锂电池三层真空烤箱的原理及应用

锂电池三层真空烤箱的原理及应用
锂电池三层真空烤箱的原理及应用

锂电池三层真空烤箱的原理及应用

电池真空烘箱适用于电子产品生产过程的脱泡、脱水、硬化和洗净处理后的干燥等真空状态下的热处理,在LED光电元件、锂电池、晶振和电池极片等电子行业享有很高的声誉。

设备在电池行业应用:

由于锂电池内部要严格控制水分含量,水分对锂电池的性能影响很大,包括电压、内阻、自放电等指标。水分含量过高会导致产品报废、品质下降,甚至产品爆炸。

因此在锂电的多个生产工序中分别要对正负极片、电芯和电池进行多次真空烘烤,以尽可能去除其中的水分

设备工作原理:

1沸点随着气压的下降而降低。水的沸点在负压下显著降低,在气压降至-0.089Mpa 时,理论沸点可以降至至45℃。在负压环境下,水分更易于气化。

2锂电专用烘箱在常压下加热一段时间后电池或极片中的水分转化为水蒸气;水分蒸发后抽真空可以将水蒸气抽出;充氮气破真空,保持干燥环境。实际的烘烤过程中根据不同的工艺以上三个步骤先后各不相同,一般都要多次循环。

三箱式真空烘箱优势与特点:

对开门真空烘箱,一般是三层,可以镶在干燥车间和注液车间之间的墙上。干燥车间将物料放入烘箱,完成烘烤后可以直接从注液车间一侧取出,注液。

提高了流转效率,更重要的是避免了从真空烘箱取出物料运送至另一个车间中环

节中水分再次浸入的可能性。

双向可控硅及触发电路

双向可控硅及其触发电路 双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。(过零触发是指在电压为零或零附近的瞬间接通,由于采用过零触发,因此需要正弦交流电过零检测电路) 双向可控硅分为三象限、四象限可控硅,四象限可控硅其导通条件如下图: 总的来说导通的条件就是:G极与T1之间存在一个足够的电压时并能够提供足够的导通电流就可以使可控硅导通,这个电压可以是正、负,和T1、T2之间的电流方向也没有关系。因为双向可控硅可以双向导通,所以没有正极负极,但是有T1、T2之分 再看看BT134-600E的简介:(飞利浦公司的,双向四象限可控硅,最大电流4A)

推荐电路: 为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B 两点电压输出波形如图2 所示。

光电池的应用设计论文

第一部分摘要引言 一、摘要 光电传感器作为“为机器安装眼睛与大脑工程”的重要环节,目前已深入到国民经济各个部门,成为跨行业应用的器件。本文根据传感器原理不同,从工作原理、结构及基本特性参数介绍了几种光电传感器,并以光电池为例介绍了和分析了两种实用电路,最后介绍了光电池电路的拓展功能以及光电传感器的应用前景。 关键词:光电传感器光电池光控换向 二、引言 目前,光电传感器已经深入到国民经济各个部门,成为跨行业应用的器件,它被广泛应 用到工业生产的许多方面,凡是需要观察和检测的场所都有应用的可能。它的非接触性、无损害、不受电磁干扰、能远距离传送信息以及远距离操纵控制等优点是得到广泛应用的保障。它在航天、航空、石油、化工、国防、安全、旅游、交通、城市建设和农业生产等领域都得到广泛的应用。 光电传感器使人类有效地扩展了自身的视觉能力,使视觉的长波限延伸到亚毫米波(THz波),短波限延伸到紫外线、X射线、Y射线,乃至高能粒子,响应速度达到纳秒级,能够到人们无法达到的场所,将那里发生的瞬间变化过程与长时间历史经历过程记录下来,供人们使用。

