雷达测速仪工作原理

雷达测速仪工作原理
雷达测速仪工作原理

雷达测速仪简介

雷达测速仪是通过微波来测量运动物体的速度,其工作理论是基于多普勒原理,既当微波照射到运动的物体上时,会产生一个与运动物体速度成比率的一个变化,其变化大小正比于物体运动的速度。

雷达发射的微波以一个扇型的方式出去(S1),在照射区域内的目标会对微波形成一个反射(S2),其中依据实际测量的要求,雷达又分为两种工作模式:一种是静态工作模式,一种是动态工作模式。所谓静态:即雷达静止不动(不在运动的巡逻车内),测迎面来的汽车或同向远离的汽车。所谓动态:既雷达处于运动状态(一般在运动的巡逻车内),测迎面来的汽车或同向远离的汽车,在动态情况下,测试一般又分为反向测量和同向测量,反向测量:测试的目标和巡逻车的运动方向相反,同向测量:测试的目标和巡逻车的运动方向相同。选用不同的测试状态,雷达使用不同的运算规则。雷达本身不易判别目标的运动方向。

依据雷达的使用特点:

目前,雷达主要分为手持测速雷达和车载测速雷达。

手持测速雷达主要应用于定点测量,一般,交警在超速现象较多的路段进行测量。可把雷达固定于三角架上,也可手持测量。

车载测速雷达主要应用于巡逻测量或移动电子警察方面。目前,在电子移动警察上应用较多。由于电子警察的特殊要求,一般配电子警察的测速雷达要求其微波发射的波瓣尽可能小。

以往的雷达测速仪,由于技术的限制,不能判别出目标的运动方向,因此,当所测区域既有同向的又有反向的车时。雷达就无法判别出所测速度到底是那一辆的。随着技术的发展,有些新型的测速雷达已可以判别出目标的运动方向,因此,大大提高了测试的可靠性和可信度。

火花DA型雷达简介

火花DA型雷达是一车载雷达测速仪,它具有体积小、重量轻、波瓣窄等特点,在测试方面具有方向识别、带232数据接口等多种功能。

它的工作方式有两种:

一、带控制盒。

通过控制盒完成状态的选择盒数据的显示。操作方式与一般的车载雷达基本相似。

二、与电子警察配套。

通过232接口与计算机相连。工作状态的设置由计算机来完成,同时,数据也由计算机来读取。

工作流程如下:

一、雷达测试目标是否超速

二、若超速检测视频图象的变化,判别是否目标进入图象区域

三、若由目标进入,从视频流中抓三幅图片或五幅

四、识别出图片中车牌等信息

五、产生对应的数据存入数据库中或现场打印。

以上是常用的电子警察方案,在视频方面依据选择的不同,处理方式和组成也略有不同。采用CCD,一般计算机就要配工控机。若选择带1394接口的数码摄像机则可配带1394接口的笔记本。不过,要不产生图象发虚的现象,则需要拍照速度快,对于这一点,CCD要优于数码摄像机。

其他的也有直接把雷达送出的数字信号通过视频叠加到视频流中,然后送到视频录象机或其他记录设备中的方法。

在对雷达的操作中,首先需要主机(一般为计算机)送出连接命令到雷达上,然后设定

雷达的工作方式。发出启动测试的命令,则雷达开始测试,测试结束后,雷达把测试的结果送回到主机中。

雷达和主机的通信由串口完成,主机发送命令雷达返回数据。命令和数据的结构由字头和内容构成。字头代表不同的命令或数据,内容代表具体的操作和数据值的大小。命令,由两字节组成,返回数据由多字节组成。

多普勒测速仪开题报告

1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 随着我国经济建设的高速发展,人民生活的不断提高,道路上各式各样的车辆数目也在大幅上升,也使得交通违章不断增加,给道路交通和人民的生活带来了极大的威胁。由于汽车工业的不断进步,行驶在道路上的车辆速度越来越快,交通事故发生的频率也不断增加。众所周知,交通事故的发生大部分是由驾驶员的超速驾驶造成的。为提高汽车运行的安全性,减少交通事故的发生以及快速检测车辆行驶中的速度,所以有了测速仪的问世。 随着科技的进步,由雷达传感器制作的测速仪已经广泛应用于车辆测速的行业中,实现对车辆速度准确,快速的测量。该测速仪结构简单,可靠性高,操作方便,可广泛应用于摩托车、汽车等机动车辆的速度测量中。测速仪的发展动向是把测速仪的准确性,稳定性和可靠性作为重要的质量指标。 二、本课题国内外研究现状 我国测速仪的应用和研究起源于八十年代,伴随着我国经济发展,由最初的简单雷达测速仪发展到现在的超声波,激光等多种测速仪,同时在误差补偿,超速报警,便捷等多个方面的研究和发展取得了长足的进步,由以前的单一,简单,笨重的测速仪演变为如今的多样,复杂,小巧,为我国的交通做出了巨大贡献,同时涌现了广州科能,西安光伟等一大批骨干测速仪制造企业,基本上形成了中国测速仪目前的发展格局。 雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度,雷达测速易于捕捉目标,无须精确瞄准,可以采用手持的方式,在车辆的运动中进行测速。在中国的雷达测速仪发展中,雷达测速仪越来越向着高精度,高智能,高便捷的方向快速发展。 面对风起云涌的国内外市场及日新月异的中国经济,我国测速仪的发展和应用依然存在着非常严峻的问题。在2010年的国家测速仪调查报告中,我们可以看到我国的测速仪采用国外进口的测速仪占很大的比例,其中居多来自美国,日本。主要是因为我国的测速仪在质量,测量误差,报警设计方面离国外的测速仪还有一定的差距,但在近年的研究中,我国的测速仪发展还是取得了好大的进步。

