超声多普勒血流仪工作原理初探

超声多普勒血流仪工作原理初探
超声多普勒血流仪工作原理初探

超声多普勒血流仪工作原理初探

超声多普勒血流仪是测量血液流速和流量的仪器,位置固定的超声探头发射超声波,被血液中的红细胞接收,然后把红细胞作为波源,超声探头接收红细胞的反射波,利用超声波的发射波和反射波的频率差,根据多普勒效应公式即可计算血液的流速。因其具有灵敏度高、抗干扰能力强等优点,可广泛应用于颈部、颅腔和肢体外周血管的血液流动检查。

标签:超声波;多普勒效应;血流仪;血液流速

一、工作原理

利用超声多普勒血流仪测量血液流速时,使血流仪的探头处于固定位置,且保持静止状态,如下图所示,超声探头向血液中发射超声波束,血液中的红细胞接收超声波,并在红细胞的表面产生一定量的反射,超声探头接收被血流反射回来的超声波,通过测量反射波和发射波的频率差就可以计算血管内血液的流速。

利用超声波多普勒血流仪测量血液速度的技术可以分解为超声波的发射和反射波的接收两个过程。

先把探头和红细胞分别作为波源和观测者,接着求解红细胞接收到的超声波频率,再把红细胞作为反射波的波源,把探头作为观测者,计算探头接收到的反射波的频率,最后就可以求出发射波和探头接收到的反射波的频率差。

二、血液流速的计算

假设探头发射的超声波的频率为V,血液的流速为v,超声波在血液中传播的速度为u,血液流动的方向与超声波入射方向之间的夹角为θ。

1.计算红细胞接收到的超声波频率V1

因探头固定不动,可以看作为静止的波源,而红细胞运动的速度等于血液的流速v,故红细胞为运动的观察者,根据多普勒效应公式得:

2.计算探头接收到的反射波的频率V2

此时探头相当于处于静止状态的观测者,而运动速度为v的红细胞相当于发射频率为V1的超声波的波源,根据多普勒效应公式得:

只要测出超声波的频率V和在血液中传播的波速u、频差△V以及血流方向和超声波传播方向的夹角θ,就可利用上式计算出血管内血液的流速。

三、超声多普勒血流仪的分类

多普勒测速仪开题报告

1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 随着我国经济建设的高速发展,人民生活的不断提高,道路上各式各样的车辆数目也在大幅上升,也使得交通违章不断增加,给道路交通和人民的生活带来了极大的威胁。由于汽车工业的不断进步,行驶在道路上的车辆速度越来越快,交通事故发生的频率也不断增加。众所周知,交通事故的发生大部分是由驾驶员的超速驾驶造成的。为提高汽车运行的安全性,减少交通事故的发生以及快速检测车辆行驶中的速度,所以有了测速仪的问世。 随着科技的进步,由雷达传感器制作的测速仪已经广泛应用于车辆测速的行业中,实现对车辆速度准确,快速的测量。该测速仪结构简单,可靠性高,操作方便,可广泛应用于摩托车、汽车等机动车辆的速度测量中。测速仪的发展动向是把测速仪的准确性,稳定性和可靠性作为重要的质量指标。 二、本课题国内外研究现状 我国测速仪的应用和研究起源于八十年代,伴随着我国经济发展,由最初的简单雷达测速仪发展到现在的超声波,激光等多种测速仪,同时在误差补偿,超速报警,便捷等多个方面的研究和发展取得了长足的进步,由以前的单一,简单,笨重的测速仪演变为如今的多样,复杂,小巧,为我国的交通做出了巨大贡献,同时涌现了广州科能,西安光伟等一大批骨干测速仪制造企业,基本上形成了中国测速仪目前的发展格局。 雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度,雷达测速易于捕捉目标,无须精确瞄准,可以采用手持的方式,在车辆的运动中进行测速。在中国的雷达测速仪发展中,雷达测速仪越来越向着高精度,高智能,高便捷的方向快速发展。 面对风起云涌的国内外市场及日新月异的中国经济,我国测速仪的发展和应用依然存在着非常严峻的问题。在2010年的国家测速仪调查报告中,我们可以看到我国的测速仪采用国外进口的测速仪占很大的比例,其中居多来自美国,日本。主要是因为我国的测速仪在质量,测量误差,报警设计方面离国外的测速仪还有一定的差距,但在近年的研究中,我国的测速仪发展还是取得了好大的进步。

超声多普勒血流分析仪产品技术要求zkyp

2. 性能指标 2.1 安全要求 设备的电气安全应符合标准《GB 9706.1-2007 医用电气设备第1 部分:安全通用要求》和《GB 9706.9-2008 医用电气设备第2-37 部分:超声诊断和监护设备安全专用要求》要求。 2.2 声输出公布要求 声输出公布相关内容应符合标准《GB 9706.9-2008 医用电气设备第2-37 部分:超声诊断和监护设备安全专用要求》的要求。 2.3 性能要求 应当符合《GB 10152-2009 B 型超声诊断设备》、《YY 0767-2009 超声彩色血流成像系统》以及《YY/T0593-2015 超声经颅多普勒血流分析仪》的要求。 2.3.1 B 模式性能要求 a) 声工作频率 声工作频率与标称频率的偏差应在±15%范围内。 b) 探测深度 探测深度应符合表格2的要求。 c) 侧向分辨力 侧向分辨力应符合表格2的要求。 d) 轴向分辨力 轴向分辨力应符合表格2的要求。 e) 盲区

