蜡油加氢装置简介分解

蜡油加氢装置简介分解
蜡油加氢装置简介分解

100万吨/年蜡油加氢装置装置简介

中国石化股份有限公司

上海高桥分公司炼油事业部

2007年3月

编制:何文全审核:严俊校对:周新娣

目录

第一章工艺简介 (1)

一、概述 (1)

二、装置概况及特点 (1)

三、原材料及产品性质 (2)

四、生产工序 (4)

五、装置的生产原理 (5)

六、工艺流程说明 (5)

七、加工方案 (6)

八、自动控制部分 (10)

九、装置内外关系 (11)

第二章设备简介 (13)

一、加热炉 (13)

二、氢压机 (13)

三、非定型设备 (13)

四、设备一览表 (15)

五、设备简图 (20)

第一章工艺简介

一、概述

中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。

二、装置概况及特点

1.装置规模及组成

蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。本装置为连续生产过程。主要产品为蜡油、柴油、汽油。

本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。

2.生产方案

混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。热低分气相经冷凝冷却至冷低分,冷低分的液相至汽柴油加氢装置。

3.装置平面布置

在总体布置,节约用地的基础上,根据生产流程、防火、防爆、安全、卫生、环境保护、施工、检修等要求,结合场地自然条件,紧凑、合理地布置。力求工艺流程合理,物料流线短,并充分依托、利用现有设施和资源,节约建设投资,同时满足生产、操作、节能、有利管理的要求。

本装置建东有#3常减压蒸馏装置,建南是常减压装置的原料罐区,建西是延迟焦化装置,建北与催化重整装置组成联合装置,加热炉、氢压机、控制室等集中布置,功能分区,保留6米宽的消防、检修通道,达到节约用地、节能、安全、紧凑的要求。防火间距符合规范。

4.工艺技术特点

⑴为避免原料油与空气接触氧化产生聚合物,减轻高温部位的结焦,故在原料油缓冲罐的罐顶采用了燃料气保护。

⑵原料油经预热后与氢气在换热器前混合,这样可提高换热器的换热效率,减少进料加热炉炉管结焦。

⑶在热高分顶出口空冷器上游设置注水设施,避免铵盐析出堵塞管线和设备。

⑷循环氢系统增加脱硫塔,进行脱除硫化氢。

⑸在反应部分的流程设计中,考虑了催化剂预硫化设施。预硫化采用液相预硫化方法,预硫化油为直馏煤油,硫化剂为二甲基二硫。催化剂再生按器外再生考虑。

⑹分馏部分采用单塔汽提流程,即从反应油气中分离出来的液相反应生成油先进入脱硫化氢塔,用过热蒸汽汽提方法将硫化氢脱除,然后至催化装置热进料或者冷却后去罐区。脱硫化氢塔脱除的含硫化氢干气自压至制氢装置或干气脱硫装置。

⑺本装置的最主要工艺特点就是采用了热高分流程。热高分流程能充分地利用热能,降低能耗,它主要是将反应生成物经热高压分离器及热低压分离器分离后,大部分的液相物料不必经过冷却后再换热的过程,而直接由分离器压至分馏部分,这样使热量得到了最有效的利用。

三、原材料及产品性质

1.原料

本装置的原料为焦化蜡油和减压蜡油的混合原料。

本装置的补充氢由80万吨/年连续重整装置提供,其组成详见表3

2. 产品

本装置的主要产品为汽油、柴油和蜡油。

3. 辅助材料性质

⑴催化剂及保护剂的物化性质

⑵二甲基二硫

市售工业标准

⑶苯甲酸胺

市售工业标准

⑷直馏煤油

四、生产工序

本装置的生产工序分为反应、分离和循环氢脱硫三部分。

1.反应工序

混合原料自装置外来,在原料油缓冲罐液面控制下,通过原料油过滤器进入原料缓冲罐。自原料缓冲罐出来的原料油经原料泵升压后,在流量控制下,经换热器换热后与混合氢混合,经反应流出物/混合进料换热器换热后进入反应进料加热炉加热至反应所需温度后进入加

氢精制反应器,在反应器内进行加氢反应,主要是脱除其中的有机硫、氮、氧化物,以及烯烃饱和,以提高汽柴油的质量。反应产物进入产物分离器,经气液相分离,气相经氢气循环机作为循环氢,液相则进入分馏系统。

2.分离工序

分离工序是将加氢反应后的生成油中的H2S、NH3、H2O脱除,以保证产品中杂质含量合格。反应生成油(柴油蜡油混合组分)从热低分D603进入脱硫化氢塔,塔底用过热蒸汽汽提,以达到脱除杂质的目的。热低分的汽柴油组分直接进柴油加氢装置。

3.循环氢脱硫工序

自D-604顶部出来的冷高分气(循环氢)经脱硫塔前分离器(D-621)分液后进循环氢脱硫塔(C-603),由溶剂再生装置再生后的贫胺液经贫胺液水冷器(E-611)、贫胺液罐(D-620)、贫胺液泵(P-618/A.B)后进入C-603作为吸收剂吸收循环氢中的硫化氢,通过调节冷却水量控制进C-603的贫胺液与脱硫气体的温差为5℃。C-603底部的富胺液回加氢裂化胺再生装置再生。

五、装置的生产原理

焦化蜡油和减压蜡油在一定的温度、压力下,借助于催化剂进行加氢脱金属、脱硫、脱氮、烯烃和芳烃饱和、部分转化等反应,同时对含硫量较高的循环氢进行脱硫。从而使精制蜡油符合催化裂化装置进料的要求。

加氢精制经过几十年的发展,工艺技术水平有了很大提高,并趋于成熟。FF-14催化剂是针对蜡油而开发的加氢精制催化剂,它具有孔结构合理、酸性适中等特点,中型加氢装置评价结果表明:FF-14催化剂在保持高加氢脱氮活性的同时,催化剂的加氢脱硫活性明显高于参比剂,可以提高蜡油加氢精制装置脱硫能力,并且不降低脱氮和芳烃饱和能力。故本次设计采用FF-14催化剂。

本次蜡油加氢精制装置技术改造,利旧原汽柴油加氢精制装置,工艺流程仍采用热高分流程,新增循环氢脱硫系统,停开分馏塔C602。

六、工艺流程说明

温度80℃的减压蜡油和焦化蜡油在罐区用泵送入装置后按一定比例混合,通过原料油过滤器(FL-601/A.B)除去原料中大于25微米的颗粒后,进入原料油缓冲罐(D-601),该罐顶用燃料气进行气封,以达到隔绝空气、防止油品氧化之目的。然后用进料泵(P-601/A.B)将混合蜡油从D-601抽出升压后,经原料油/精制蜡油换热器(E-604/A.B)换热后与混合氢混合,该混合进料经反应流出物/混合进料换热器(E-601/A~C)换热后进入反应进料加热炉(F-601),加热至350?C(末期375℃)后进入加氢精制反应器(R-601)。