FMCW毫米波防撞雷达系统

FMCW毫米波防撞雷达系统 汽车防碰撞系统对提高汽车行驶安全性十分重要,该系统的研究一直倍受重视。从1971年开始,相继出现过超声波、激光、红外、微波等多种方式的主动汽车防碰撞系统,但是以上系统均存在一些不足,未能在汽车上大量推广应用。随着各国高速公路网的快速发展,恶性交通事故不断增加,为减少事故,先后采用行驶安全带、安全气囊等保护措施,但这些技术均为被动防护,不能从根本上解决问题。毫米波是指波长介于1~10mm之间的电磁波,其RF带宽大,分辨率高,天线部件尺寸小,能适应恶劣环境,所以毫米波雷达系统具有重量轻、体积小和全天候等特点,“主动汽车毫米波防碰撞雷达系统”成为近年来国际上研究与开发的热点,并已有产品开始投入市场,前景十分看好。 本文介绍了主动汽车防碰撞毫米波雷达的原理,报导了我们研制出的SAE-100型毫米波防碰撞雷达样机。 汽车防撞毫米波雷达系统原理 主动汽车防碰撞是以雷达测距、测速为基础的。防撞雷达系统实时监测车辆的前方,当有危险目标(如行驶前方停止或慢行的车辆)出现,雷达系统提前向司机发出报警,使司机及时作出反应,同时雷达输出信号到达汽车控制系统,根据情况进行自动刹车或减速。 毫米波防撞雷达系统有调频连续波(FMCW)雷达和脉冲雷达两种。对于脉冲雷达系统,当目标距离很近时,发射脉冲和接收脉冲之间的时间差非常小,这就要求系统采用高速信号处理技术,近距离脉冲雷达系统就变的十分复杂,成本也大幅上升。因而汽车毫米波雷达防撞系统常采用结构简单、成本较低、适合做近距离探测的调频连续波雷达体制。 毫米波FMCW雷达系统结构 FMCW汽车雷达系统如图1所示,包括天线、收发模块、信号处理模块和报警模块或汽车制动装置。 射频收发前端是雷达系统的核心部件。国内外已经对前端进行了大量深入研究,并取得了长足的进展。已经研制出各种结构的前端,主要包括波导结构前端,微带结构前端以及前端的单片集成。国内研制的射频前端主要是波导结构前端。一个典型的射频前端主要包括线性VCO、环行器和平衡混频器三部分,如图2所示。前端混频输出的中频信号经过中频放大送至后级数据处理部分。数据处理部分的基本目标是消除不必要信号(如杂波)和干扰信号,并对经过中频放大的混频信号进行处理,从信号频谱中提取目标距离和速度等信息。