盲区应符合表格2的要求。 f) 切片厚度 切片厚度应符合表格2的要求。 g) 横向几何位置精度

横向几何位置精度应符合表格2的要求。 h) 纵向几何位置精度 纵向几何位置精度应符合表格2的要求。 i) 周长和面积测量偏差 周长和面积测量偏差:周长≤±4% 面积≤±8% 表格1 探头基本性能 表格2 B 模式性能要求 2.3.2 彩色血流成像模式性能要求 a) 在彩色血流成像模式下,各探头在其多普勒工作频率下的探测深度应不小于表格3 的要求;

b) 彩色血流图像与其所在管道的灰阶图像应基本重合; c) 血流方向应能正确识别,无混叠现象。 2.3.3 频谱多普勒模式性能要求 a) 在频谱多普勒模式下,各探头在其多普勒工作频率下的探测深度应不小于表格4 的要求; b) 彩超的血流速度读数误差应不超过表格4 的要求; c) 取样区游标位置应准确。 表格3 彩色血流成像性能要求 2.3.4 电源电压 电源电压适应范围:在额定电压的±10%范围内,彩超应能正常工作。 2.3.5 连续工作时间 对使用交流供电仪器,在正常交流电压情况下,仪器连续工作时间应大于8h; 2.4 功能要求 2.4.1 探头识别 相控阵探头自动识别。 2.4.2 工作模式 单幅(含B、B+C)、双幅、四幅、PW。

彩色多普勒血流分析仪

彩色多普勒血流分析仪 数量:1台 (一)计算机配置要求 双核处理器,≥320G硬盘,≥4G内存; Windows 7或以上操作系统;液晶显示器,≥15英寸,分辨率至少1280*1024;国际标准的网卡接口。 (二)★多普勒超声硬件参数要求 2.1多普勒超声模块:血流速度检测范围:2-700cm/s;穿透深度调节范围:1,2MHZ:≥140mm;4MHZ: ≥70mm;8MHZ≥30mm;16MHZ: ≥5mm;高分辨率M模:≥4000门深;探头发射功率0-720mw可调,超过500mw红色预警显示 2.2彩超功能模块:可扩展三接口以上,可配备相控阵、凸阵探头和线阵探头,实现颅内动脉、颈部血管及外周血管彩色超声诊断,相控阵探头变频范围2-4MHz,凸阵探头变频范围2-5MHz,线阵探头变频范围5-12MHz (三)软件功能要求 3.1统一的超声软件平台:具备经颅多普勒超声模块、微血管超声模块和彩色超声模块3.2 实时的血流计算(Vmax、Vmin、Vmean、PI、RI、S/D,TIC,TIS,TIB,HR)等参数3.3 探头能量限制功能:要求探头工作时能够自动限制发射功率,保护探头和患者 3.4 数字化连续M波,一平面显示多条血管,点击不同深度即显示相应的频谱 3.5 单通道八深度:单通道模式下,可同时显示八个不同深度的频谱 3.6 患者随访趋势图:可自动将患者不同手术阶段日期的血流值做成趋势图,观察治疗效果和病情进展 3.7术中脑血流监护功能:双通道血流监护软件,自动连续记录频谱原始信号、包络线和趋势图;可用于血管手术大脑中动脉、前动脉和后动脉的血流监测 3.8微血管超声功能:实时记录血流信号,实时观测小血管动脉流速变化,便于动脉瘤手术的动态评估 3.9彩超检查功能:可用于脑肿瘤、颅脑损伤、颅内血管性疾病手术的辅助判定,要求具备B超、彩色多普勒、频谱多普勒和能量多普勒等功能,可实现彩色多普勒、频谱多普勒和B超模式的组合分析 3.9测量内容:距离、周长、面积、斜率、心率、压力、RI、PI、流速等 (四)★探头及配件要求 要求设备配备多普勒脑血流手持探头1个,4MHz多普勒探头1个,脑血流监护探头1