由R-601出来的反应物经E-601/A~C与混合进料换热温度降至220?C后,进热高压分离器(D-602)。热高分气体经热高分气/混合氢换热器(E-602)、热高分气空冷器(A-601/A~D)、热高分气冷却器(E-603)冷至45?C后进入冷高压分离器(D-604) 进行油、气、水三相分离。为防止热高分气在冷却过程中析出铵盐,堵塞管路和设备,通过除盐水泵(P-602/A~C)抽取除盐水罐(D-611)的除盐水,注入A-601前。自D-604顶部出来的冷高分气(循环氢)经脱硫塔前分离器(D-621)分液后进循环氢脱硫塔(C-603),由加氢裂化胺再生装置后的贫胺液经贫

胺液水冷器(E-611)、贫胺液罐(D-620)、贫胺液泵(P-618/A.B)后进入C-603作为吸收剂吸收循环氢中的硫化氢,通过调节冷却水量控制进C-603的贫胺液与脱硫气体的温差为5?C。

C-603底部的富胺液回加氢裂化胺再生装置再生。脱硫后的循环氢经循环氢压缩机入口分液罐(D-610)分液、循环氢压缩机(K-602)升压后,与来自新氢压缩机(K-601/A.B)出口的新氢混合成为混合氢循环使用。D-604的油相经液控阀降压后进入冷低压分离器(D-605)。

D-602的热高分油经液控阀降压后,进入热低压分离器(D-603),D-603气相经热低分气冷却器(E-605)冷却到45?C后与冷高分油混合进入冷低压分离器(D-605)。D-603底部的热低分油(精制蜡油)进入脱硫化氢塔,塔底用过热蒸汽汽提,以达到脱除杂质的目的。C601底油与原料油在E-604/A.B换热至160?C后作为热出料至催化裂化装置。停工时精制蜡油通过精制蜡油空冷器A-604/A~D冷却至90?C去罐区。D-605的冷低分油(汽柴油),去柴油加氢精制装置。停工时去罐区。

D-604 、D-605底部排出的含硫污水自压至酸性水处理装置。D-605顶部的含硫气体,自压至140万吨/年加氢裂化装置脱硫塔。D-610排放的废氢自压至火炬管网。

压力为1.9~2.0MPa的补充氢由连续重整装置来,经新氢压缩机入口分液罐(D-608)分液后,再经新氢压缩机(K-601/A.B)升压后与K-602出口的循氢混合成为混合氢。

七、加工方案

1.物料平衡

4.消耗指标

5.辅助材料及消耗

6.主要操作条件

⒎操作条件的影响

7.1 加氢反应器

影响加氢转化催化剂活性因素甚多,不同使用条件如温度、压力、空速、H2/油,将直接影响原料中有机硫的转化率,故选择合适的操作条件对有机硫加氢转化活性极为重要。

①反应温度

有机硫加氢转化反应是放热反应,因此从热力学角度看,降低温度有利于转化反应,温度越低,有机硫的平衡浓度愈低,但因为加氢转化反应的平衡常数较大,因此从提高反应速度着想,反应应在较高温度下进行。因此操作温度一般为280~370℃。如400℃就有可能产生聚合结焦副反应(尤其对C7以上重质烃最重要)。当温度超过430℃时可能发生析炭反应,放出的大量热使催化剂床层飞温,损坏催化剂和设备。因此,反应温度应严格控制,特别是对含烯烃较多或碳氧化物含量较高的原料,反应起始温度不要控制的过高。

②操作压力

从反应式可知,加氢反应所得产物,其总分子数稍有减少,因此,提高压力有利于反应向生成物方向进行。反应速度与压力的0.5~0.6次方成正比,同时,提高压力可抑制结焦反应的发生,有利于保护催化剂的活性和延长催化剂的使用寿命。

③氢油比

在加氢系统中,氢分压高对加氢反应在热力学上有利,同时也能抑制生成积碳的缩合反应.维持较高的氢分压是通过大量氢气循环来实现的。因此,加氢过程所用的氢油比大大超过化学反应所需要的数值,提高氢油比可以提高氢分压。有利于传质和加氢反应的进行;另

外,大量的氢气还可以把加氢过程放出的热量从反应器内带走,有利于床层温度的平衡。但是氢油比的提高也有一个限度,超过了这个限度,使原料在反应器内停留时间缩短,加氢深度下降,同时增加了动力消耗,使操作费用增大.氢油比也不能过小,太小的氢油比会使加氢深度下降,催化剂积碳率增加,同时,换热器、加热炉管内的气体和液体变得不稳定,会造成系统内的压力、温度波动。因此,要根据具体操作条件选择适宜的氢油比。本装置的氢油比设计值为450:1(体积)。氢油比在正常生产中一般不作较大的调节。如由于客观原因因循环量达不到要求,那么只能通过降低进反应器的原料油来满足氢油比的需要。

④空速

对氢解反应影响较大,由于反应属内扩散控制,空速太高,原料烃在催化剂床层中停留时间缩短,含硫的原料未能进入内表面即穿过催化剂床层,使加氢反应不完全,同时也降低了催化剂的内表面利用率。

实际操作中,空速太低又会降低设备生产能力,本装置设计空速为1.47h-1。在保证出口硫合格的情况下,尽可能提高空速。空速大小的调节是通过提高或降低原料油进反应器的流量来实现的。

7.2脱硫化氢塔

①吹汽量

严格控制好塔底吹汽量,使生成油中的硫化氢、氨水能从塔顶完全脱除。正常生产时吹汽量为塔进料量的2.4~2.8(体积)。

②塔顶压力

汽提塔压力控制是为了保证汽提完全脱除硫化氢和氨水等杂质,并且稳定与分馏塔之间的差压,从而达到合格的原料稳定的进分馏塔,在正常生产时控制压力在0.75~0.85MPa之间,它是通过回流罐排放不凝气的多少来控制的。

③汽提塔进料温度是汽提塔汽提效果好坏的重要因素。进料温度的下限是以能满足汽提塔操作,达到预期的效果,使汽柴油腐蚀合格为界。而其上限为控制塔顶挥发物最少量携带油为界。正常生产时控制其进料温度193~203之间。其温度是由热高分D602温控来决定的,所以在正常生产中一般是不作调节,只需稳定D602的入口温度即可。

④控制好进料量和塔底抽出量搞好塔的物料平衡,正常生产时保持塔的液位40~60%。

7.3 脱硫化氢塔回流罐

①控制好回流罐压力,严禁压力波动引起冲塔。

②控制好油水界面,防止界面过低引起含硫污水带油。以及界面过高引起回流带水。

7.生产控制分析

八、自动控制部分

⒈本装置采用DCS控制系统,对控制点进行分散控制和集中管理,装置设独立运程控制站和操作站,但上位计算机、打印机、数据库与#3FCC、重整装置资源共享,充分发挥联合装置和DCS控制系统优越性,提高经济效益。