固定流动电子狗测速原理

固定流动电子狗测速原理 什么是电子狗?反流动测速雷达的灵敏度越高是否越好?好启点为你介绍固定流动电子狗是怎样来测速的。 电子狗的使用是越来越广,简直是到了随处都可以看到电子狗身影的地步,而电子狗确实也不失大众所望,给车主带来很多便利,国内的电子狗的行业已经有长足的进步,而电子狗也迎来了它自己的春天。 电子狗是一种车载装置,作用是提前提醒车主电子眼或测速雷达的存在,以便车主减速行驶,可 减少甚至防止因为超速或违规而被罚款和扣分,让驾驶者安心驾驶,安全驾驶,尽得驾驶真趣,又叫安全驾驶预警机。 很多人都知道电子狗中有一款电子狗叫雷达流动测速电子狗的,它的反流动测速雷达是非常强悍的,雷达流动测速电子狗是一种检测雷达流动测速仪的设备,安装在汽内,可以在一定距离内检测到周围是否有雷达流动测速仪。在汽车在行使过程中,当汽车靠近雷达流动测速仪时雷达流动测速电子狗则会发出声音作为提示,司机可以降低车速。 那是不是反流动测速雷达的灵敏度越高越好呢?普遍上认为反流动测速雷达的灵敏度越高越好,但是考核反流动测速雷达的指标除了灵敏度外,还要考核反流动测速雷达的误报率。因为,在我们的周围存在许多电信号,随着灵敏度的提高,误报的比率也会提高。单纯在高速路行使还好,一旦进入城市就如同草木皆兵,到处都响,而城市的边缘是个模糊的概念,所以使用City模式会变得复杂。因此,并不是灵敏度越高越好,重要的是能够提供足够的预警距离,根据实际使用状况100-400米的范围就可以满足使用要求,从100公里减速到0通常需要60米左右的距离,而超速时并不需要加速到0,只要减速到正常水平有2、3秒时间就足够了,所以驾驶员也需要不断地提高使用技巧。 电子狗=固定+流动介绍: 目前市场大部分的电子狗都是固定+流动二合一电子狗。 一.固定:指凡是能看见的交警道路测速、拍照的所有不动的固定电子眼,包括:红绿灯照相、压线照相、电子监控等等!早期厂家通过在各固定电子眼的周边埋天线的方式发射信号,电子狗里面安装接收电路的方式来报警,由于需要定期给发射器换电池,其维护成本繁重!故该方式已淘汰! 目前电子狗的固定报警全采用GPS数据播报,厂家采集车队到全国各地的固定电子眼进行经、纬度坐标采集,进行统一编程,储蓄到电子狗的内存芯片里。顾客汽车的里电子狗与卫星通讯,准确找到目前的位置,当汽车行驶到前方电子眼的时候,储存器内的数据就会播报该电子眼的详细数据,例如:“前方为固定测速路段,限速80公里”等等。固定播报的优劣取决于各厂家采集电子眼数据的详细程度,另外每年新增的电子眼,也需要厂家定时去新增采集,目前国内有采集实力的厂家为:好启点、征服者、先知、善领。 固定播报的优劣另外还取决于厂家是否定期升级网站数据,升级的越频繁,代表数据的更新程度越快!好启点飞机电子狗,全国数据即时采集,时时更新,数据更即时。 二.流动:指道路上面交警使用的流动警车雷达、流动架接雷达、手持测速雷达、固定测速雷达。这些设备都会通过发射雷达波测试目标车辆的速度,如果超度将被拍罚款和扣分!目前测速雷达所用的频段主要有:X、K、Ka、Ku、LASER等。由于这些测速设备没有固定的位置,无法采集坐标进行固定播报,但它们必须发射雷达波,因此电子狗内部就安装了接收雷达波的雷达模块,当汽车安装电子狗行驶在道路上,电子狗侦测到前方2000米处有流动雷达波测速,则立即报警。播报方式为:“侦测到。。。频段。。。滴、滴、滴。。。”流动效果的好坏有很大区别,好的雷达2000米就可以提前报警。而差的雷达可能离目标200米才报警!好启点采用韩国最新技术8G跳频雷达以及美国相控阵雷达芯片,让车主们原理罚单。 好启点飞机电子狗特点: 国家级保护商标西南销量第一 固定测速流动测速 100%私模产品独享尊贵 好启点品牌突破100万用户 好启点数据西南地区连续三年第一 功能升级独有免费增值服务

利用多普勒测车速的原理

关于利用多普勒测车速的原理探究 摘要 本文从实例出发,阐述了雷达测速仪的工作原理───电磁波的多普勒效应,以及其实际应用上的一些情况. 关键词 电磁波的多普勒效应 The discovery of the principle of the velometer with Doppler effect Li Hongyang, Zhangyan Lin Weiping Tang Guangzhao , Li Zhuoran (A group from nuclear physics major, the physics department, scu) Abstract this article describes the application of Doppler effect of electromagnetic wave ,and the principle of the radar velometer. Keywords the Doppler effect of electromagnetic wave 背景 假定这种情景:一平直公路放置一测速仪,远方式来一辆车,其速度为v,测速仪发射一列电磁波,其频率为f,在极短时间后收到一频率为f ’的反射波.现在需要由f,f ’求v. 由于发出的为电磁波,经典运动理论下的多普勒公式已远远不够.再次我们避开四维坐标,用洛仑兹变换与狭义相对论来推导相对论下的多普勒效应. 令静止参考系为K 系,运动参考系为K ’系 则有 ①, ② 而由洛仑兹变换知: ③ ∴ ④ ⑤ 联立③④⑤得: ⑥ 2 2 2 01c u c m E -=2220'1'c u c m E -=????? ? ? ?? ??? -===-=γγ2''''c vt t t z z y y vt x x ?? ?????? ?? ??? ??-=-=-=221'1''c vu u u c vu u u vt u u x z z x y y x x γγγ2222''''z y x u u u u ++=2222z y x u u u u ++=22222 11'1c vu c u c u x --=-γ

最新厂区车辆雷达测速抓拍系统方案介绍

厂区车辆雷达测速抓拍系统方案介绍

厂区车辆雷达测速抓拍系统方案 第一章概述 (2) 1.1 项目背景 (2) 1.2 目前国内外情况 (2) 1.3项目建设目标 (3) 第二章系统组成 (4) 2.1 系统描述 (4) 2.2 系统构成 (5) 2.3 车辆固定式测速系统 (5) 2.3.1 前端视频记录系统 (6) 2.3.2主控抓拍系统 (8) 2.3.3辅助照明子系统 (8) 2.4指挥中心控制系统 (9) 2.5工作站管理系统 (11) 2.6号牌识别系统 (12) 第三章系统工作原理和流程 (14) 3.1系统原理图 (14) 3.2系统工作原理 (14) 3.3工作流程 (15) 3.3.1 监测点系统工作流程 (16) 3.3.2 执勤点工作流程 (17) 第四章技术特性和指标 (18) 4.1系统基本功能 (18) 4.2系统特性 (21) 4.3系统性能指标 (23) 4.4 号牌识别系统技术指标 (24)