利用多普勒测车速的原理

关于利用多普勒测车速的原理探究 摘要 本文从实例出发,阐述了雷达测速仪的工作原理───电磁波的多普勒效应,以及其实际应用上的一些情况. 关键词 电磁波的多普勒效应 The discovery of the principle of the velometer with Doppler effect Li Hongyang, Zhangyan Lin Weiping Tang Guangzhao , Li Zhuoran (A group from nuclear physics major, the physics department, scu) Abstract this article describes the application of Doppler effect of electromagnetic wave ,and the principle of the radar velometer. Keywords the Doppler effect of electromagnetic wave 背景 假定这种情景:一平直公路放置一测速仪,远方式来一辆车,其速度为v,测速仪发射一列电磁波,其频率为f,在极短时间后收到一频率为f ’的反射波.现在需要由f,f ’求v. 由于发出的为电磁波,经典运动理论下的多普勒公式已远远不够.再次我们避开四维坐标,用洛仑兹变换与狭义相对论来推导相对论下的多普勒效应. 令静止参考系为K 系,运动参考系为K ’系 则有 ①, ② 而由洛仑兹变换知: ③ ∴ ④ ⑤ 联立③④⑤得: ⑥ 2 2 2 01c u c m E -=2220'1'c u c m E -=????? ? ? ?? ??? -===-=γγ2''''c vt t t z z y y vt x x ?? ?????? ?? ??? ??-=-=-=221'1''c vu u u c vu u u vt u u x z z x y y x x γγγ2222''''z y x u u u u ++=2222z y x u u u u ++=22222 11'1c vu c u c u x --=-γ

多普勒测速仪工作原理

浏览次数:110次悬赏分:0|解决时间:2011-8-24 19:30|提问者:匿名 最佳答案 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 多普勒测速仪仪器介绍 TSI的LDV/PDPA系统 LDV/PDPA的主要装置和原理 激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。 LDV/PDPA测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以?角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。LDV/PDPA系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 LDV/PDPA系统从功能上分为:光路部分、信号处理部分。光路部分:采用He-Ni激光器或Ar离子激光器,是因为它们能够提供高功率的514.5nm,488nm,476.5nm三种波长的激光。带有频移装置的分光器将激光分成等强度的两束,经过单模保偏光纤和光纤耦合器,将激光送到激光发射探头,调整激光在光腰部分聚焦在同一点,以保证最小的测量体积,这一点就是测量体即光学探头。接受探头将接受到的多普勒信号送到光电倍增管转化为电信号以及处理并发大,再至多普勒信号分析仪分析处理后至计算机记录,配套系统软件可以进行数据处理工作。在流场中存在适当示踪粒子的倩况下,可同时测出流动的三个方向速度及粒子直径。 TSI公司在国际上第一个生产商业化的LDV/PDPA系统,现在的TSI公司的LDV/PDPA系统已经拥有4项专利设计,并且在流场、湍流、传质、传热、流型、燃烧研究上有广泛的使

超声多普勒血流仪工作原理初探

超声多普勒血流仪工作原理初探 超声多普勒血流仪是测量血液流速和流量的仪器,位置固定的超声探头发射超声波,被血液中的红细胞接收,然后把红细胞作为波源,超声探头接收红细胞的反射波,利用超声波的发射波和反射波的频率差,根据多普勒效应公式即可计算血液的流速。因其具有灵敏度高、抗干扰能力强等优点,可广泛应用于颈部、颅腔和肢体外周血管的血液流动检查。 标签:超声波;多普勒效应;血流仪;血液流速 一、工作原理 利用超声多普勒血流仪测量血液流速时,使血流仪的探头处于固定位置,且保持静止状态,如下图所示,超声探头向血液中发射超声波束,血液中的红细胞接收超声波,并在红细胞的表面产生一定量的反射,超声探头接收被血流反射回来的超声波,通过测量反射波和发射波的频率差就可以计算血管内血液的流速。 利用超声波多普勒血流仪测量血液速度的技术可以分解为超声波的发射和反射波的接收两个过程。 先把探头和红细胞分别作为波源和观测者,接着求解红细胞接收到的超声波频率,再把红细胞作为反射波的波源,把探头作为观测者,计算探头接收到的反射波的频率,最后就可以求出发射波和探头接收到的反射波的频率差。 二、血液流速的计算 假设探头发射的超声波的频率为V,血液的流速为v,超声波在血液中传播的速度为u,血液流动的方向与超声波入射方向之间的夹角为θ。 1.计算红细胞接收到的超声波频率V1 因探头固定不动,可以看作为静止的波源,而红细胞运动的速度等于血液的流速v,故红细胞为运动的观察者,根据多普勒效应公式得: 2.计算探头接收到的反射波的频率V2 此时探头相当于处于静止状态的观测者,而运动速度为v的红细胞相当于发射频率为V1的超声波的波源,根据多普勒效应公式得: 只要测出超声波的频率V和在血液中传播的波速u、频差△V以及血流方向和超声波传播方向的夹角θ,就可利用上式计算出血管内血液的流速。 三、超声多普勒血流仪的分类