⒉本装置控制以单参数控制为主,辅部分串级,分程和选择控制。

⒊装置反应系统的压力用冷高分的气相压力为基础控制点,以此压力分别控制2台新氢压缩机出口返回入口的氢气循环量,保证反应系统的压力稳定在控制点上。

⒋对于维持反应系统的氢分压,采用循环氢压缩机入口分液的气相压力为控制点,控制其顶部废氢的排放量。

⒌循环氢压缩机与重整装置的循环氢压缩机采用一套控制系统(PLC),机柜、卡件箱等设备共用,但操作站各自独立,互为备用,操作站设在氢压机房操作室内,部分关键信号参

数送至中央控制室DCS控制系统。

⒍本装置报警信息分为DCS内部检出一般报警和ESD生成跳闸报警,可在CRT屏幕上显示和打印机打印,并同时可通过音响向操作人员进行报警提示。

⒎本装置设计考虑一套ESD(PLC)紧急停车自动联锁保护系统,以保证装置的安全生产,根据工艺的要求,内容如下:

⑴系统紧急泄压

根据本装置工艺特点,正常生产时反应热不是很激烈,床层温升一般不会出现徒然上升,系统紧急泄压设计手动(遥控)方式,即在反应器温度超温或循环氢压缩机停车使反应器升高超高限,或其它危及装置安全的情况出现时,由人工判断,如需要紧急泄压,则人工启动ESD系统中的紧急泄压按钮,系统紧急泄压时联锁内容为:

①紧急泄压阀自动打开。

②高压进料泵P601/A、B停车。

③进料加热炉F601熄主火嘴。

⑵进料加热炉F601

①反应器入口温度超高限时,人工判别,手动停炉(熄主火嘴)。

②燃料气压力低于主火嘴所需操作压力时自动停炉(熄主火嘴)。

a)热高分液位超低,切断热分至热低分调节阀。

b)冷高分液位超低,切断冷高分至冷低分调节阀。

c)循环氢入口分液罐液位超高,循环氢压缩机停车。

d)在ESD操作面板上设置K601/AB,K602,F601手动停车或停炉按钮。

e)氢压机单体联锁。

九、装置内外关系

系统应向本装置提供原料以及常用的水、氮气、开工蒸汽、风、燃料气等。蜡油加氢精制装置技术改造的边界条件如下:

第二章设备简介

本装置设备类型包括加热炉,反应器,汽提塔、分馏塔、空冷、冷换器、氢压机、机泵、容器等。

一、加热炉

本装置共有2台加热炉及一套加热炉烟气余热回收系统。

1.反应进料加热炉(F601)

根据流量及压降要求,反应进料加热炉采用对流辐射型、双面辐射室卧室立式炉。介质流型设计状态为雾状流。炉辐射室采用单排双面辐射,按其压力等级及其进出口温度,管材采用TP321,其特点是炉管受双面辐射,沿炉管圆周方向受热均匀,又由于是卧管,燃烧器沿长度方向均匀分布,使炉管沿长度方向受热也比较均匀,而且也充分发挥了TP321炉管材质的作用。对流部分上部走过热蒸汽,下部走反应物料,其压降能满足要求。鉴于烧瓦斯,为提高加热炉热效率,对流段炉管除遮蔽管外,均采用翅片管。辐射段炉管采用Cr25Ni20管架支撑,燃料器采用底烧扁平焰燃烧器,共40台,其中有一部分作长明灯用,保证燃气的安全。经计算该炉的热效率为83%左右.该炉的总设计热负荷为7.198MW。

2.分馏塔底重沸炉(F-602)(停用)

分馏塔底重沸炉采用对流——辐射型的立管园筒炉,炉管材质为碳钢,对流段炉管除遮蔽管外,其余为翅片管,燃烧器采用Ⅶ型燃烧器。为进一步提高加热炉的热效率,采用一套自成系统的烟气余热回收系统,可使本炉热效率达到88%以上。余热回收系统的换热设备,采用带全方位吹灰器的热空气预热器。总设计热负荷9.665MW。以上两台加热炉的对流室均设有吹灰器和清扫孔。可定时吹灰,使对流传热保持在最佳状态。

二、压缩机

1.循环氢压缩机(利旧)

选用沈阳鼓风机厂引进按新比隆技术生产的垂直剖分式t级离心式压缩机,型号为BCL407,驱动机为杭州汽轮机厂配套生产的3.5MPa背压式蒸汽透平机,不设备机。

2.新氢压缩机(利旧)

选用对称平衡型往复式压缩机,二级压缩,二列布置,最大活塞力40吨,驱动机为增安型无刷励磁同步电机。设计选用两台压缩机,一台操作,一台备用。

三、非定型设备

本装置中非定型设备共有44台,金属总质量约为1100吨。所有非定型设备均由国内制造,部分材料如2.25Gr-1Mo、BHW35考虑进口。主要非定型设备简述如下:

⒈加氢精制反应器(R601) (利旧)

采用热壁式结构,内设两段催化剂床层,并有进料分配器、冷氢箱、出口收集器等设施。规格:φ3400*133*22310,总质量约241.8吨,可拆内件约16吨。

⒉脱硫化氢塔(C601) (利旧)

脱硫化氢塔采用20层浮阀塔盘,塔底部有汽提蒸汽入口,用于过热蒸汽汽提用。

规格:φ2000/φ3000*12+3/16+3*29070,总质量约40.1吨,可拆件约5.6吨。

⒊分馏塔(C602)(停用)

分馏塔采用30层浮阀塔盘,塔底用重沸炉加热循环。

规格:φ2400/φ 3000*14*38200,总质量约62.43吨,可拆内件约12吨。

⒋循环氢脱硫塔(C603)

塔采用20层单溢流浮阀塔盘。规格:φ1600*21000。

⒌冷换设备(利旧)

高压部分选用V型管系列换热器,换热管规格为φ19;低压部分采用浮头式系列换热器,换热管规格为φ25。

反应流出物/混合进料换热器(E601/A、B、C)的规格为:BIUl400-8.80-683-6.2-21,单台质量约53吨。9.79 19

⒍容器(利旧)

在油、气、水三相分离的冷高压分离器和冷低压分离器的设计中,采用立式容器,为保证油水的分离,容器中设置了凝聚器,以减少油中水雾的夹带。

热高压分离器(D一602)的规格为:φ3000*70*12914,总质量约70吨。

⒎进料泵(P601/A、B)(利旧)