第一章概述 1.1 项目背景 车辆超速驾驶行为是引发交通事故的重要因素,也是普遍存在的问题。由于车速快,司机对路面情况、前方车辆、行人等各种情况的反应时间短,同时由于车速快而导致在发生紧急情况时制动距离长,轻者造成追尾,车辆受到损坏;重者导致人身伤亡,给社会和家庭带来重大损失和痛苦。据统计,交通事故中有10%以上是由于超速而引起的。及时发现超速,并对其进行批评、教育、经济处罚是减少超速违法行为、维护道路安全的重要手段。因此,必须采取有效手段,严肃治理违法超速行驶行为,使驾驶员严格按道路限速规定要求行驶,减少由于超速引起的交通事故与违法现象。 因此利用现代高新技术,建设一套完善的超速驾驶行为自动记录和取证、处罚系统,是实现有效的交通管理和监控,降低超速交通事故的主要手段。系统建成后,可有效检测和记录各路段超速行驶的车辆,对违法行驶驾驶员进行教育和处罚,最终达到让驾驶员自觉遵纪守法、遵章驾驶的目的,在降低交通事故发生率,提高安全和畅通行车能力等方面具有深远的意义。 1.2 目前国内外情况 目前,世界上所采用的“超速检测电子警察”设备主要由:感应线圈测速器、激光测速仪、雷达测速仪与摄像机或数码相机的组合而成。 感应线圈式检测器是传统的交通检测器,车辆通过埋设在路面下的环形线圈,引起线圈磁场的变化,检测器据此计算出车辆行驶速度。此种方法由于必

国博士能BUSHNELL测速仪手持测速枪测速仪使用说明书

品牌:美国博士能 介绍:美国博士能BUSHNELL测速仪手持测速枪测速仪 10-1911 产品名称: BUSHNELL测速仪/手持测速枪/测速仪 产品型号: Velocity Speed Gun 产品展商: 连云港金升科技有限公司 简单介绍 BUSHNELL测速仪/手持测速枪/测速仪美国BUSHNELL雷达测速仪/手持测速枪/测速仪测速范围汽车:10-200 英里/小时(即:16-320公里/小时) 高尔夫、网球等:10-110英里/小时(即:16-177公里/小时)测量距离汽车: 0~450米高尔夫、网球等:0~27米精 度 +/- 1.0 MPH (+/-2.0KPH) BUSHNELL测速仪/手持测速枪/测速仪的详细介绍 BUSHNELL测速仪/手持测速枪/测速仪美国BUSHNELL雷达测速仪/手持测速枪/测速仪雷达测速仪BUSHNELL Velocity Speed Gun特点: 人类乐忠于速度,但问题是很难去测量它!如今,难题已成为了历史!BUSHNELL最新推出了VELOCITY型性能优越的雷达测速仪!以其外型轻巧、操作简便、迅速受到广大测速爱好者的欢迎。超大清晰的LCD显示屏,读数清晰方便!享受无穷测速乐趣! 操作方法: 正确安装电池后,合上电池后盖,轻按显示屏下方电源开关,沿物体运动方向瞄准物体并按下操作键,即时,运动物体的速度便会实时显示在显示屏上面!轻按显示屏下方电源开关,持续轻按大约3秒钟,当显示屏上显示,3,2,1后雷达测速仪将关机。或者雷达测速仪在一段时间不用时,也会自动关机。 当仪器长时间不用时间时,请取出电池。 单位切换: 当用户想要进行单位切换时,只需将液晶显示屏下方的电源按钮及仪器下方的发射按钮同时按下,即可进行MPH(英里/小时)于KPH(公里/小时)的单位切换。 雷达测速仪BUSHNELL Velocity Speed Gun技术参数: 测速范围汽车:10-200 英里/小时(即:16-320公里/小时) 高尔夫、网球等:10-110英里/小时(即:16-177公里/小时) 测量距离汽车: 0~450米 高尔夫、网球等:0~27米 精度 +/- 1.0 MPH (+/-2.0KPH) 单位显示:英里/小时(MPH)或公里/小时(KPH) 显示:LCD数显尺寸:109x213x512mm 棒球雷达测速仪BUSHNELL Velocity Speed Gun注意事项: 1. 若雷达与被测的目标在同一方向上,则测试的速度是准确的,由于实际测试过程存在夹角的问题,会产生测试的误差,随着角度的增加,误差也在增大,这种现象被称为余弦效应。故在测量物体速度时,请尽量与被测物体的运动路线保持一致或者尽量减小发射波路线与运动物体路线间的夹角。使测量更加精确稳定! 2. 原仪器不带电池,用户可自配。 3.电池寿命根据电池性能及使用频率而定。 4.保修条款: 所有型号的产品自售出之日起,均享受一年的免费维修服务,但是人为造成的误操作或者使用不当除外。