超声多普勒发展史略

超声多普勒发展史略 一、早期的工作 1842年Christian Johann Doppler首先提出光学的多普勒效应,其后Bays Bellot博士将这一原理引入声学领域。 1955年日本学者里村茂夫(Shigeo Satomura) 等人用超声多普勒研究心脏的活动与评估外周血管的血流速度。同期,Lindstrom与Edler也将多普勒用于临床检查。美国Rushmer, Frankin与Baker等在五十年代后期从事超声多普勒的研究工作。他们设计成功渡越时间血流计(transit time flowmeter),推出了最早的连续波多普勒,并进行过动物实验。1962年日本Kato证实里村所观察到的噪声来自红细胞的后散射(backscatter)。 二、脉冲多普勒 为了克服连续多普勒存在的缺陷,Reid、Baker与Watkins等于1966年研制了第一部脉冲多普勒仪(pulsed Doppler equipment)。其后英国学者PNT Wells (1969),法国学者Peronneau (1969) 也分别建立了类似的选通门多普勒系统(range-gated Doppler system)。在六十年代,研究人员将这种脉冲多普勒与M型超声心动图相结合,即用M 型曲线进行深度定位,而用多普勒频谱曲线观察血流的变化。1972年,Johnson及其同事首次发表应用多普勒经皮测量血流,并依据频谱曲线的特点探测有无血流紊乱,这对临床诊断有一定帮助。为克服探测血流与观察结构所要求的取样线方向的矛盾,1974年华盛顿大学Baker, Tome与Reid等开发了机械旋转式扫描器,成功地研制出双工型脉冲多普勒回声扫描系统(duplex pulse-echo Doppler scanning system)。Moritz及其同事(1976) 开发了一种“声定位系统(sonic locator system)"。这两种系统均将机械扇形扫描超声心动图与脉冲多普勒结合起来,以前者进行解剖结构定位,用后者观测各个心腔与大血管内的血流。 1976年,Holen 及其同事报告用多普勒技术进行检查,借助Bernoulli方程检测血流阻滞区前后的压力阶差。Stevenson及其助手(1977) 用时间间隔直方图(time interval histography)来鉴别分流疾病和瓣膜反流。 三、连续多普勒 Hatle与Angelsen (1977) 在新的基础上重新起用连续波多普勒(continuous wave Doppler, CW),使Nyquist极限频率大大提高, 故能成功地测量高速血流,估计跨瓣压差, 在心脏疾病非损伤性定量诊断中发挥巨大作用。Light, Cross, Magnin及Goldberg等曾进行大量工作,证明连续波多普勒在检测心功能方面有较大的价值。 四、彩色多普勒 脉冲多普勒与连续多普勒频谱曲线分析虽然在观察血流方向与速度上有重要意义,但检查费时甚多,且常有漏误。由Fish (1975), Kanaka (1976), Matsuo (1978) 和Brandestini (1979) 发展起来的多道选通门脉冲多普勒法(multigated pulsed-Doppler method) 可以测定沿M型曲线上各点速度的剖面图。1980年,Kasai提出的自相关技术改进了脉冲多普勒的成像方法。1981年,Stevenson报告彩色编码数字型多道选通门多普勒(color-codes digital multigated Doppler) 在房室瓣关闭不全探测上的应用,这些研究为发展彩色多普勒打下了基础。 1982年彩色多普勒血流成像(color Doppler blood flow imaging) 研究获得巨大成功。美国Bommer报告“实时二维彩色多普勒血流成像在心血管疾病诊断上的应用”。日本Namekawa报告“自相关血流成像法”。在后一研究的基础上,Omoto等详细报告了彩色多普勒的临床应用情况,并在短期内证明此技术对先心病、

一、超声经颅多普勒血流分析仪技术参数

一、超声经颅多普勒血流分析仪技术参数双通道标准型

二、超阴道探头参数 、频率: 、探头陈元数 、最大扫描角度度 三、血红蛋白分析仪 (一)技术参数 1、测试原理:反射光度法。 2、测试样本:≤新鲜或含的抗凝剂的微血管血或静脉全血。 3、测试速度:小于。 4、测量范围:(~),结果低于4.0g或高于24.0g,将会显示“”或“”。 5、仪器调整:通过卡进行自动调整。 6、显示:液晶显示屏,测试结果采用国际单位。 7、存储功能:可保存试剂片代码,并可自动存储和更新个样品的测试结果。 8、校正功能:自我校正。 9、重量:约58g(含机内电池)。 10、电源:(枚锂电池)。 11、功耗:。 12、故障提示功能:自动判断故障并显示故障代码。 13、设计寿命:不低于年。 14、工作环境:5℃40℃,≤。 15、推荐工作环境:15℃30℃,≤。

16、延伸功能:可根据客户需要配备数据输出功能。 (二)商务要求: 、包装要求:密封完整,防潮。 、货物质量要求:货物质量应达到相关的国家质量标准要求,供应商负责送货上门,因质量问题(受潮、过期、不足量、包装破损等非预期情况)给予即时退货处理。 、投标人必须在省内设有完善的售后服务点来保证维修。 、仪器生产厂家需有配套生产试剂片。 、仪器及配套试剂片需有国家产品质量监督部门的注册检验报告。 四、经皮黄疸仪主要技术参数 、测量方式:光源反射式 、测量结果显示:三位高亮数字显示 、测量误差:±大于± 、光源:氙闪光灯,寿命约万次 电源:可充电电池 、开启准备时间:“”灯亮小于秒钟 、外形尺寸:××35mm 、充电器:输入 输出(空载) 、校验板:白色屏±黄色屏± 、使用环境: ) 温度范围:10℃40℃ ) 相对湿度: ) 大气压力:

超声经颅多普勒血流分析仪 说明书

超声经颅多普勒血流分析仪 说明书 产品特点 超声探头2MHz(脉冲波)、4MHz(连续波),可满足对颅内、颈部及肢体外周血管的检测。 应用先进的数字存储技术,方便医生对意调节增益、血流方向、取样深度、超声强度、零位线、标尺和扫描速度等。频谱图进行常规监测及病历复查。 临床常规检测快速、方便、操作自如。联机状态可随。 检测参数齐全。联机状态可实时显示血流频谱两个方向的收缩期峰流速、舒张末期流速、平均流速、PI指数、RI指数及S/D比值。 先进的操作流程设置,医生可根据自己的检查程序设置操作流程。机内存有国内著名TCD专家检测的各年龄组两性别的正常参数值、联机状态检测时,若某参数超出正常值范围,即刻用颜色报警。 丰富的脱机后处理功能。对已存存储的血流频谱重新修改并再存储,例如重新手动测量血流速度,调整血流方向,零位线及增益等。具有对频谱进行文字及图形标识,频谱回放,无用频谱删除等功能。 病历资料管理功能强大,可快速查询,大容量硬盘可以存储万例以上频谱资料,并可使用光盘存储。 独特的经颅多普勒TCD诊断报告方式。任选频谱图打印,所有检测技术数据及分析参数完整打印。

独有的高灵敏度,在20%的功率输出时,亦能快速检测出高质量图像;在最大功率625mW时,即使声窗较小,难以穿透的老年人,同样也可以获取今您满意的血流动力学和生理参数信息; 独有的自动分析和脑血管评估功能。 易于使用:人性化界面设计,切换自如。 八深度同步检测:可同时检测一个探头超声发射方向上8个深度的血流信息(图谱和数据),提高脑血管疾病筛查的效率; 数字化电影回放器:可将存储的多深度、多血管的原始动态数据(图像和声音)同步再现。 性能可靠:高灵敏度,抗干扰能力强。 硬件配置:经颅多普勒(方正)主机(CPU:E1400主频2.0G,内存:1G,硬盘:160G,DVD光驱)、19”高分辨率液晶显示器(1440×900)彩色喷墨打印机、2MHZ、4MHZ探头、豪华ABS台车、多媒体音箱、专用小键盘。 参数: 超声工作频率偏差≤5%; 血流速度测量范围:PW模式20-200cm/s;CW模式10-100cm/s; 2MHz(PW模式)最大工作距离120mm; 血流速度测量误差不超过+20%; 系统连续工作时间≥4小时。

486什么叫超声多普勒测速法

4.86什么叫超声多普勒测速法 多普勒(效应)法USF是利用在静止(固定)点检测从移动源发射声波多产生多普勒频移现象。 (1)流速方程式 如图5所示,超声换能器A向流体发出频率为fA的连续超声波,经照射域内液体中散射体悬浮颗粒或气泡散射,散射的超声波产生多普勒频移fd,接收换能器B收到频率为fB 的超声波,其值为 (9) 式中v-散射体运动速度。 多普勒频移fd正比于散射体流动速度 (10) 测量对象确定后,式(10)右边除v外均为常量,移行后得 (11) (2)流量方程式 多普勒法USF的流量方程式形式上与式(6)相同,只是所测得的流速是各散射体的速度v(代替式中的vm),与载体液体管道平均流速数值并不一致;方程式中流速分布修正系数Kd以代替K0 Kd是散射体的“照射域”在管中心附近的系数;其值不适用于在大管径或含较多散射体达不到管中心附近就获得散射波的系数。 (3)液体温度影响的修正 式(11)中又流体声速c,而c是温度的函数,液体温度变化会引起测量误差。由于固体的声速温度变化影响比液体小一个数量级,即在式(11)中的流体声速c用声楔的声速c0取代,以减小用液体声速时的影响。因为从图6可知cosθ=sinφ,再按斯纳尔定律sinφ/c=sinφ0/c0,式(11)便可得式(12),其中c0/sinφ0可视为常量。

(12) (4)散射体的影响 实际上多普勒频移信号来自速度参差不一的散射体,而所测得各散射体速度和载体液体平均流速间的关系也有差别。其他参量如散射体粒度大小组合与流动时分布状况,散射体流速非轴向分量,声波被散射体衰减程度等均影响频移信号。 优缺点: USF可作非接触测量。夹装式换能器USF可无需停流截管安装,只要在既设管道外部安装换能器即可。这是USF在工业用流量仪表中具有的独特优点,因此可作移动性(即非定点固定安装)测量,适用于管网流动状况评估测定 USF为无流动阻挠测量,无额外压力损失。 流量计的仪表系数是可从实际测量管道及声道等几何尺寸计算求得的,既可采用干法标定,除带测量管段式外一般不需作实流校验。 USF适用于大型圆形管道和矩形管道,且原理上不受管径限制,其造价基本上与管径无关。对于大型管道不仅带来方便,可认为在无法实现实流校验的情况下是优先考虑的选择方案。 多普勒USF可测量固相含量较多或含有气泡的液体。 USF可测量非导电性液体,在无阻挠流量测量方面是对电磁流量计的一种补充。 因易于实行与测试方法(如流速计的速度-面积法,示踪法等)相结合,可解决一些特殊测量问题,如速度分布严重畸变测量,非圆截面管道测量等。 某些传播时间法USF附有测量声波传播时间的功能,即可测量液体声速以判断所测液体类别。例如,油船泵送油品上岸,可核查所测量的是油品还是仓底水。