第二部分设计目的 课程设计目的 传感器技术课程设计的目的是使学生能够将《传感器技术》课程的内容与实际应用有机的联系起来,形成测量控制系统的概念,掌握智能检测(或仪表)系统设计的基本思想和方法。培养学生综合运用基础及专业知识的能力,提高解决实际工程技术问题的能力;加强查阅相关图书资料、产品手册和各种工具书的能力;提高书写技术报告和编制技术资料的能力。 第三部设计过程 一、光电池简介 1、概述 光电池是一种用途很广的光敏器件,其优点是体积小、重量轻、寿命长、性能稳定、光照灵敏度较高、光谱响应频带较宽且本身不耗能,是小型化、微功耗仪器中常见的换能器件。当光电池受到光照时不需要外加其他形式的能量即可产生电流输出,电流大小反映了光照强度大小。 2、光电池原理与结构 光电池是利用光生伏特效应吧光能直接转变成电能的光电器件。由于它能够把太阳能直接转变为电能,因此又称为太阳电池,其实质就是一个电压源。光电池的种类有硒光电池、氧化亚铜光电池、砷化镓光电池、硅光电池(本次设计所使用到的光电池传感器)、硫化铊光电池等。目前应用最广、最有发展前途的是硅光电池和硒光电池。硅光电池价格便宜,转化效率高,寿命长,适合于接受红外光,硒光电池的光电转换效率低。寿命短,适合接受可见光。 2.1 相关元件;感光元件,LED指示灯,电容,电阻,二极管等 3、硅光电池的基本结构 按硅光电池衬底材料不同科分为2DR型和2CR型。如图a所示为2DR型硅光电池,它是以P型硅材料为衬底(即在本征型硅材料中渗入三价元素或镓等)然后再衬底上扩散而形成N型层并将其作为受光面。 硅光电池的受光面的输出电极多做成如图b所示为硅光电池的外形,图所示的梳齿状或“E”字型电极,其目的是减小硅光电池的内阻。

锂电池的工作原理

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了

困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。 其使用有一定要求:充电温度:0℃~45℃;保存温度:-20℃~+60℃。锂离子电池不适合大电流充放电。一般充电电流不大于1C,放电电流不大于2C(C 是电池的容量,如C=950mAh,1C的充电率即充电电流为950mA)。充电、放电在20℃左右效果较好,在负温下不能充电,并且放电效果差[4],(在-20℃放电效果最差,不仅放电电压低,放电时间比20℃放电时的一半还少)。 锂离子电池的充放电特性 锂离子电池的标称电压为3.6V,充满电压为4.2V,对过充电和过放电都比较敏感。为了最大限度减少锂离子电池易受到的过充电、深放电以及短路的损害,单体锂离子电池的充电电压必须严格限制。其充放电特性如图2-3 锂离子电池的充电特性 锂电池在充电中具有如下的特性: 1.在充电前半段,电压是逐渐上升的; 2.在电压达到4.2V后,内阻变化,电压维持不变; 3.整个过程中,电量不断增加; 4.在接近充满时,充电电流会达到很小的值。 经过多年的研究,已经找到了较好的充电控制方法: 1.涓流充电达到放电终止电压 2. 7V ; 2.使用恒流进行充电,使电压基本达到4.2V。安全电流为小于0.8C; 3.恒流阶段基本能达到电量的80% ;

双向可控硅的工作原理及原理图

双向可控硅得工作原理及原理图 双向可控硅得工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2得集电极直接与BG1得基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于就是BG1得集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2得基极,表成正反馈,使ib2不断增大,如此正向馈循环得结果,两个管子得电流剧增,可控硅使饱与导通.由于BG1与BG2所构成得正反馈作用,所以一旦可控硅导通后,即使控制极G得电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断得。 由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定得条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区得空穴时入N2区,N2区得电子进入P2区,形成触发电流IGT。在可控硅得内部正反馈作用(见图2)得基础上,加上IGT得作用,使可控硅提前导通,导致图3得伏安特性OA 段左移,IGT越大,特性左移越快。 TRIAC得特性?什么就是双向可控硅:IAC(TRI—ELECTRODEACSWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大得不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它就是双向元件,所以不管T1 ,T2得电压极性如何,若闸极有信号加入时,则T1,T2间呈导通状态;反之,加闸极触发信号,则T1,T2间有极高得阻抗。 ?(a)符号(b)构造 图1TRIAC 二、TRIAC得触发特性: ?由于TRIAC为控制极控制得双向可控硅,控制极电压VG极性与阳极间之电压VT1T2四种组合分别如下:?(1)、VT1T2为正,VG为正。?(2)、VT1T2为正,VG为负。?(3)、VT1T2为负, VG 为正。?(4)、VT1T2为负,VG为负。 一般最好使用在对称情况下(1与4或2与3),以使正负半周能得到对称得结果,最方便得控制方法则为1与4之控制状态,因为控制极信号与VT1T2同极性。