多普勒测速仪工作原理

浏览次数:110次悬赏分:0|解决时间:2011-8-24 19:30|提问者:匿名 最佳答案 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 多普勒测速仪仪器介绍 TSI的LDV/PDPA系统 LDV/PDPA的主要装置和原理 激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。 LDV/PDPA测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以?角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。LDV/PDPA系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 LDV/PDPA系统从功能上分为:光路部分、信号处理部分。光路部分:采用He-Ni激光器或Ar离子激光器,是因为它们能够提供高功率的514.5nm,488nm,476.5nm三种波长的激光。带有频移装置的分光器将激光分成等强度的两束,经过单模保偏光纤和光纤耦合器,将激光送到激光发射探头,调整激光在光腰部分聚焦在同一点,以保证最小的测量体积,这一点就是测量体即光学探头。接受探头将接受到的多普勒信号送到光电倍增管转化为电信号以及处理并发大,再至多普勒信号分析仪分析处理后至计算机记录,配套系统软件可以进行数据处理工作。在流场中存在适当示踪粒子的倩况下,可同时测出流动的三个方向速度及粒子直径。 TSI公司在国际上第一个生产商业化的LDV/PDPA系统,现在的TSI公司的LDV/PDPA系统已经拥有4项专利设计,并且在流场、湍流、传质、传热、流型、燃烧研究上有广泛的使

24GHz汽车毫米波雷达实验报告

24GHz汽车毫米波雷达实验报告 是德科技射频应用工程师王创业1. 前言 汽车毫米波雷达越来越多的被应用在汽车上面,主要作为近距离和远距离探测,起到防撞、辅助变道、盲点检测等作用。随着器件工艺和微波技术的发展,毫米波雷达产品越来越小。俗话说:“麻雀虽小,五脏俱全”,同样汽车毫米波雷达作为典型的雷达产品,也包含收发天线、发射部分、接收部分、DSP部分。典型原理框图如图1所示。汽车毫米波雷达的性能指标主要体现在测速精度、定位精度、距离分辨率、多目标识别等方面,要实现这些性能和功能,首先要做好整体系统的设计和仿真,其次对于各功能部分的性能指标要严格把控测试,最后要在实际现场环境完成测试考核。 汽车毫米波雷达体制上面主要有线性调频连续波FMCW体制雷达、频移键控FSK体制雷达、步进调频连续SFCW体制雷达。不同体制雷达在产品实现复杂程度和应用上都是有区别的。FMCW体制雷达可以同时探测到运动目标和静止目标,但是不可以同时探测多个运动目标。电路需要比较大的带宽。

FSK体制雷达,可以同时探测并且正确区分开来多个运动目标,但是不可以正确测量静止目标。电路带宽比窄,系统响应捕获比较慢,成本比FMCW体制要低很多。SFCW体制雷达,可以同时探测多个静止和运动的目标,并且将各个目标正确区分开来。SFCW体制雷达具有更为复杂的调制波形,信号处理也更为复杂,产品实现成本高。 2.实验目的 在汽车毫米波雷达系统研制过程中,经常会碰到各式各样的问题,譬如系统波形的选择和设计、系统链路的设计、信号处理算法的选择、微波电路的设计调试、天线的设计。主要的问题主要体现在系统方案、处理算法模拟、微波电路指标调试及对系统性能的影响上。典型的例子,在FMCW雷达系统,雷达探测距离分辨率不仅与信号的调制带宽有关,还与FMCW调制的线性度有关。 利用是德科技平台化解决方案,即软件+硬件+工程师,可以很容易的实现雷达系统设计仿真、处理算法验证、微波电路设计测试、天线设计测试。基于以上的问题,该实验主要实现以下三个目的: 1)软件硬件结合,SystemVue+仪表实现各类信号的产生; 2)系统设计仿真、算法验证 3)VCO线性调制度分析 4)场景信号录制回放和信号分析 3.实验要求 该实验采用FMCW雷达体制,结合SystemVue软件和仪表实现以下功能: 1)汽车雷达信号产生 a.24GHz标准雷达信号产生:Triangle调制信号、Sawtooth调 制信号

机动车超速自动记录监控站系统

机动车超速自动记录监控站系统 (区间测速与单点测速相结合解决方 案) 监控站的功能: ---机动车超速自动记录监控站系统(如图1所示)采用单点式测速与区间测速相结合的方法,单个监控点采用固定式多普勒雷达测速产品测量车辆通过的瞬时速度,而各点之间利用区间方式计算车辆的平均速度,两种方法分别测得的速度还可以互相对照、互相印证。系统根据用户的要求时实监控路面的车流,可以分车道限速、分车型限速,可设置车道的限制车型通行(如大型车辆禁行超车道),可同时设置最高限速与最低限速,可统计车流量、计算平均车间距离等等。它实现了高速公路交通现场无人职守情况下,对各种车辆超速违法行为进行自动监管,准确、实时、高效地帮助交警部门完成对违法超速车辆的取证 图1 机动车超速自动记录监控站系统(区间测速与单点测速相结合解决 方案) 监控设备硬件构成: ——其硬件包括多普勒高精度道路测速专用雷达、高速公路监控专用摄像机(包括全景摄像机和近景摄像机)、网络通讯设备(GPRS路由器或CDM A1X路由器及相应网络适配器)、授时设备、高性能工控机、过载,漏电和短路保护装置、防雷击保护装置、异常情况自动复位装置、独立通道的视频采集卡、防护等级IP55,防雷等级2 级的专用机柜。