交警测速仪原理

交警测速仪原理 很多城市设立了抓拍路口违章的“电子眼”,本人根据3年多的开车经验、闯红灯经验,再加上向交警朋友的数年虚心讨教,终于弄懂了电子警察工作原理,希望对各位车友的行车有所帮助,知己知彼,百战不殆嘛。 1.电子眼采用感应线来感应路面上的汽车传来的压力,通过传感器将信号采集到电脑,并将信号暂存(该数据在一个红灯周期内有效); 2.在同一个时间间隔内(红灯周期内),如果同时产生两个脉冲信号,即视为“有效”,简单地说,就是如果当时红灯,你的前轮子过线了,而后轮子没出线,则只产生了一个脉冲,在没有连续的两个脉冲时,不拍照; 3.有些情况是:有的人开车前轮越过线了,怕被拍到,于是他又倒一下车,回到线内,结果还是被照了,什么原因?就是因为一前一后,产生了“一对”脉冲信号(这一对脉冲是在同一个红灯周期内产生的); 4.黄灯亮时,拍照系统延时两秒后启动;红灯亮时,系统已经启动;绿灯将要亮时,提前两秒关闭系统,主要是为了防止误拍。所以很多出租车司机都知道,差不多就可以走了,一样没事,就这个道理。严重建议大家不要这样做,因为时机比较难把握哟。 后期处理: 当图像被下载传输指挥中心以后,就需要对图像进行登记、编号、公告,再传输到中心计算机数据库,以备各种机关调用。 系统特点: 车辆捕获率——100%(不包括二轮摩托车等)。

识别时间——约1秒。 车牌识别率——白天95%以上,晚上90%以上(比较高啊)。 适用车速——5-180Km/h(如果你开190,它连个鬼都拍不到)。 交警查超速主要就两大类,一是雷达波测速,二是摄像机测速。 雷达波测速主要用于流动测速,配合摄像机拍号牌,主要用于高速及无固定测速路段,原理就是测速机发射某频率雷达波,锁定你的车,通过雷达波反射测定车速。此类测速较隐蔽,通常以流动测速车停在高速的临时停车处为主,也有通过手持测速仪隐藏在树后。我在高速上遇到过的测速车有依维柯和桑塔纳改装的,一般车顶有天线,还有拿手持的坐到车里,外面看不见,不小心就被抓到了。 摄像机测速的是固定测速,原理就是车通过该摄像机摄像区时通过你的位移及时间测定车速。此类测速基本很醒目,很远处你就会看到路的上方有横贯路面的铁架子,上面会摆很多摄像机,由于条件的限制,摄像机装在哪里就再也不会动了,所以如果你有一次被拍到,相信不会有第二次了。当然少数也很隐蔽,比如装在人行天桥或者立交桥下面,有时候不注意离近了才发现,踩刹车已经晚了。还有更损的装在人行天桥或立交桥的背面,你从正面行驶的过程中是不可能看见的,当你高速行驶过去时尾部的车牌已经被拍了下来。 还有很多种测速模式,比如压感测速,固定雷达测速等,国内用的比较少,就不做分析了

彩色多普勒超声诊断仪技术参数

彩色多普勒超声诊断仪技术参数 一、设备名称:数字化高档彩色多普勒超声诊断仪一台 二、设备用途:妇产科、生殖医学、腹部、泌尿科科研高端实时三维彩色多普勒超声诊断仪,尤其在胎儿心脏、生殖道畸形、盆底超声、3D/4D模式下立体输卵管造影及生殖医学具有突出优势,满足产科超声诊断,妇科疑难病例超声诊断,胎儿畸形产前诊断及科研,具有强大的定量分析功能。系统须为投标厂家高端最新型号仪器、最新软件版本,并具有升级能力的设计,以满足将来扩展临床应用的需要。 三、整体要求:国际知名品牌,提供原厂家的技术参数白皮书(Data Sheet)及相关准确证明图片,否则按虚假应标处理。 四、设备的主要性能及功能: 1. 全数字化彩色超声诊断系统主机 1.1 数字式全程动态聚焦,数字式可变孔径及动态变焦技术; *1.2 高分辨率彩色逐行液晶显示器≥23英寸; *1.3 具备≥12英寸液晶触摸屏; *1.4系统动态范围≥274dB; 2. 数字化二维灰阶成像单元: 2.1 具备声束三维聚焦和成像处理技术; *2.2 具备空间复合成像技术,能和彩色模式同时使用; 2.3 具备斑点噪音抑制技术; 2.4 具备频率复合成像技术; 2.5 具备独立角度偏转功能,B 模式、CFM 、PWD模式分别独立角度偏转; 2.6 具备自动优化技术:通过一键能够同时自动调整二维、彩色和频谱的参数; 2.7 具备原始数据采集、储存技术,能对回放的常规图像进行33种参数调节 2.8 具备组织谐波成像,可用于全部2D探头和4D探头;具有明确谐波频率显示;可视可调; 2.9 具备多普勒实时自动计算功能;具备各种双同步和三同步扫查模式;具备同屏剪