硅光电池特性研究

硅光电池特性研究

————————————————————————————————作者:————————————————————————————————日期:

硅光电池特性研究 【实验目的】 1.掌握PN结形成原理及其工作原理; 2.了解LED发光二极管的驱动电流和输出功率的关系; 3.掌握硅光电池的工作原理及其工作特性。 【实验原理】 1.半导体PN结原理 目前半导体光电探测器在数码摄像、光通信、太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理、光电效应理论和光伏电池产生机理。 零偏 -- - - - - - + + + + - + + + - + P型半导体 - - + + N型半导体 + - + W E R 空间电荷区 内电场E 反偏正偏 图17-1. 半导体PN结在零偏、反偏、正偏下的耗尽区 图17-1是半导体PN结在零偏、反偏、正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将组织扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,使势垒削弱,使载流子扩散运动继续形成电流,这就是PN结的单向导电性,电流方向是从P指向N。 2.LED工作原理 P N + - - - + - - 内电场 + + - + + - E + - E W - - + - 空 间 电 荷 区 + - R + ++ I R

关于浅谈锂电池充电电路原理及应用的专业论文

专业电子类论文 题目:浅谈锂电池充电电路原理及应用 作者:yyj 职称:自动化工程师 发表期刊号:XXX-XX 浅谈锂电池充电电路原理及应用 现代生活中,科技高速发展,电子产品需求量急升,应用之广,已达到一个新高度。从而对电子产品充电电池的要求,也越来越高。常用的电池有多种,而锂电池占据较大份额。锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比;

2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。 四、锂电池的充放电要求: 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路 描述: SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。在电子技术和工业控制中,被派作整流和电子开关等用场。在这里,笔者介绍它们的基本特性和几种典型应用电路。 1.锁存器电路。图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。此时微动开关K2不再起作用(已自锁)。要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。所以该电路具有锁存器(J-1自锁)的功能。 图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。由此可见,图2电路也具有锁存器的功能。图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。 2.单向可控硅SCR振荡器。图3电路是利用SCR的锁存性制作的低频振荡器电路。图中的扬声器LS(8Ω/0.5W)作为振荡器的负载。当电路接上电源时,由于电源通过R1对C1充电,初始时,C1电压很低,A、B端的电位器W的分压不能触发SCR,SCR不导通。当C1充得电压达到一定值时,A、B端电压升高,SCR被触发而导通。一旦SCR导通,电容器C1通过SCR和LS放电,结果A、B端的电压又下降,当A、B端电压下降到很低时,又使SCR截止,一旦SCR截止,电容器C1又通过R1充电,这种充放电过程反复进行形成电路的振荡,此时LS发出响声。电路中的W可用来调节SCR门极电压的大小,以达到控制振荡器的频率变化。按图中元件数据,C1取值为0.22~4μF,电路均可正常工作。 3.SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。电路工作时,当A点低压交流为正半周时,SCR导通对C1充电。当充电电压接近C点电压或交流输入负半周时,SCR截止,所以C1上充得电压(即输出端CD)不会高于C点的稳压值。只有储能电容C1输出端对负载放电,其电压低于C点电压时,在A点的正半周电压才会给C1即时补充充电,以维持输出电压的稳定。图4电路与电池配合已成功用于某设备作后备电源。该稳压电源,按图中参数其输出电流可达2~3A。

采用硅光电池实现光照度计电路设计分析

采用硅光电池实现光照度计电路设计和分析 作者姓名:# # # 专业名称:应用物理学 指导教师:# # # 讲师

摘要 本文通过理论分析与数值比对来确定光照强弱与光电池输出光电信号的关系,并且通过这种关系设计了相应的光电检测电路,更直观展现光伏技术在实际生活中的应用。 随着光伏技术的日渐成熟以及应用的扩展,对光照的研究也日新月异。所以对如何更加准确的测定光照参数也提出了更高的要求。针对不同的要求,如何快速设计出对应的光电探测器,又有了新的课题。本文在此背景下,进行了光照度计电路的设计与分析。 本论文共分四部分:第一部分为光电池特性介绍及实验特性参数,第二部分为电路方案设计和电路实现,第三部分为利用Protel 99SE进行电路设计,第四部分为电路实物制作与调试。 关键词:光电池转换电路光电效应伏安特性