监控站的工作原理: ---系统采用高性能工控机为核心,运动物体触发系统控制与工控机相连的相关车道的近景摄像机和全景摄像机道进行车辆全景及近景图片的拍摄,用固定安装的窄波测速雷达测得车道上行驶的车辆的瞬时速度,超过限速值时将数据记录下来,其它图像信息与测速信息传送到主机系统,采用最新数字图像处理(DSP) 技术,以平均每秒不小于25帧的速度对图像中的车牌进行快速实时的识别处理,并从车牌有效识别的图像中选取最佳的图片进行存储,将图片、通过时间及测得的瞬时速度通过GPRS或CDM

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

便携式雷达测速仪产品资料

便携式测速仪(WKMEP)产品资料 便携式测速仪(WKMEP)是在传统雷达测速设备的基础上,便携式测速仪(WKME P)实现了静止状态镜头无切换单、双向测速功能的技术创新,动态巡逻移动测速技术,并领先全球独创了运动状态镜头无切换单、双向测速功能,同时,利用便携式测速仪自身具备的RCS 车型自动识别、回波信号干扰控制等六项专利技术,并根据实际使用需要,使该产品加嵌了包括违法占道、超低速限制在内的多种交通违法行为的取证抓拍功能。 该产品采用工业级嵌入式一体化设计,体积小,轻易便捷,是目前国内ITS(智能交通)领域中最先进的高清雷达测速取证产品。平板窄波雷达具有小角度窄波束、功耗小,能有效的避免相邻车道车辆的速度干扰,对车辆准确定位,确保执法取证的正确性、严肃性、唯一性。高清晰智能工业CCD 摄像机采用全数字逐行扫描、高清移动成像、快速外触发响应、自动白平衡和增益,快速准确的对车辆进行视频检测定位。通过双路检测触发,大大提高对车辆的准确定位,避免相邻车辆的干扰,提高了违法车辆的抓拍的准确性和有效率。 全套系统为一体化设计(测速雷达、摄像机、抓拍处理主 机、显示单元等为一个完整整体),采用ABS外壳,体积2 80mm*210mm*200mm,完整设备重量等于3400kg。设备轻 巧便于车内安装和车外安装,系统配备便携机箱。测速仪在白 天、巡逻车静止和巡逻车巡逻时的全自动测速就超速抓拍工作 能力,系统具有单项或双向同时测速功能。在低照度(阴天、 雨雪天等条件下工作,需要时可选配合适的补光灯,扩展夜间 抓拍功能)。 技术特点: 流畅的线性造型,前后分层设计 三维制导技术,支持运动中的测速 具有静态测速、动态测速功能 具有三种成测速状态:双向、反向、同向测速 小角度窄波速定位准确 常规测量的同时可超低速测量,手动抓拍多种交通违法行为 支持录像功能 GPS定位、校对、确保数据的科学性 一、安装方式 1、车内悬挂式安装。 适用测量状态:静态测量;动态测量。 安装效果图:

高速公路区间测速系统

高速公路区间测速系统 目前区间测速已綷-不算是什么新名词了,国内已綷-有越来越多的城市和地区如上海、杭州、青岛等都已綷-采用区间测速这种形式作为一种有效的违法取证模式。 区间测速系统是基于先进的车辆抓拍技术、车辆牌照自动识别技术、网络通讯技术,来实现的一种新型的超速违法取证系统。该系统通过计算车辆通过路段平均速度的方式来判断是否超速,有效解决了单点测速的易躲避性,更有效地控制超速与减少超速等违法行为的发生。 通过安装在高速公路上的车辆自动抓拍系统,连续不断地捕获车辆图片、识别和记录多个断面上实时通过的车辆信息,包括车辆号牌、通过时间、车辆全景图片、各断面点速度等,将这些信息通过网络(有线或无线)上传至中心处理平台,比对同一车辆在同方向两个断面的通行时间,再根据两个断面间的距离来计算该车辆通过此路段的平均速度,最后根据平均速度判断是否超速。如存在超速行为则自动将违章车辆的数据及图片等相关信息通过后台管理平台进行声光报警,并可根据需要以短信的形式发送给附近和现场的值勤交警,或将信息发布在高速公路显示屏上,以对违章车辆进行及时告知和警示更多的车辆。系统处理得到的所有违章车辆及相关图片将作为违章信息源提供给违章系统作进一步处理。