彩色多普勒原理

彩色多普勒血流成像(Color Doppler Flow Imaging,CDFI),是在频谱多普勒(Spectral Doppler)技术基础上发展起来的利用多普勒原理进行血流显像的技术,有关频谱多普勒的理论,在本书的有关章节已有论述。与频谱多普勒相比,彩色多普勒血流成像是多普勒技术在医学领域应用的重大发展,从只能逐点取样测血流速度发展到用伪彩色编码信号显示血流的流动,使多普勒技术能更直观地显示血流的流动方向、流动速度、流动范围、血流性质、有无返流、分流等。 彩色多普勒血流成像技术于l 982年由日本的Namekawa、Kasai及美国的Bommer最先研制成功,日本Aloka公司于1982年生产第一台彩色多普勒血流成像仪,日本尾本良三最早报道了此技术在心血管领域的应用。此后,彩色多普勒血流成像技术应用范围逐渐扩大,1986年开始用于周围血管血流成像,1 987年开始用于腹部器官,1988年开始用于颅脑血流成像。现在,彩色多普勒血流成像以及在此基础上发展的能量多普勒(Power Doppler)血流成像,已成为超声诊断不可缺少的技术。彩色多普勒血流成像的重要性在于它能无创、实时地提供有关血流的信息,而这是X线、核医学、CT、MRI以及PET等所做不到的。 第1节工作原理 彩色多普勒血流成像的显示方式属于二维技术。血流的彩色信号叠加在二维超声显像图上。现在的超声诊断仪都用自相关技术作信号处理,以获得血流的二维多普勒信号。彩色多普勒血流成像与频谱多普勒不同,每帧图像有32~l28条扫描线,每条扫描线有250~300个取样点,每帧图像内有10,000个以上的取样数据,为了实时成像,必须在几十毫秒内处理这些数据,因此必须采用比傅立叶(Fourier)分析更快的自相关技术。 一、自相关技术 自相关技术能在约2ms内处理大量的多普勒频移数据,并计算出血流速度、血流方向和速度方差,但须注意所计算的是每一瞬间内若干频率信号的平均速度,不能得出取样部位瞬时流速的分布范围,因此也不能得到瞬时的最大流速。 自相关技术包括两个信号间相位差的检测,即检测接连发射的两个相邻超声脉冲回声信号的相位差,从求得相位差的公式可以计算检测位置的血流速度,从相位差的正、负性可了解血流的方向。 由于超声诊断目前都用兆赫(MHz)以上的超声频率,因为高频信号的处理比较困难,所以通过一个正交检测器把回声信号转换成低频范围。 经过正交检测器和相位差检测的回声信号,最后通过自相关检测处理,才能得到血流信号的显示。 二、MTI滤波器 MTI滤波器即Motion target indication filter,目的是滤掉非血流运动产生的回声信号,例如血管壁、瓣膜等产生的低频运动,这些低频运动强大,可干扰血流运动的信号,因此在正交检测器和自相关检测器