Abstract A comparsion between analysis theory and numerical ratio, which can determine the relationship between the intensity of illumination and optical signal of photocell output in this paper. And we design a corresponding circuit of photoelectric detection by the relationship showing the application of photoelectric technology in our daily life. With the development and widespread of photoelectric technology, fracture treatment has been changing quickly. So there have more high requirements about how to determine the parameter of the light more exactly. As for different requirements, it is a new project to design the corresponding electrophptonic detector. Under this background, this paper discuss design and analysis of the circuit of light meter. There are four parts in this paper:In the first part, it introduce the character of photoelectric cell and characteristic parameter of experiment. The second part is about designing scheme of circuit and realizing the circuit, The third part is using Protel 99SE to design circuit, The fourth part is to manufacture and adjust the circuit. Keywords: Potoelectric cell, Conversion circuit,Photoelectric effect, Volt-Ampere characteristic

原电池原理及其应用

第四节 原电池原理及其应用 教学目的: 1、 使学生理解原电池原理; 2、 常识性介绍日常生活中常用的化学电源和新型化学电池; 3、 使学生了解金属的电化腐蚀 教学重点:原电池的原理 教学难点:金属的电化腐蚀 教学方法:实验探究法 教学用品:铁丝、铜丝、锌片、铜片、稀硫酸、导线、烧杯、电流计 教学过程: 第一课时 [引言] 前几节我们学习了有关金属的知识,了解了铁和铜的性质。铁是比较活泼的金属,能溶于稀硫酸,铜是不活泼的金属,不溶于稀硫酸。如果我们同时将铁和铜连在一起,同时放到稀硫酸中,会发生什么现象呢?下面我们做这个实验。 [提问] 大家看到了什么现象? [讲述] 把铁线和铜丝的上端连在一起,放入稀硫酸中,在金属丝中有电子流动,构成了一个小电池,我们叫它原电池。下面我们就来研究原电池的原理及其应用。 [板书] 第四节 原电池原理及其应用 一、原电池 [讲述] 实验结果表明,导线中有电流通过,电流是如何产生的呢? [学生讨论] [板书] 锌片 Zn —2e -==Zn 2+ (氧化反应) 铜片 2H ++2e -==H 2 (还原反应) 电子由锌片经导线流向铜片 [讲述] 我们知道,物质发生反应时,常伴有化学能与热能、光能等的相互转化。例如,镁条在空气中燃烧的化学反应,伴有放热、发光等现象。这说明化学能转变为热能和光能。那么,我们做的这个实验是化学能转变为哪种能呢? [学生回答] [教师总结] 这种化学能转变为电能的装置叫原电池。 [板书] 原电池的定义:化学能转变为电能的装置。 [讲述] 这一现象早在1799年被意大利的物理学家伏打扑捉到并加以研究,发明了世界上第一个原电池---------伏打电池,即原电池。 [引导思考] 原电池的两极材料如何选择呢? [ 讲述] 下面我们再做几个实验共同探讨一下原电池的组成条件和原理 Z n C Z u F C 稀硫酸 C u SO 4溶液 稀硫酸 A B C D

双向可控硅原理与应用整理

双向可控硅MAC97A6的电路应用 家电维修2010-08-22 00:08:15 阅读2916 评论2 字号:大中小订阅 MAC97A6为小功率双向可控硅(双向晶闸管),最多应用于电风扇速度控制或电灯的亮度控制,市场上流行的“电脑风扇”或“电子程控风扇”,不外乎是用集成电路控制器与老式风扇相结合的新一代产品。这里介绍的电路就是利用一块市售的专用集成电路RY901及MAC97A6,将普通电扇改装为具有多功能的高档电扇,很适宜无线电爱好者制作与改 装。 这种新型IC的主要特点是:(1)集开关、定时、调速、模拟自然风为一体,外围元件少、电路简单、易于制作;(2)省掉了体积较大的机械定时器和调速器,采用轻触式开关和电脑控制脉冲触发,因而无机械磨损,使用寿命长;(3)各种动作电脑程序具备相应的发光管指示,耗电量少,体积小,重量轻,显示直观,便于操作;(4)适合开发或改造成多路家电的定时控制等。RY901采用双列直插式16脚塑封结构,为低功耗CMOS集成电路。其外形、引出脚排列及各脚功能如图1所示。工作原理