采用筒形多级离心泵,驱动机可使用隔爆型(YB)或增安型(YA)系列异步电机。进料泵从国外引进,一台操作,一台备用。

四、设备一览表

⒈反应器

2.塔

15

16

17

蜡油加氢裂化装置

180万吨/年蜡油加氢裂化装置 一、工艺流程选择 1、反应部分流程选择 A.反应部分采用单段双剂串联全循环的加氢裂化工艺。 B.反应部分流程选择:本装置采用部分炉前混氢的方案,即部分混合氢和原料油混合进入高压换热器后进入反应进料加热炉,另一部分混合氢和反应产物换热后与加热炉出口的混氢油一起进入反应器。 C.本装置采用热高分流程,低分气送至渣油加氢脱硫后进PSA部分,回收此部分溶解氢。同时采用热高分油液力透平回收能量。因本装置处理的原料油流含量很高,氮含量较高,故设循环氢脱硫设施。 2、分馏部分流程选择 A.本项目分馏部分采用脱硫化氢塔-吸收稳定-常压塔出航煤和柴油的流程,分馏塔进料加热炉,优化分流部分换热流程。采用的流程比传统的流程具有燃料消耗低、投资省、能耗低等特点。 B.液化气的回收流程选用石脑油吸收,此法是借鉴催化裂化装置中吸收稳定的经验,吸收方法正确可靠,回收率搞。具有投资少、能耗低、回收率可达95%以上等特点。 3、催化剂的硫化、钝化和再生 A、本项目催化剂硫化拟采用干法硫化 B、催化剂的钝化方案采用低氮油注氨的钝化方案 C、催化剂的再生采用器外再生。 二、工艺流程简介 1、反应部分

原料油从原料预处理装置和渣油加氢裂化装置进入混合器混合后进入原料缓冲罐(D-101),经升压泵(P-101)升压后,再经过过滤(SR-101),进入滤后原料油缓冲罐(D-102)。原料油经反应进料泵(P-102)升压后与部分混合氢混合,混氢原料油与反应产物换热(E-101),然后进入反应进料加热炉(F-101)加热,加热炉出口混氢原料和另一部分经换热后的混合氢混合,达到反应温度后进入加氢精制反应器(R-101),然后进入加氢裂化反应器(R-102),在催化剂的作用下,进行加氢反应。催化剂床层间设有控制反应温度的急冷氢。反应产物先与部分混合氢换热后再与混氢原料油换热后,进入热高压分离器(D-103)。 装置外来的补充氢由新氢压缩机(K-101)升压后与循环氢混合。混合氢先与热高分气进行换热,一部分和原料油混合,另一部分直接和反应产物换热后直接送至加氢精制反应器入口。 从热高压分离器出的液体(热高分油)经液力透平(HT-101)降压回收能量,或经调节阀降压,减压后进入热低压分离器进一步在低压将其溶解的气体闪蒸出来。气体(热高分气)与冷低分油和混合氢换热,最后由热高分气空冷器(A-101)冷却至55℃左右进入冷高压分离器,进行气、油、水三相分离。为防止热高分气中NH3和H2S在低温下生成铵盐结晶析出,赌赛空冷器,在反应产物进入空冷器前注入除盐水。 从冷高压分离器分理出的气体(循环氢),经循环氢脱硫后进入循环氢压缩机分液罐(D-108),有循环氢压缩机(K-102)升压后,返回反应部分同补充氢混合。自循环氢脱硫塔底出来的富胺液闪蒸罐闪蒸。从冷高压分离器分离出来的液体(冷高分油)减压后进入冷低压分离器,继续进行气、液、水三相分离。冷高分底部的含硫污水减压后进入酸性水脱气罐(D-109)进行气液分离,含硫污水送出装置至污水汽提装置处理。从冷低压分离器分离出的气体(低分气)至渣油加氢装置低压脱硫部分:液体(冷低分油)经与热高分气换热后进入脱硫化氢塔。从热低压分离器分离出的气体(热低分气)经过水冷冷却后至冷低压分离器,液体(热低分油)直接进入脱硫化氢塔。 2、分馏和吸收稳定部分

年产220万吨蜡油加氢装置工艺管道工程施工组织设计方案

年产220万吨蜡油加氢装置工艺管道施工方案

目录 一、编制依据 (3) 二、工程概况 (3) 2.1工程概况 (3) 2.2主要实物量 (3) 三、施工部署 (5) 3.1劳动力计划 (5) 3.2工机具计划 (5) 四、施工工艺流程 (6) 五、管道、管件及阀门检验 (6) 5.1一般规定 (6) 5.2管子检验 (6) 5.3阀门检验 (7) 5.4其他管道组成件检验 (8) 六、配管材料的保管和发放 (8) 6.1材料保管 (8) 6.2材料的发放 (9) 6.3管道材料发放管理办法 (9) 6.4配管材料色标规定 (9) 6.5材料代用 (9) 七、管道加工 (10) 7.1管道等级划分 (10) 7.2施工准备 (10) 7.3管子切割 (10) 7.4弯管制作 (10) 7.5开孔 (11) 7.6坡口加工 (11) 7.7组对 (12) 八、管道焊接 (13) 8.1焊前准备 (13)

8.2焊材管理 (13) 8.3焊接方法 (14) 8.4焊接工艺参数 (14) 8.5焊接要求 (16) 8.6焊前预热 (18) 8.7焊后(稳定化)热处理 (19) 8.8焊缝标识 (20) 8.9质量检验 (21) 九、管道预制和安装 (22) 9.1管道预制 (22) 9.2管道安装 (23) 9.3与传动设备连接的管道安装 (25) 9.4阀门安装 (26) 9.5支吊架安装 (26) 9.6伴热管安装 (27) 十、管道防腐 (28) 10.1管道表面预处理 (28) 10.2管道防腐 (28) 10.3防腐层检查 (30) 十一、管道系统试验与系统吹扫 (30) 十二、质量保证体系组织机构、主要工序控制点 (30) 12.1项目部质量保证体系组织机构 (30) 12.2工艺管道安装工程主要工序控制点 (31) 十三、JHA工作危害分析 (32)

蜡油加氢装置简介备课讲稿

蜡油加氢装置简介

100万吨/年蜡油加氢装置装置简介 中国石化股份有限公司 上海高桥分公司炼油事业部 2007年3月

编制:何文全审核:严俊校对:周新娣

目录 第一章工艺简介 (1) 一、概述 (1) 二、装置概况及特点 (1) 三、原材料及产品性质 (2) 四、生产工序 (4) 五、装置的生产原理 (5) 六、工艺流程说明 (5) 七、加工方案 (6) 八、自动控制部分 (10) 九、装置内外关系 (11) 第二章设备简介 (14) 一、加热炉 (14) 二、氢压机 (14) 三、非定型设备 (14) 四、设备一览表 (16) 五、设备简图 (21)

第一章工艺简介 一、概述 中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。 二、装置概况及特点 1.装置规模及组成 蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。本装置为连续生产过程。主要产品为蜡油、柴油、汽油。 本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。 2.生产方案 混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。热低分气相经冷凝冷却至冷低分,冷低分的液相至汽柴油加氢装置。 3.装置平面布置 在总体布置,节约用地的基础上,根据生产流程、防火、防爆、安全、卫生、环境保护、施工、检修等要求,结合场地自然条件,紧凑、合理地布置。力求工艺流程合理,物

蜡油加氢装置简介分解

100万吨/年蜡油加氢装置装置简介 中国石化股份有限公司 上海高桥分公司炼油事业部 2007年3月

编制:何文全审核:严俊校对:周新娣

目录 第一章工艺简介 (1) 一、概述 (1) 二、装置概况及特点 (1) 三、原材料及产品性质 (2) 四、生产工序 (4) 五、装置的生产原理 (5) 六、工艺流程说明 (5) 七、加工方案 (6) 八、自动控制部分 (10) 九、装置内外关系 (11) 第二章设备简介 (13) 一、加热炉 (13) 二、氢压机 (13) 三、非定型设备 (13) 四、设备一览表 (15) 五、设备简图 (20)