超声多普勒成像仪VI

第6节超声多普勒成像仪 一、多普勒效应 1842年奥地利物理学家多普勒(Doppler)发现并研究了声波的“频移”现象,后被命名为“多普勒效应”。此效应是指波源将某一频率f的波以一种固定的传播速度向外辐射时,如果发射波的波源与接收波的接收系统产生相对运动,则所接收到的波的频率f′会发生变化(即频移),两个频率的差值Δf=f′-f。在声源与接收系统之间的运动为相向的情况下,Δf为正值(f′>f,接收频率提高);而相背运动的情况下,Δf为负值(f′<f,接收频率降低)。 产生多普勒效应的原因可以这样来简单地解释,以声波为例:当声波在某种介质中以固定的传播速度c前进时,声速c(m2s-1)为波长λ(m)和频率f(s-1)的乘积,即c=λ2f;但如果声源与接收系统之间存在着相对运动,相对运动的速度为 v(v是一个具有方向性的矢量单位,相向运动时v取正值,相背运动时v取负值),则声波向接收系统的相对传播速度c′为:原来传播速度c与相对运动v的迭加,即c′=c+v。在前式c=λ2f中波长λ不会因相对运动的存在而改变,只是声速c改变为c′。此时,只有f也随之改变为f′才能维持 c′=λ2f′成立,于是有: f′=c′/λ=(c+v→)/λ Δf=f′-f=(c+v→)/λ-c/λ=v→/λ 将λ=c/f代入上式,有 Δf=f2v→/c 此意为频移量Δf为相对运动速度与原声速的比值。 多普勒效应并非仅仅存在于声波传递中,任何以波动形式行进的能量传递过程,均可产生多普勒效应,如无线电波、高能X射线(或γ射线)、可见光线以及其他电磁辐射等。只是这里所列举的各种波动的传递速度太快,而波源与接收系统间相对运动速度v→与波的原有传递速度(光速)的比值极小,因此频移量Δf 很难测出,尤其不能被人体直接感受到。不过现代天文学正是借助多普勒效应通过检测、辨认宇宙深处恒星发光颜色的变化来判定天体的运动状态的。人类之所以最先在声波范畴内发现并研究出多普勒效应,是由于声波本身属于人耳的可听闻波动,且声波在空气中的传播速度不高(341m/s,15℃,1个大气压),以及声源与人耳的相对运动速度常常使声频率变化f′(=f+Δf)落在人耳的敏锐辨识 区内。例如火车从我们身旁的铁路上呼啸而过时,会使我们非常明显地听出鸣叫着的汽笛声突然间由尖锐变得低沉起来。也就是说当火车驰向我们时(v→为正),我们所听到的汽笛声(f1′)要比火车固定不动时的声音(f)尖锐一些(Δf1=f1′-f>0);当火车背向我们驰去时(v→为负),所听到的汽笛声(f2′)要比原来的声音(f)低沉一些(Δf2=f2′-f<0)。 二、多普勒原理在超声医学诊断中的应用 在经过30多年以来的临床实践后,超声多普勒方法的应用价值已愈加明显。尤其在以运动器官为主要研究对象的心血管内、外科,超声多普勒诊断成像仪器更成为不可或缺的有力诊断工具;大多数应用运动结构(如心脏瓣膜)或散射子集合(如血管中的红细胞群体)反射回来的超声波束,检测出其中的多普勒频移,作为探查目标的运动速度信息,然后用耳去监听、用仪器去分析、用图像去显示或者用影像去显现人体内部器官的运动状态。 以人体内血流的运动状态检测为例,声波的发射源与接收器均为超声探头自

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

南京科进超声经颅多普勒血流分析仪KJ-2V4技术参数清单模板

KJ-2 V4型超声经颅多普勒血流分析仪 配置表 (1) KJ-2 V4型TCD主机一台华硕G41主板,硬盘≥250G CPU酷睿赛扬≥1.8GHZ 2G内存 DVD光驱 (2) 19”液晶彩色显示器(标配)一台 (3)佳能2780彩色喷墨打印机(标配)一台 (4)支持单通道多深度硬件及软件(高级栓子监护软件)一套 (5) 2MHz(PW)经颅多普勒探头一只 (6) 4MHz(CW)经颅多普勒探头一只 (7)多功能遥控器(19键)一只 (8)脚踏开关(单键或双键)一只 (9)计算机键盘、鼠标、鼠标垫、耦合剂一套 (10)电源隔离变压器(含电源连接线)一只 (11) TCD专用移动推车一辆(12)TCD操作手册(含三证、验收单、质保单)一套 (13)软件(KJ-2 V4型WindowsXP操作系统,TCD软件光盘,教学光盘)一套 南京科进实业有限公司

KJ-2V4型超声经颅多普勒血流分析仪 功能特点表 1、血管自动搜索及定位功能,栓子检测功能及栓子图像放大功能, 2、长时间多普勒图谱和多普勒声音同步回放功能,并能在图谱回放时进行更改操 作。 3、专业的多普勒静态滤波和动态滤波软件,可滤去干扰杂波,使图像更加清晰。 4、预置多组血管名称和血管参数及血管模拟图显示。方便医生根据不同的血管名 来更换不同探头使用。 5、有多种报告格式选择,(A4无参数、A4有参数、B5无参数、B5有参数)蓝色 软件有A4 9幅图打印方式,但只能打印6幅图。配有医生诊断术语结论模板系统,并可进行随意修改,可方便快捷的完成诊断。 6、支持手动正向.反向计算,自动静态、动态计算并可切换 7、单深度、双深度、四深度.动态画面工作中可正常切换,探头2MHz/4MHz频率切 换 8、 Vp Vm Vd Hr趋势图功能, 多门深M模.声.频谱.自动存储并可回放功能, 9、切换双深度功能,四深度功能,M模功能,处势图功能,栓子检测功能。 10、配置标准医学参数的数据库,根据不同的年龄段,在软件界面及报告单上显示偏 差值提示.(异常报警) 11、联网功能(局域网实时观看) 12、蓝色软件可进行病人数据备份和数据恢复。 13、可根据实际需求新建血管,设置血管参数信息。 南京科进实业有限公司

多普勒雷达测速

多普勒雷达 多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 假设原有波源的波长为λ,频率为f0,介质中波速为c则 (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr 的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

多普勒雷达测速

多普勒雷达测速 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

多普勒雷达多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 ,介质中波速为c则 假设原有波源的波长为λ,频率为f (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所

以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

相关文档
最新文档