典型应用电路如图2所示([url=https://www.360docs.net/doc/282447275.html,/ad/ykkz/fsdlkz.rar]点击下载原理图[/url] )。市电220V由C1、R1降压VD9稳压,经VD10、C2整流滤波后, 提供5V-6V左右的直流电源作为RY901IC组成的控制器电压。在刚接通电源时,电脑控制器暂处于复位(静止)状态,面板上所有发光二极管VD1-VD8均不亮,电风扇不转。若这时每按动一次风速选择键SB3,可依次从IC的11-13脚输出控制电平(脉冲信号),经发光管VDl-VD3和限流电阻R2-R4,分别触发双向晶闸管VS1-VS3的G极,用以控制它的导通与截止,再经电抗器L进行阻抗变换,即可按强风、中风、弱风、强风……的顺序来改变其工作状态,并且风速指示管VD1-VD3(红色)对应点亮或熄灭;当按风型选择键SB4,电风扇即按连续风(常风)、阵风(模拟自然风)、连续风……的方式循环改变其工作状态,在连续风状态下,风型指示管VD4(黄色)熄灭,在阵风状态下,VD4闪光;当按动定时时间选择键SB2,定时指示管VD5-VD8依次对应点亮或熄灭,即每按动一次SB2,可选择其中一种定时时间,共有0.5、l、2、4小时和不定时5种工作方式供选择。当定时时间一到,IC内部的定时电路停止工作,相应的定时指示管熄灭同时IC的11-13脚也无控制信号输出,双向晶闸管VS1-VS3截止,从而导致风扇自动停止运转;在风扇不定时工作时,欲停止风扇转动,只要按动一下复位开关SB1,所有指示灯熄灭,电源被切断,风扇停转;如欲启动风扇,照上述方法操作即可。元器件选择与制作图中除降压电容C1用优质的CBB-400V聚苯电容;泄放保护电阻R1用1W金属膜电阻或线绕电阻外,其余元器件均为普通型。电阻为1/8W;电解电容的耐压值取10V-16V,C1取值范围为0.47u-lu之间;稳压管VD9为5V-6V/1W,可选用ZCW104(旧型号为ZCW21B)硅稳压管;VS1-VS3为1A/400V小型塑封双向晶闸管,可选用MAC94A4型或MAC97A6型;L为电抗器,可以自制,亦可采用原调速器中的电抗器;SB1-SB4为轻触型按键开关(也叫微动或点动开关),有条件的可采用导电橡胶组合按键开关。电路焊接无误,一般不用调试就能工作。改装方法该电路对所有普通风扇都能进行改装。将焊接好的电路板装进合适的塑料肥皂盒或原调速器盒中,将原分线器开关拆除不用,留出空余位置便于安装印制板电路。一般风扇用电抗器均采取5挡。不妨利用其中①、③、⑤挡,将强风(第1挡)、中风(第2挡)弱风(第3挡)分别接到电抗器的各挡中。若有的调速器中无电抗器,风扇电机则是采取抽头方式改变风速的,同样将三种风速分别接至分线器的三极引线中。在改装中特别要注意安全,印制板上220V交流电源接线端及所有导电部位应与调整器盒的金属件严格隔离。改装完毕,可用测电笔碰触调速器有否漏电。否则应进一步采取绝缘措施。通电试验时,用万用表DC10V档测C2两端电压应为5V-6V之间,若不正常,应重点检查整流稳压电路,然后再分别按动SB1-SB4开关,观察各路指示管VD1-VD8应按对应的选择功能发光或熄灭,风扇也应同步工作于不同状态。