第一章工艺简介 一、概述 中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。 二、装置概况及特点 1.装置规模及组成 蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。本装置为连续生产过程。主要产品为蜡油、柴油、汽油。 本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。 2.生产方案 混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。热低分气相经冷凝冷却至冷低分,冷低分的液相至汽柴油加氢装置。 3.装置平面布置

加氢裂化装置说明、危险因素及防范措施

仅供参考[整理] 安全管理文书 加氢裂化装置说明、危险因素及防范措施 日期:__________________ 单位:__________________ 第1 页共18 页

加氢裂化装置说明、危险因素及防范措施 一、装置简介 (一)装置的发展及类型 1.加氢装置的发展 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 2.装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。 加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化,高压 第 2 页共 18 页

加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化分离器的操作压力一般为9.OMPa左右。 加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂化流程、串联加氢裂化流程。 一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。 二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。 串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器,但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多为此种流程,本节所述的流程即为此种流程。 二、重点部位及设备 (一)重点部位 1.加热炉及反应器区 加氢装置的加热炉及反应器区布置有加氢反应加热炉、分馏部分加热炉、加氢反应加热器、高压换热器等设备,其中大部分设备为高压设备,介质温度比较高,而且加热炉又有明火,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸是安全上重点防范的区域。 第 3 页共 18 页

加氢装置

加氢装置 拼音:jiaqingliehuazhuangzhi 英文名称:hydrocracker 说明:加氢裂化的工业装置有多种类型。按反应器中催化剂的态不同分为固定床和沸腾床加氢裂化工艺,目前前者是主流。按反应器的作用又分为一段法和两段法。两段法包括两级反应器,第一级作为加氢精制段,除掉原料油中的氮、硫化物。第二级是加氢裂化反应段。一段法的反应器只有一个或数个并联使用。一段法固定床加氢裂化装置的工艺流程是原料油、循环油及氢气混合后经加热导入反应器。反应器内装有粒状催化剂,在 9.8-14.7兆帕(100-150公斤/厘米2)压力,氢油比约为1500:1,400℃左右条件下进行反应。反应产物经高压和低压分离器,把液体产品与气体分开,然后液体产品在分馏塔蒸馏获得产品石油馏分。一段法裂化深度较低,一般以减压蜡油为原料,生产中间馏分油为主。二段法裂化深度较深,一般以生产汽油为主。 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。 装置简介 (一)装置的发展 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 (二)装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。

安庆石化蜡油加氢装置开工过程及问题处理

安庆石化蜡油加氢装置开工过程及问题处理 余春文,李继炳,袁德明 (中国石化股份有限公司安庆分公司,安徽 安庆 246001) 摘 要:着重介绍了蜡油加氢装置反应系统的主要开工步骤,以及在开工过程中出现的主要问题及解决方法,为装置的一次试 车成功提供了保障,同时优化了催化、裂解装置的原料性质,改善了全厂生产汽柴油生产方案。 关键词:蜡油加氢;反应系统;开工步骤;问题;方法 The Starti ng Process and Proble m s Solvi ng ofW ax O il H ydrogenation Unit of Anqi ng Petroche m ical YU Chun -w en,LI J i -bing,YUAN D e -m ing (Anqing Co m pany ,SI N OPEC ,Anhu iAnq i n g 246001,Ch i n a) Abst ract :The w ax o il hydrogenation un it reacto r syste m of the m ajor starti n g step wasm ai n ly focused on .M any m a i n proble m s i n the starting step and the m easures w ere introduced .It prov ided a guarantee for the first starting process suc ceeded .The ra w m aterials of the catalytic unit and cracked un itw ere opti m ized .And the production progra m of the gaso li n e and d iese l opti o ns w as i m proved. K ey w ords :w ax o il hydrogenati o n ;reactor syste m ;startling steps ;prob le m ;m ethod 作者简介:余春文(1966-),男,工程师,现从事炼油技术管理工作。通讯作者:袁德明。 2.2M t a -1蜡油加氢装置是安庆石化8M t a -1炼油扩建改造工程的配套主体装置之一,诣在满足我厂含硫原油加工适应性改造及油品质量升级工程扩建后急剧增加的含硫蜡油处理量的需求,为即将新建的3M t a -1催化裂化装置提供新鲜原料。目前装置生产的精制蜡油作为现有1.2M t a -1催化裂化装置和0.6M t a -1催化裂解装置提供原料。装置采用冷热高、低分流程,增设循环氢脱硫及低分气脱硫系统流程。装置采用北京石油化工研究院(简称石科院)RVHT 工艺技术进行设计,选用RN -32V 型催化剂作为主催化剂。装置设计原料比例为:m (焦化蜡油):m (热直馏蜡油):m (冷直馏蜡油)=15.8 75.9 8.5。 生产硫含量1200 g g -1以下,氮含量900 g g -1 以下的催化裂化原料,副产少量柴油及石脑油。装置于2009年7月28日高标准中交,10月17日一次试车成功,生产出硫含量低于1000 g g -1的合格产品,大大改善了我厂催化裂化装置的原料性质,满足未来市场对低硫柴油供运的需求,优化了全厂生产汽柴油加工方案。 1 装置开工主要步骤 装置建成后,进入开工的起步阶段,各项工作稳步推进,除 反应系统外,其余系统进行水冲洗、水联运。针对我厂氮气少的现状及降低开工成本,反应系统引入中压风(1 6M Pa)进行吹扫及气密,合格后引氮气置换,充压气密至反应系统的操作压力11 04M Pa 。 1.1 催化剂装填 装置用于加氢脱硫和脱氮的主催化剂为RM S -1和RN -32V 催化剂,为减缓反应器顶部因沥青质、残炭等结焦前驱物遇 热生焦造成主催化剂结焦,减少金属在主剂床层的沉积和尽可能促进沥青质的解聚。在反应器上床层顶部依次装填RG -10系列保护剂,保护剂下装填部分大孔径RD M -2脱金属剂,针对我厂原料的沥青质含量偏高的特点,装填RG -10序列保护剂可有效降低进入主催化剂物流中金属、残炭和沥青质含量,减缓主催化剂的聚炭速率,延长装置运转周期(设计3年)。本装置设一台反应器,反应器分三个催化剂床层,保护剂下装填RD M -2脱金属;二床层和三床层主要装填主催化剂RN -32V 。所有催化剂均由石科院开发,中国石化催化剂长岭分公司生产。催化剂装填工作于9月17~21日完成,装填工作相对比较顺利。本次催化剂装填全采用普通装填法进行,主催化剂的物性见表1,装填数据见表2。 表1 主催化剂主要物化性质 项目数据尺寸/w t % 1.3 化学组成/w% WO 23.0M oO 3 2.3N i O 2.3孔体积/(m L g -1) 0.24比表面积/(m 2 g -1) 150堆密度/(g c m -3 ) ~0.95压碎强度/(N mm -1) 18

加氢裂化装置设计能力简介.

