宏碁V-531,Windows 7 AMD A10-4600M 2.3GHz,2GB 内存 电路分析软件 Multisim.12 多种电路元件,多种虚拟仪 器多种分析方法 表3.1

数字电子技术实验报告汇总

《数字电子技术》实验报告 实验序号:01 实验项目名称:门电路逻辑功能及测试 学号姓名专业、班级 实验地点物联网实验室指导教师时间2016.9.19 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。线接好后经实验指导教师检查无误方可通电实验。实验中

1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显 图 1.1 示发光二极管D1~D4任意一个。 (2)将逻辑开关按表1.1的状态,分别测输出电压及逻辑状态。 表1.1 输入输出 1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v) H H H H 0 0 L H H H 1 1 L L H H 1 1 L L L H 1 1 L L L L 1 1 2. 异或门逻辑功能的测试

图 1.2 (1)选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接逻辑开关(K1~K4),输出端A、B、Y接电平显示发光二极管。 (2)将逻辑开关按表1.2的状态,将结果填入表中。 表1.2 输入输出 1(K1) 2(K2) 4(K35(K4) A B Y 电压(V) L H H H H L L L H H H H L L L H H L L L L L H H 1 1 1 1 1 1 1 1

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

混频器仿真实验报告

混频器实验(虚拟实验) 姓名:郭佩学号:04008307 (一)二极管环形混频电路 傅里叶分析 得到的频谱图为 分析:可以看出信号在900Hz和1100Hz有分量,与理论相符 (二)三极管单平衡混频电路 直流分析

傅里叶分析 一个节点的傅里叶分析的频谱图为 两个节点输出电压的差值的傅里叶分析的频谱图为:

分析:同样在1K的两侧有两个频率分量,900Hz和1100Hz 有源滤波器加入电路后 U IF的傅里叶分析的频谱图为: U out节点的傅里叶分析的频谱图为:

分析:加入滤波器后,会增加有2k和3k附近的频率分量 (三)吉尔伯特单元混频电路 直流分析 傅里叶分析 一个节点的输出电压的傅里叶分析的参数结果与相应变量的频谱图如下: 两个节点输出电压的差值的傅里叶分析的参数结果与相应变量的频谱图为:

分析:1k和3k两侧都有频率分量,有IP3失真 将有源滤波器加入电路 U IF的傅里叶分析的参数结果与相应变量的频谱图为: U out节点的傅里叶分析的参数结果与相应变量的频谱图为:

分析:有源滤波器Uout节点的傅里叶分析的频谱相对于Uif的傅里叶分析的频谱来说,其他频率分量的影响更小,而且Uout节点的输出下混频的频谱明显减小了。输出的电压幅度有一定程度的下降。 思考题: (1)比较在输入相同的本振信号与射频信号的情况下,三极管单平衡混频电路与吉尔伯特混频器两种混频器的仿真结果尤其是傅里叶分析结果的差异,分析其中的原因。若将本振信号都设为1MHz,射频频率设为200kHz,结果有何变化,分析原因。 答:没有改变信号频率时 三极管 吉尔伯特 吉尔伯特混频器没有1k、2k、3k处的频率分量,即没有本振信号的频率分量,只有混频后的频率分量。因为吉尔伯特混频器是双平衡对称电路结果,有差分平衡。 将本振信号频率和射频频率改变后:

电工电子技术实验报告

电工电子技术实验报告 学院 班级 学号 姓名 天津工业大学电气工程与自动化学院电工教学部 二零一三年九月

目录 第一项实验室规则------------------------------------------------------------------ i 第二项实验报告的要求------------------------------------------------------------ i 第三项学生课前应做的准备工作------------------------------------------------ii 第四项基本实验技能和要求----------------------------------------------------- ii 实验一叠加定理和戴维南定理的研究------------------------------------------ 1实验二串联交流电路和改善电路功率因数的研究--------------------------- 7实验三电动机的起动、点动、正反转和时间控制--------------------------- 14实验四继电接触器综合性-设计性实验----------------------------------------20 实验五常用电子仪器的使用---------------------------------------------------- 22实验六单管低频电压放大器---------------------------------------------------- 29实验七集成门电路及其应用---------------------------------------------------- 33 实验八组合逻辑电路------------------------------------------------------------- 37实验九触发器及其应用---------------------------------------------------------- 40 实验十四人抢答器---------------------------------------------------------------- 45附录实验用集成芯片---------------------------------------------------------- 50

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

变频器实验报告

实验一变频器的面板操作与运行 一、实验目的和要求 1. 熟悉变频器的面板操作方法。 2. 熟练变频器的功能参数设置。 3. 熟练掌握变频器的正反转、点动、频率调节方法。 4.通过变频器操作面板对电动机的启动、正反转、点动、调速控制。 二、实验仪器和用具 西门子MM420变频器、小型三相异步电动机、电气控制柜、电工工具(1套)、连接导线若干等。 三、实验内容和步骤 1.按要求接线 系统接线如图2-1所示,检查电路正确无误后, 合上主电源开关Q S。 图2-1 变频调速系统电气图 2.参数设置 (1)设定P0010=30和P0970=1,按下P键,开始复位,复位过程大约3min,这样就可保证变频器的参数回复到工厂默认值。 (2)设置电动机参数,为了使电动机与变频器相匹配,需要设置电动机参数。电动机参数设置见表2-2。电动机参数设定完成后,设P0010=0,变频器当前处于准备状态,可正常运行。 表2-2 电动机参数设置

(3)设置面板操作控制参数,见表2-3。 3.变频器运行操作 (1)变频器启动:在变频器的前操作面板上按运行键,变频器将驱动电动机升速,并运行在由P1040所设定的20Hz频率对应的560r∕min的转速上。 (2)正反转及加减速运行:电动机的转速(运行频率)及旋转方向可直接通过按前操作面板上的键∕减少键(▲/▼)来改变。 (3)点动运行:按下变频器前操作面板上的点动键,则变频器驱动电动机升速,并运行在由P1058所设置的正向点动10Hz频率值上。当松开变频器前错做面板上的点动键,则变频器将驱动电动机降速至零。这时,如果按下一变频器前操作面板上的换向键,在重复上述的点动运行操作,电动机可在变频器的驱动下反向点动运行。 (4)电动机停车:在变频器的前操作面板上按停止键,则变频器将驱动电动机降速至零。 四、实验思考 1. 怎样利用变频器操作面板对电动机进行预定时间的启动和停止? 答:P0010=30,P0970=1,变频器恢复出厂设置; P701=0,屏蔽原来端子启动功能; P2800=1,使能内部功能自由块; P2802=1,使能内部定时器; P2849=1,连接定时器启动命令; P2850=1,设定延时时间(假设1s); P2851=1,定时器延时动作方式; P0840=2852.0,连接变频器启动命令。 2. 怎样设置变频器的最大和最小运行频率? 答:P0010=30;P0970=1,按下P键(约10秒),开始复位。 一般P1080=0;电动机运行的最低频率(HZ) P1082=50;电动机运行的最高频率(HZ)。

相关文档
最新文档