系统设计目标 1、实用性 系统以现行需求为基础,应采用当今国内外先进的软硬件应用技术,选择性价比较高的产品,适应未来发展的要求。另一方面,采用的系统硬件设备应该已广泛安装应用,充分考虑交通管理发展需求,充分保障项目后续维护工作。 2、技术先进性和成熟性 在设计思想、系统架构、所采用的技术、选用的平台上均具有一定的先进性、前瞻性,并考虑到一定时期内的变化趋势。在充分考虑架构先进的同时,采用技术成熟、市场占有率高的产品,从而保证建成的系统具有良好的稳定性。 3、标准化 系统设计、开发、建设遵裓-公安部相关标准,并使产品标准化。 4、兼容性和易维护性 系统选用的主要软硬件设备、接口采用国家通用标准,不仅具有较好的兼容性,而且具备较好的开放性和升级扩展能力,随着未来业务的发展,便捷地扩展系统规模,最大限度地保护已有投资。 5、可靠性和安全性 系统采用所有硬件均为嵌入式一体化设备、结构采用分布式结构,系统配置灵活、布局合理,能够满足长时间稳定运行。同时系统采用DSP水印加密技术,从数据源头对数据加密,从根本上解决数

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

交警测速仪原理

交警测速仪原理 很多城市设立了抓拍路口违章的“电子眼”,本人根据3年多的开车经验、闯红灯经验,再加上向交警朋友的数年虚心讨教,终于弄懂了电子警察工作原理,希望对各位车友的行车有所帮助,知己知彼,百战不殆嘛。 1.电子眼采用感应线来感应路面上的汽车传来的压力,通过传感器将信号采集到电脑,并将信号暂存(该数据在一个红灯周期内有效); 2.在同一个时间间隔内(红灯周期内),如果同时产生两个脉冲信号,即视为“有效”,简单地说,就是如果当时红灯,你的前轮子过线了,而后轮子没出线,则只产生了一个脉冲,在没有连续的两个脉冲时,不拍照; 3.有些情况是:有的人开车前轮越过线了,怕被拍到,于是他又倒一下车,回到线内,结果还是被照了,什么原因?就是因为一前一后,产生了“一对”脉冲信号(这一对脉冲是在同一个红灯周期内产生的); 4.黄灯亮时,拍照系统延时两秒后启动;红灯亮时,系统已经启动;绿灯将要亮时,提前两秒关闭系统,主要是为了防止误拍。所以很多出租车司机都知道,差不多就可以走了,一样没事,就这个道理。严重建议大家不要这样做,因为时机比较难把握哟。 后期处理: 当图像被下载传输指挥中心以后,就需要对图像进行登记、编号、公告,再传输到中心计算机数据库,以备各种机关调用。 系统特点: 车辆捕获率——100%(不包括二轮摩托车等)。

识别时间——约1秒。 车牌识别率——白天95%以上,晚上90%以上(比较高啊)。 适用车速——5-180Km/h(如果你开190,它连个鬼都拍不到)。 交警查超速主要就两大类,一是雷达波测速,二是摄像机测速。 雷达波测速主要用于流动测速,配合摄像机拍号牌,主要用于高速及无固定测速路段,原理就是测速机发射某频率雷达波,锁定你的车,通过雷达波反射测定车速。此类测速较隐蔽,通常以流动测速车停在高速的临时停车处为主,也有通过手持测速仪隐藏在树后。我在高速上遇到过的测速车有依维柯和桑塔纳改装的,一般车顶有天线,还有拿手持的坐到车里,外面看不见,不小心就被抓到了。 摄像机测速的是固定测速,原理就是车通过该摄像机摄像区时通过你的位移及时间测定车速。此类测速基本很醒目,很远处你就会看到路的上方有横贯路面的铁架子,上面会摆很多摄像机,由于条件的限制,摄像机装在哪里就再也不会动了,所以如果你有一次被拍到,相信不会有第二次了。当然少数也很隐蔽,比如装在人行天桥或者立交桥下面,有时候不注意离近了才发现,踩刹车已经晚了。还有更损的装在人行天桥或立交桥的背面,你从正面行驶的过程中是不可能看见的,当你高速行驶过去时尾部的车牌已经被拍了下来。 还有很多种测速模式,比如压感测速,固定雷达测速等,国内用的比较少,就不做分析了

雷达测速的应用与基本原理

雷达测速的应用与基本原理 应用 在交通工程上,速度是计量与评估道路绩效和交通状况的基本重要数据之一。速度数据的搜集方法有许多种,包括人工测量固定距离行驶时间、压力皮管法、线圈法、影像处理法、雷达测速法与激光测速法等。其中后两者属于携带容易而且精确度高的方法,因此广受采用。 超速行车在交通违规中占有极大比例,此一现象可从高速公路过去四年间违规告发项目中,超速案件比例均在三分之二左右看出端倪,而超速行车一直被认为是肇事之重要因素之一;因此从交通执法观点而言,取缔超速系比较具体的维护交通安全之手段。国内取缔违规超速一向以雷达测速枪当工具,径行举发案件则辅以照相设备;只是近年来,雷达侦测器盛行,价格普及化之后,即使法规明令禁止使用,一般民众仍趋之若鹜,因为其价格只需逃避一至两次取缔的机会即可完全回收成本。以交通工程观点来看,驾驶人若装有雷达侦测器,则路边定点所测得的车速即会因驾驶人感知受测速,误以为警察人员执行取缔而有普遍减速现象;除造成数据失真外,并因而有引起事故之可能。 折叠编辑本段基本原理 雷达为利用无线电回波以探测目标方向和距离的一种装置。雷达为英文Radar一字之译音,该字系由Radio Detection And Ranging一语中诸字前缀缩写而成,为无线电探向与测距之意。全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,因而改写了历史。二次大战后,雷达开始有许多和平用途。在天气预测方面,它能用来侦测暴风雨;在飞机轮船航行安全方面,它可帮助领港人员及机场航管人员更有效地完成他们的任务。 雷达工作原理与声波之反射情形极类似,差别只在于其所使用之波为一频率极高之无线电波,而非声波。雷达之发射机相当于喊叫声之声带,发出类似喊叫声之电脉冲(Pulse),雷达之指向天线犹如喊话筒,使电脉冲之能量,能集中某一方向发射。接收机之作用则与人耳相仿,用以接收雷达发射机所发出电脉冲之回波。 镭射的英文为Laser,这个字是由Light Amplification by Stimulated Emission of Radiation的第