加氢裂化装置设计能力简介 1.1装置概况 1.1.1 装置简介 中国石油乌石化分公司炼油厂新建100万吨/年加氢裂化装置于2005年5月10日破土动工,2007年9月30日实现装置中交。由中油第一建筑公司、中油第七建筑公司共同承建。其基础设计部分由中国石化工程建设公司(原北京设计院)完成,详细设计部分由中国石化工程建设公司(SEI)和乌石化总厂设计院(UPDI)共同完成。 100万吨/年加氢裂化装置位于炼油厂建南生产规划区,建东侧与消防二队相邻,建西侧与重催装置隔路相望,建北侧与二套低温热装置毗邻,建南侧为规划预留地。装置占地面积17927.5m2。 加氢裂化装置由反应、分馏吸收稳定两部分组成。装置采用“双剂串联尾油全循环”的加氢裂化工艺。反应部分采用SEI成熟的炉前混氢方案;催化剂的硫化采用干法硫化;催化剂的钝化采用低氮油注氨的钝化方案;催化剂再生采用器外再生方案。分馏部分采用脱硫化氢塔+常压塔出柴油方案,设脱硫化氢塔底重沸炉、分馏进料加热炉;吸收稳定部分采用重石脑油作吸收剂的方案。 加氢裂化装置主要原料为炼油厂二套常减压装置的减压蜡油(VGO)和焦化装置的焦化蜡油(CGO),主要产品为轻石脑油、重石脑油、轻柴油,副产品为干气、低分气。加氢裂化装置设计能力为100万吨/年(尾油全循环方案),年开工时间为8400小时。 1.1.2 工艺原理 1.1. 2.1加氢精制 加氢精制是馏份油在氢压下进行催化改质的统称。是指在催化剂和氢气存在下,石油馏分中含硫、氮、氧的非烃组分和有机金属化合物分子发生脱除硫、氮、氧和金属的氢解反应,烯烃和芳烃分子发生加氢饱和反应。通过加氢精制可以改善油品的气味、颜色和安定性,提高油品的质量,满足环保对油品的使用要求。 石油馏分加氢精制过程的主要反应包括:含硫、含氮、含氧化合物等非烃类的加氢分解反应;烯烃和芳烃(主要是稠环芳烃)的加氢饱和反应;此外还有少量的开环、断链和缩合反应。这些反应一般包括一系列平行顺序反应,构成复杂的反应网络,而反应深度和速率往往取决于原料油的化学组成、催化剂以及过程的工艺条件。一般来说,氮化物的加氢最为困难,要求条件最为苛刻,在满足脱氮的条件下,也能满足脱硫、脱氧的要求。 (1)加氢脱硫反应 硫的存在影响了油品的性质,给油品的加工和使用带来了许多危害。硫在石油馏分中的含量一般随馏分沸点的上升而增加。含硫化合物主要是硫醇、硫醚、二硫化物、噻吩、苯并噻吩和二苯并噻吩(硫芴)等物质。含硫化合物的加氢反应,在加氢精制条件下石油馏分中的含硫化合物进行氢解,转化成相应的烃和H2S,从而硫杂原子被脱掉。几种含硫化合物的加氢精制反应如下: 硫醇通常集中在低沸点馏分中,随着沸点的上升硫醇含量显著下降,>300℃的馏分中几乎不含硫醇。硫醇加氢时发生C-S键断裂,硫以硫化氢形式脱除。 硫醚存在于中沸点馏分中,300—500℃馏分的硫化物中,硫醚可占50%;重质馏分中,硫醚含量一般下降。硫醚加氢时首先生成硫醇,再进一步脱硫。

加氢裂化装置技术问答

第一章基础知识 1.1基础知识 1、什么是不饱和烃? 不饱和烃就是分子结构中碳原子间有双键或三键的开链烃和脂环烃。与相同碳原子数的饱和烃相比,分子中氢原子要少。烯烃(如烯烃、丙烯)、炔烃(如乙炔)、环烯烃(如环戊烯)都属于不饱和烃。不饱和烃几乎不存在于原油和天然气中,而存在于石油二次加工产品中。 2、原料油特性因数K值的含义?K值的高低说明什么? 特性因数K常用以划分石油和石油馏分的化学组成,在评价原料的质量上被普遍使用。它是由密度和平均沸点计算得到,也可以从计算特性因数的诺谟图求出。K值有UOP K值和Watson K值两种。特性因数是一种说明原料石蜡烃含量的指标。K值高,原料的石蜡烃含量高;K值低,原料的石蜡烃含量低。但它在芳香烃和环烷烃之间则不能区分开。K的平均值,烷烃约为13,环烷烃约为11.5,芳烃约为10.5。特性因数K大于12.1为石蜡基原油,K为11.5~12.1为中间基原油,K为10.5~11.5为环烷基原油。另外非通用的分类法还有沥青基原油,K 小于11.5;含芳香烃较多的芳香烃基原油。后两种原油在通用方法中均属于环烷基原油。 原料特性因素K值的高低,最能说明该原料的生焦倾向和裂化性能。原料的K 值越高,它就越易于进行裂化反应,而且生焦倾向也越小;反之,原料的K值越低,它就难以进行裂化反应,而且生焦倾向也越大。 3、什么是油品的比重和密度?有何意义? 物质的密度是该物质单位体积的质量,以符号ρ表示,单位为千克/米3。 液体油品的比重为其密度与规定温度下水的密度之比,无因次单位,常以d表示。我国以油品在20℃时的单位体积重量与同体积的水在4℃时的重量之比作为油品的标准比重,以d420表示。 由于油品的实际温度并不正好是20℃,所以需将任意温度下测定的比重换算成20℃的标准比重。 换算公式:d420=d4t+r(t-20) 式中:r为温度校正值

加氢裂化装置说明危险因素及防范措施

加氢裂化装置说明、危险因素及防范措施一、装置简介 (一)装置的发展及类型 1.加氢装置的发展 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工 过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构 化等,下面重点介绍加氢裂化加工过程。 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术, 其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司 开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得 到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜 利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966 年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 2.装置的主要类型

加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢 处理等类型,这里主要介绍加氢裂化装置。 加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化, 高压加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化 分离器的操作压力一般为9.OMPa左右。 加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂 化流程、串联加氢裂化流程。 一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制 和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。 二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器 装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加 氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。 串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器, 但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具 有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比 较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多 为此种流程,本节所述的流程即为此种流程。 二、重点部位及设备 (一)重点部位