硅光电池特性及其应用

硅光电池的特性及其应用 一、实验目的 1、初步了解硅光电池机理 2、测量硅光电池开路电动势、短路电流、内阻和光强之间关系 3、在恒定光照下测量光电流、输出功率与负载之间关系 二、实验原理 在P 型半导体上扩散一薄层施主杂质而形成的p-n 结(如右图),由于光照,在A 、B 电极之间出现一定的电动势。在有外电路时,只要光照不停止,就会源源不断地输出电流,这种现象称为光伏效应。 实验表明:当硅光电池外接负载电阻L R ,其输出电压和电流均随L R 变化而变化。只有当L R 取某一定值时输出功率才能达到最大值m P ,即所谓最佳匹配阻值LB L R R ,而LB R 则取决于硅光电池的内阻Ri= SC OC I V ,因此OC V 、SC I 和i R 都是太阳能电池的重要参数。 FF 是表征硅光电池性能优劣的指标,称为填充因子。 FF 越大,硅光电池的转换效率越高。 FF= VocIsc Pm (1) 图b 是硅光电池的等效电路,在一定负载电阻L R 范围内硅光电池可以近似地视为一个电流源PS I 与内阻i R 并联,和一个很小的电极电阻S R 串联的组合。 三、实验内容 图a 开路电动势、短路电流 与光强关系曲线 图b 太阳能电池等效电路

1、测量开路电动势OC V 与光强D I 的关系,将数据记录表1,并绘制并绘制D I ~OC V 曲线。(将功能开关切换到OC V ) 2、短路电流SC I 的测量 将功能开关切换到SC I ,调节DC 0-1V 电源S U 输出,使微安表读数0I 为10.00-18.00μA (建议取10.00μA )。 在某一光强D I 下,改变可调电阻R ,使流过检流计(G )的电流G I 为零。此时AB 两点之间和AC 两点之间的电压应相等,即AB V =AC V 。因而I R=00r I ,即短路电流 SC I =I = R r I 0 0 (r 0为微安计内阻,为10K Ω) 测量不同光强下,短路电流SC I 与光强D I 的关系,将数据记入表2,并绘制SC I ~D I 曲线。 测量开路电压OC V 线路图 测量短路电流SC I 线路图

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

原电池原理及其应用

【基础知识精讲】 装詈特点:化学能转化趟能 严两个活泼性不同的电极 形成条件彳②电解质涪液 〔0)形成闭合回路 先色沿寻绞悔必育电矗产韭 加 Se-Zn^T I SW.反网」匝 K 析氢 腐、蚀 L 吸氧腐蚀 「斑变金属的內部组织结构 ②在金属裹面霍盖保护层 I ③电化学保护法 以铜锌原电池为例,理解原电池的工作原理:负极发生氧化反应,正极发生还原反应 紧抓这个基本原理去解决各种类型的原电池问题 ^ 【重点难点解析】 重点:①原电池原理; ②金属的腐蚀原理与防护? 难点:金属的电化学腐蚀与防护? 1. 正确判定原电池 2. 原电池正极和负极的确定 (1) 由两极的相对活泼性确定? (2) 由电极现象确定.通常情况下,在原电池中某一电极若不断溶解或质量不断减少, 该 电极发生氧化反应, 此为原电池的负极; 若原电池中某一电极上有气体生成, 电极的质量不 断增加或不变,该电极发生还原反应,此为原电池的正极 3. 原电池工作原理:以 Cu-Zn 原电池为例. 学科:化学 教学内容:原电池原理及其应用 r 金属腐蚀 L 化学腐蚀 电化腐蚀 匕钢铁腐蚀 '主曼应用〈 I 防护方法T 厂沪2e-Hj A 千 ti rJ i