毫米波雷达测距原理

毫米波雷达测距原理(77GHz FMCW) 本章摘要:介绍什么是调频连续波(FMCW),它是如何进行测距的,测距分辨率分析,测距范围分析。 调频连续波测距的基本原理: 1、发射波TX为高频连续波,其频率随时间按一定规律规律变化。 2、发射波TX遇到物体之后反射,接收器接收到反射波RX。 3、信号的发射到接收,产生一定的时间间隔 t。由这个时间间隔,得到频率差值信号IF signal。 4、对频率差值信号,进行FFT变换,得到对应的频谱。频谱的峰值处对应的频率 f 和距离 d 具有对应关系,进而得到距离d。 5、测距分辨率的分析。 6、测距范围的分析。 上面只是调频连续波测距的整体逻辑,不太清楚没关系,下面逐步进行详细的分析: 一、调频连续波的发射信号TX 发射波为高频连续波,其频率随时间规律变化。一般为锯齿形,三角形,这里介绍锯齿形,其基本组成称为chirp,下面为其性质。 二、接收信号RX

1、合成器生成chirp信号。 2、发射天线发射信号TX。 3、接收天线接收反射回来的信号RX。 4、经过mixer,得到发射信号TX与接收信号RX之间的差值信号IF signal。过程如下: 三、时间差值 t,以及差值信号 IF signal ?由于雷达到障碍物之间有一定的距离,从信号发射,到返回接收,有一定的距离,这个距离就产生了接收时间差值t =2d/c,其中d 为雷达到障碍物的距离,c 为光速。 ?将发射/接收信号放在一个图里面,就得到如下的图。从图中可以看出,接收信号与发射信号一样,只是延迟了时间 t。 ?它俩经过mixer得到差值信号 IF signal ,其频率为 f= s*t,s为chirp的斜率,s = B/Tc。 ?由 t =2d/c,f= s*t,s = B/Tc 可以得出障碍物的距离 d 与 IF signal 信号频率 f 之间的关系式: d = f * c * Tc / (2B)。所以分析出了频率f,就可以得到距离d。 四、对IF signal 进行FFT变换,得到对应的频率 f,然后求得距离d

雷达测速原理简介及系统应用

测速雷达原理 雷达原理简介 首先,大家必须先了解雷达的基本原理,因为雷达仍是当前用来检测移动物体最普遍的方法。雷达英文为RADAR ,是Radio Detection And Ranging 的缩写。所有利用雷达波来检测移动物体速度的原理,其理论基础皆源自于「多普勒效应」,其应该也是一般常见的多普勒雷达(Doppler Radar),此原理是在19世纪一位澳地利物理学家所发现的物理现象,后来世人为了纪念他的贡献,就以他的名字来为该原理命名。 多普勒的理论基础为时间。波是由频率及振幅所构成,而无线电波是随着波而前进的。当无线电波在行进的过程中,碰到物体时,该无线电波会被反弹,而且其反弹回来的波,其频率及振幅都会随着所碰到的物体的移动状态而改变。若无线电波所碰到的物体是固定不动的,那么所反弹回来的无线电波其频率是不会改变的。然而,若物体是朝着无线电线发射的方向前进时,此时所反弹回来的无线电波会被压缩,因此该电波的率频会随之增加;反之,若物体是朝着远离无线电波方向行进时,则反弹回来的无线电波,其频率则会随之减小。下图为多普勒雷达(Doppler Radar)的基本原理图标: CS R-28测速雷达所应用的原理,就是可以检测到发射出去的无线电波,与遇到运动物体反弹回来的无线电波其间的频率变化及I 通道和Q 通道的相位变化。由频率的变化,依特定的比例关系,而计算出该波所碰撞到物体的速度。由I 通道和Q 通道之间的相位关系,计算判断运动物体是朝着无线电波的方向前进或朝其反方向前进。 根据多普勒原理,由于雷达发射和接受共用一个天线,且运动目标的运动方向与天线法线方向相一致,运动目标的多普勒频率fd 符合下列关系式。 (1) f d = 2V r f t C

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

相关文档
最新文档