蜡油加氢工艺流程简介

蜡油加氢工艺流程简介 一、反应部分 自罐区来的混合蜡油经泵升压后先进行换热,再经自动反冲洗过滤器过滤后进入滤后原料缓冲罐,滤后原料油由反应进料泵抽除升压后,先于换热后的混氢混合,再与反应产物进行换热,换热后进入加热炉至要求温度,自上而下流经加氢精制反应器。在反应器中,原料油和氢气在催化剂作用下,进行加氢脱硫、脱氮、烯烃饱和等精制反应。 从加氢精制反应器出来的反应产物与混氢原料换热后,进入热高分罐进行气液分离,热高分罐顶部出来的气相先与混氢换热后进入反应产物空冷器,冷却至50℃左右进入冷高分罐进行油、水、气三相分离。为了防止加氢反应生成的硫化氢和氨在低温下生成铵盐,堵塞高压空冷器的管束,在空冷器前注入脱氧水。冷高分罐顶部的气体经循环氢分液器分液后进入循环氢脱硫塔进行脱硫。 自富液再生装置来的贫胺液经泵升压后进入循环氢脱硫塔,与自塔顶部进入的循环氢进行逆向接触、反应,脱硫后的循环氢自塔顶进入循环氢压缩机入口分液罐,罐顶出来的循环氢经循环氢压缩机升压后,与经压缩后的新氢混合,返回到反应系统。循环氢脱硫塔塔底出来的富液经闪蒸后自压至催化的富液再生装置进行再生。 从热高分罐底部出来的热高分油经减压后进入热低分罐,在热低分罐中再次进行气液分离,热低分罐顶部的气体经冷却后进入冷低分罐,热低分油自压进入脱丁烷塔。

冷高分罐及冷低分罐底部出来的含硫污水经减压后,自压送至污水汽提装置进行无害化处理。冷低分油则在与产品柴油进行换热后,进入脱丁烷塔。冷低分气自压送往催化装置吸收塔入口。 二、分馏部分 冷、热低分油自压进入脱丁烷脱除含硫气体,塔下部设有汽提蒸汽,汽提所用的过热蒸汽来自加热炉对流段。 脱丁烷塔顶油气经冷凝冷却后进入脱丁烷塔顶回流罐,回流罐底部液体全部作为回流返回塔顶,回流罐顶的含硫气体自压送往焦化气压机的入口。 从塔底出来的脱丁烷塔底油经泵增压后,先与产品蜡油进行换热后,再经分馏塔进料加热炉升温至需要的温度后进入分馏塔。 分馏塔设有一个中段回流和一个侧线(柴油),塔下部设有汽提蒸汽,汽提所用的过热蒸汽来自加热炉对流段。 分馏塔顶油气经冷凝冷却后进入塔顶加流罐,罐顶少量油气送至火炬,罐底轻油用塔顶回流泵抽出,一部分作为回流打入分馏塔顶部,另一部分作为石脑油产品送至罐区。从分馏塔中部抽出一股侧线(柴油),进入柴油汽提出轻组份后由泵抽出,经换热冷却后作为柴油产品送至罐区。从分馏塔底部抽出的塔底油,经换热冷却后,作为产品蜡油送至罐区。

加氢裂化装置工艺流程描述

装置工艺流程描述 一、加氢裂化工艺介绍 1、加氢裂化联合装置由如下部分组成: 1)在反应器部分进料油和循环油通过加氢裂化反应转化为轻烃、石脑油、航煤和柴油。2)在分馏部分,把从反应部分来的转化油切割成各种产品。 3)在酸性气处理部分,酸性干气和酸性液化气用醇胺溶液洗涤,以便除掉H2S. 2、反应器部分 1)新鲜进料流程 从油罐来的新鲜进料经过滤器K101除去固体和沉降脱水后,进入缓冲罐D101,再由P101A、B送到换热器E104和E104A、B,同反应器流出物换热,然后,与热循环氢混合一起进入R101. 2)当进料及循环氢通过精制催化剂时,脱硫、脱氧、脱氮和烯烃炮和反应开始发生,并在反应器底部订层完成,这些是放热反应,反应物温度升高。通过控制反应器入口温度及调节急冷氢量,使温度上升受到抑制,以延长催化剂的寿命,同时防止发生飞温。 在R101反应产物流出线上,要设置一个采样阀,以测定氮的转化。在生产期间,要控制流出油的总氮含量在50ppm(wt.)内,就要调节R101的平均床层温度。 如果反应器内的温度超商,用降低第二反应炉F102温度和加大急冷氢仍不能控制裂化反应速度,则器内温度急升会严重地使催化剂结焦,甚至破坏设备结构,使反应器壁过热。如果最大的冷却反应器仍不能控制催化剂床层温度,则反应器和关联设备必须降压。当R102A和B中的任一个反应器温度超过它的正常值28℃时,应立即启动7bar/min泄压系统降压。要严格控制R102A、B的温度,以保证新鲜进料100%地转化成所需要产品。在操作中,新鲜进料和循环油比例要保持不变。 3)反应产物换热器的流程 从Rl028出来的反应产物通过一组换热器(E101—E105)回收热量,最后用空气冷器A101冷却到49度后进入高压分离器Dl02。 空冷器进口注入冲洗水以除氨和防止氨盐沉积.注入处将允许大部分水汽化。注水泵Pll4B注 水注入西面四组空冷,Pll4C注水注入东面四组空冷,Pll4A_互为Pll4B、C备用。 4)气液分离 经冷却的反应产物进入Dl02,在其中进行油、水、气三相分离。烃类产品通过Dl02液位控制 调节阀Ll03A、B进入低压分离器Dl03。为了节能,正常情况下,液体全部经过Ll03A阀到能量回收透平HTl01进Dl03。自D102底排出的水进入炼厂酸性水处理系统。 D103得到的物料大约在1.96MPa下操作,其闪蒸气送到酸性气处理部分,液相烃经与柴油和尾油换热后送分馏部分。 5)循环氢及反应器入口氢系统 由Dl02来的气体进入循环氢脱硫塔入口分液罐V901,再进脱硫塔T901,然后从T901出来进入胺液分液罐V902后,进入压缩机Cl01(在循环氢脱硫系统不投用时,循环氢直接由Dl02顶进入Cl01)。机出口分成两路:第一路与来自新氢压缩机Cl02的新氢混合并通过换热器与反应器流出物换热。经过预热的氢气又分成两路经过反应加热炉(F101和Fl02)加热并与相应物流混合后分别进入R101和Rl02A。Fl01和Fl02控制Rl01和Rl02A的入口温度。 从Cl01出来的第二路气流作急冷氢。用于降低在反应器中急冷点上的反应物温度。本

蜡油加氢装置使用简介

100万吨/年蜡油加氢装置装置简介 股份 高桥分公司炼油事业部 2007年3月

编制:何文全审核:严俊校对:周新娣

目录 第一章工艺简介 (1) 一、概述 (1) 二、装置概况及特点 (1) 三、原材料及产品性质 (2) 四、生产工序 (4) 五、装置的生产原理 (5) 六、工艺流程说明 (5) 七、加工方案 (6) 八、自动控制部分 (10) 九、装置外关系 (11) 第二章设备简介 (13) 一、加热炉 (13) 二、氢压机 (13) 三、非定型设备 (13) 四、设备一览表 (15) 五、设备简图 (20)