负极(锌板):Zn-2e=Zn 2+ 被氧化,锌板不断溶解; 正极(铜板):2H+2e=Hf 被还原,表面置出气泡. 电子流动方向:负极(Zn )经导线正极(Cu ). Cu-Zn 原电池发生的总反应跟锌和酸的反应是一致的,但电子却经外接导线发生迁移, 形成持续 的电流,使化学能转化为电能 ? 构成原电池的反应必须能自发地进行氧化还原反应 ?从理论上讲,任何一个氧化还原反 应都可设计成原电池, 只不过要求氧化反应和还原反应必须在两极上分别进行, 使与两极连 接的导线里,产生持续电流 ? 【难题巧解点拨】 例1 :把a,b,c,d4 块金属片浸入稀硫酸中,用导线两两相连组成原电池 .若a,b 相连时, a 为负极;c,d 相连时,d 上产生大量气泡;a ,c 相连时,电流由c 经导线流向a ; b 、d 相 连时,电子由d 经导线流向b ,则此4种金属的活动性由强到弱的顺序为 () A.a > b > c >d B.a > c > d > b C.c >a > b > d D.b > d > c > a 分析:根据原电池原理,较活泼的金属为负极,被氧化溶解; 相对不活泼的金属为 正极,冒气泡或析出金属?电子由负极经外电路流向正极,电流方向与电子方向相反等进行 分析:根据构成原电池的条件必须同时满足: (1)要有活泼性不同的两个电极 .(2)要 有 电解质溶液.(3)要有导线,能形成闭合回路? 用此条件进行判断:在 A 中两个电极的金属相同,不符合条件,在 (D )中没有电解质溶 液,乙醇是非电解质.故只有B C 符合条件 答案:BC 例3:银锌电池是广泛用作各种电子仪器的电源,它的充电和放电过程可表示为: 2Ag+Z n( 0H)2 三 Ag 2O+Zn+2HO 此电池放电时, 负极上发生反应的物质是 () A.Ag B.Z n(0H)2 C.Ag 2O D.Z n 分析:根据原电池工作原理,负极上发生氧化反应 .元素化合价会升高,所以在放电过 程中被氧化的是 Zn,即Zn 为负极. 答案:为D 【命题趋势分析】 常考知识点: 1. 原电池的概念、工作原理 2. 电极反应和电池反应 乙醉 E A 山嵐礙液 C

双向可控硅的原理,二三极管原理

尽管从形式上可将双向可控硅瞧成两只普通可控硅的组合,但实际上它就是由7只晶体管与多只电阻构成的功率集成器件。小功率双向可控硅一般采用塑料封装,有的还带散热板,外形如图l所示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向可控硅大多采用RD91型封装。双向可控硅的主要参数见附表。 双向可控硅的结构与符号见图2。它属于NPNPN五层器件,三个电极分别就是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳极或阴极。其特点就是,当G极与T2极相对于T1,的电压均为正时,T2就是阳极,T1就是阴极。反之,当G极与T2 极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向可控硅的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。检测方法 下面介绍利用万用表RXl档判定双向可控硅电极的方法,同时还检查触发能力。 1、判定T2极 由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻都很小。在肦Xl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚与其她两脚都不通,就肯定就是T2极。,另外,采用TO—220封装的双向可控硅,T2极通常与小散热板连通,据此亦可确定T2极。 2.区分G极与T1极 (1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。 (2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G 短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4 (a)),证明管子已经导通,导通方向为T1一T2。再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

2021届高考化学一轮复习专项测试:专题十二 考点一 原电池原理及其应用 (3)

2021届高考化学一轮复习专项测试专题十二 考点一原电池原理及其应用(3) 1、将反应2Al+6H+=2Al3++3H2↑的化学能转化为电能,能达到目的的是( ) 2、人工光合系统装置(如图)可实现以CO2和H2O合成CH4。下列说法不正确的是( ) A.该装置为原电池,且铜为正极 B.电池工作时,H+向Cu电极移动 C.GaN电极表面的电极反应式为:2H2O-4e-=O2+4H+ D.反应CO2+2H2O 光照CH4+2O2中每消耗1mol CO2转移4mol e- 3、某同学按下图所示的装置进行实验。A、B为两种常见金属,它们的硫酸盐可溶于水,当 SO从右向左通过交换膜移向A极。下列分析正确的是( ) K闭合时,2- 4

A. 溶液中c (2A +)减小 B. B 极的电极反应:2B 2e =B -+- C. Y 电极上有2H 产生,发生还原反应 D. 反应初期,X 电极周围出现白色胶状沉淀 4、由W 、X 、Y 、Z 四种金属按下列装置进行实验。下列说法不正确的是( ) 装置 现象 金属W 不断溶解 Y 的质量增加 W 上有气体产生 A.装置甲中W 作原电池负极 B.装置乙中Y 电极上的反应式为2+-Cu +2e =Cu C.装置丙中电流由Z 流向W D.四种金属的活动性强弱顺序为Z>W>X>Y 5、流动电池是一种新型电池。其主要特点是可以通过电解质溶液的循环流动,在电池外部调节电解质溶液,以保持电池内部电极周围溶液浓度的稳定。北京化工大学新开发的一种流动电池如图所示,电池总反应为Cu +PbO 2+2H 2SO 4=CuSO 4+PbSO 4+2H 2O 。下列说法不正确的是( )

相关文档
最新文档