第一章工艺简介 一、概述 股份高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据股份原油油种变化和适应市场发展的需求,高桥分公司到2007年以后除了加工原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。本装置由集团工程设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。 二、装置概况及特点 1.装置规模及组成 蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。本装置为连续生产过程。主要产品为蜡油、柴油、汽油。 本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。 2.生产方案 混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。热低分气相经冷凝冷却至冷低分,冷低分的液相至汽柴油加氢装置。 3.装置平面布置 在总体布置,节约用地的基础上,根据生产流程、防火、防爆、安全、卫生、环境保护、

加氢裂化—装置重点部位设备说明及危险因素及防范措施

加氢裂化—装置、重点部位设备说明及危险因素及防范措施 一、装置简介 (一)装置的发展及类型 1.加氢装置的发展 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工 过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构 化等,下面重点介绍加氢裂化加工过程。 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术, 其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司

开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得 到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜 利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966 年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 2.装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢 处理等类型,这里主要介绍加氢裂化装置。 加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化, 高压加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化 分离器的操作压力一般为9.OMPa左右。

加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂 化流程、串联加氢裂化流程。 一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制 和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。 二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器 装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加 氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。 串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器, 但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具 有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比 较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多 为此种流程,本节所述的流程即为此种流程。

蜡油加氢装置简介

蜡油加氢装置简介 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

100万吨/年蜡油加氢装置 装置简介 中国石化股份有限公司 上海高桥分公司炼油事业部 2007年3月 编制:何文全 审核:严俊 校对:周新娣

目录

第一章工艺简介 一、概述 中国石化股份有限公司上海高桥分公司炼油事业部是具有五十多年历史的加工低硫石蜡基中质原油的燃料——润滑油型炼油企业,根据中国石化股份有限公司原油油种变化和适应市场发展的需求,上海高桥分公司到2007年以后除了加工大庆原油、海洋原油等低硫原油外,将主要加工含硫2.0%左右的含硫含酸进口原油。由于常减压生产的减压蜡油和延迟焦化装置生产的焦化蜡油中含有较多的不饱和烃及硫、氮等有害的非烃化合物,这些产品无法达到催化裂化装置的要求。为了使二次加工的蜡油达到催化裂化装置的要求,必须对焦化蜡油和减压蜡油进行加氢精制,因此上海高桥分公司炼油事业部进行原油适应性改造时,将原100万吨/年柴油加氢精制装置改造为100万吨/年蜡油加氢装置。本装置的建设主要是为了催化裂化装置降低原料的硫含量和酸度服务。本装置由中国石化集团上海工程有限公司设计,基础设计于2005年6月份完成,2005年8月份进行了基础设计审查,工程建设总投资2638.73万元,其中工程费用2448.74万元。2006年7月降蜡油含硫量由原设计2.44%提高至3.28%,工程建设总概算增加820.8万元。 二、装置概况及特点 1.装置规模及组成 蜡油加氢精制装置技术改造原料处理能力为100万吨/年,年开工时数8400小时。本装置为连续生产过程。主要产品为蜡油、柴油、汽油。 本装置由反应部分、循环氢脱硫部分、氢压机部分(包括新氢压缩机、循氢压缩机)、加热炉部分及公用工程部分等组成。 2.生产方案 混合原料经过滤后进入缓冲罐,用泵升压,经换热、混氢,再经换热进入加热炉,加热至350℃后进反应器进行加氢,反应产物经换热后进热高分进行气液分离,气相进一步冷却,进冷高分进行气液分离,气相进新增的循环氢脱硫塔脱硫后作为循环氢与新氢混合,组成混合氢循环使用;液相减压后至热低分,热低分的液相至催化裂化装置。热低分气相经冷凝冷却至冷低分,冷低分的液相至汽柴油加氢装置。 3.装置平面布置 在总体布置,节约用地的基础上,根据生产流程、防火、防爆、安全、卫生、环境保

国内加氢裂化装置概览

国内加氢裂化装置概览 2014-12-22 加氢裂化,是石油炼制工业中的主要工艺之一,即石油炼制过程中在较高 的压力和温度下,氢气经催化剂作用使重质油发生加氢、裂化和异构化反应, 转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。它与催化裂化不同的是在进行催化裂化反应时,同时伴随有烃类加氢反应。加氢裂化实质上是加氢和催化裂化过程的有机结合,能够使重质油品通过催化 裂化反应生成汽油、煤油和柴油等轻质油品,又可以防止生成大量的焦炭,还 可以将原料中的硫、氮、氧等杂质脱除,并使烯烃饱和。加氢裂化具有轻质油 收率高、产品质量好的突出特点。 截至2013年,我国拥有各类加氢裂化装置30余套(不含地炼),其中中国石化目前拥有20余套,分布在系统内的13个炼厂,目前总加工能力为2746

万吨/年,其中采用抚研院催化剂技术的有14套,加工能力占69.4%,采用石 科院催化剂技术的有6套,加工能力占30.5%。 中国石油目前拥有加氢裂化及加氢改质类装置共有15套,分布在中石油系统12个炼厂,目前总加工能力1740万吨年。其中采用抚研院催化剂技术的有 8套,加工能力占51.7%,采用石科院催化剂技术的有1套,加工能力占6.3%,其它有6套,占42.0%。

目前的加氢裂化工艺绝大多数都采用固定床反应器,根据原料性质、产品要求和处理量的大小,加氢裂化装置一般按照两种流程操作:一段加氢裂化和

两段加氢裂化。除固定床加氢裂化外,还有沸腾床加氢裂化和悬浮床加氢裂化 等工艺。 ①固定床一段加氢裂化工艺 一段加氢裂化主要用于由粗汽油生产液化气,由减压蜡油和脱沥青油生产 航空煤油和柴油等。一段加氢裂化只有一个反应器,原料油的加氢精制和加氢 裂化在同一个反应器内进行,反应器上部为精制段,下部为裂化段。 一段加氢裂化可用三种方案进行操作:原料一次通过、尾油部分循环和尾 油全部循环。 ②固定床两段加氢裂化工艺 两段加氢裂化装置中有两个反应器,分别装有不同性能的催化剂。第一个 反应器主要进行原料油的精制,使用活性高的催化剂对原料油进行预处理;第 二个反应器主要进行加氢裂化反应,在裂化活性较高的催化剂上进行裂化反应 和异构化反应,最大限度的生产汽油和中间馏分油。两段加氢裂化有两种操作 方案:第一段精制,第二段加氢裂化;第一段除进行精制外,还进行部分裂化,第二段进行加氢裂化。两段加氢裂化工艺对原料的适应性大,操作比较灵活。 ③固定床串联加氢裂化工艺 固定床串联加氢裂化装置是将两个反应器进行串联,并且在反应器中填装 不同的催化剂:第一个反应器装入脱硫脱氮活性好的加氢催化剂,第二个反应 器装入抗氨、抗硫化氢的分子筛加氢裂化催化剂。其它部分与一段加氢裂化流

相关文档
最新文档