哈工大电力系统分析短路及潮流计算实验上机程序

哈工大电力系统分析短路及潮流计算实验上机程序
哈工大电力系统分析短路及潮流计算实验上机程序

上机实验

实验一节点导纳阵生成和短路电流计算实验二简单系统的牛顿法潮流计算

姓名:

班级:141班

学号:

实验说明:本程序的电路结构来自翁增银、何仰赞主编的《电力系统分析》的例题

实验一节点导纳阵生成和短路电流计算

一、实验目的

根据所给的电力系统,编制短路电流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。通过自己设计电力系统计算程序加深对电力系统分析的理解,同时加强计算机实际应用能力。

二、实验内容

1、编写数据输入、形成导纳阵程序

2、电力系统短路计算实用公式的计算程序及编制和调试

三、实验过程

1、程序代码及说明

%清屏

clear

%读数据

fid=fopen('node5.txt','r');

A=fscanf(fid,'%d',2);

B=fscanf(fid,'%f',[5,A(2,1)]);

fclose(fid);

B=B';

%求节点导纳矩阵

Y=zeros(A(1,1)); % 形成5×5的0阵

%%%%%====================================================

%导纳阵元素计算

for a=1:1:A(2,1)

m=B(a,1);

n=B(a,2);

if B(a,5)>0

Y(m,m)=Y(m,m)+1/(B(a,3)+j*B(a,4));

Y(n,n)=Y(n,n)+1/(B(a,3)+j*B(a,4))/(B(a,5)^2);

Y(m,n)=-1/(B(a,3)+j*B(a,4))/B(a,5);

Y(n,m)=Y(m,n);

elseif B(a,5)<0

Y(m,m)=Y(m,m)+1/(B(a,3)+j*B(a,4))-j*B(a,5);

Y(n,n)=Y(n,n)+1/(B(a,3)+j*B(a,4))-j*B(a,5);

Y(m,n)=-1/(B(a,3)+j*B(a,4));

Y(n,m)=Y(m,n);

end

end

%%%%%=======================================================

Y(2,2)=Y(2,2)+j*0.01;

Z=inv(Y);

If=1/Z(3,3); %接金属短路,Zf=0

for i=1:1:5

V(1,i)=1-Z(i,3)/Z(3,3);

end

%%%======================================================== %计算各支路电流

for a=1:1:A(2,1)

m=B(a,1);

n=B(a,2);

if B(a,5)>0

I(m,n)=(B(a,5)*V(1,m)-V(1,n))/(B(a,3)+j*B(a,4));

elseif B(a,5)<0

I(m,n)=(V(1,m)-V(1,n))/(B(a,3)+j*B(a,4));

end

end

%%%=======================================================

fid=fopen('ans.txt','w');

fprintf(fid,'Y_matrix\n');

%%%=======================================================

%输出导纳阵

for i=1:1:5

for j=1:1:5

k=Y(i,j);

re=real(k);

fprintf(fid,'%8.4f',re);

im=imag(k);

if im<0

fprintf(fid,'%8.4fj\t',im);

elseif im>=0

fprintf(fid,'+%8.4fj\t',im);

end

end

fprintf(fid,'\n');

end

%%%==========================================================

%%%========================================================== %输出阻抗阵,导纳阵求逆

fprintf(fid,'Z_matrix\n');

for i=1:1:5

for j=1:1:5

k=Z(i,j);

re=real(k);

fprintf(fid,'%8.4f',re);

im=imag(k);

if im<0

fprintf(fid,'%8.4fj\t',im);

elseif im>=0

fprintf(fid,'+%8.4fj\t',im);

end

end

fprintf(fid,'\n');

end

%%%=========================================================

%%%========================================================= %打印输出短路电流

fprintf(fid,'If=');

re=real(If);

fprintf(fid,'%8.4f',re);

im=imag(If);

if im<0

fprintf(fid,'%8.4fj\t',im);

elseif im>=0

fprintf(fid,'+%8.4fj\t',im);

end

fprintf(fid,'\nV\n');

%%%========================================================

%%%======================================================== %打印输出节点电压

for i=1:1:5

fprintf(fid,'Note%d:V%d=',i,i);

k=V(1,i);

re=real(k);

fprintf(fid,'%8.4f',re);

im=imag(k);

if im<0

fprintf(fid,'%8.4fj\t',im);

elseif im>=0

fprintf(fid,'+%8.4fj\t',im);

end

fprintf(fid,'\n');

end

%%%========================================================

%%%======================================================== %输出打印支路电流

fprintf(fid,'Ibr\n');

for i=1:1:5

for j=1:1:4

k=I(i,j);

re=real(k);

im=imag(k);

if(re~=0||im~=0)

fprintf(fid,'Branch%d--%d:I%d%d=',i,j,i,j);

fprintf(fid,'%8.4f',re);

if im<0

fprintf(fid,'%8.4fj\n',im);

elseif im>=0

fprintf(fid,'+%8.4fj\n',im);

end

end

end

end

%%%========================================================== fclose(fid); %关闭文件

附:'node5.txt'

2、程序输出结果

节点导纳阵:

节点阻抗阵:

短路电流:

If= 0.0001+ 0.1082j

节点电压:

各支路电流:

四、实验总结

这是我的第一次上机实验,感觉稍微有点难,主要还是在工具软件—C语言或者MA TLAB的运用上,但是我相信,以后学习中,我会努力掌握的,这是我把理论应用于实际中的必要桥梁!

实验二简单系统的牛顿法潮流计算

一、实验目的

根据所给的电力系统,编制牛顿法潮流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。通过自己设计电力系统计算程序加深对电力系统分析的理解,同时加强计算机实际应用能力。

二、实验内容

电力系统潮流计算的计算程序设计及编制和调试。

三、程序框图

四、实验过程

1、实验程序及说明

clear

fid=fopen('node4.txt','r'); %打开输入数据

A=fscanf(fid,'%f',8); %读8个数

B=fscanf(fid,'%f',[5,A(2,1)]);

C=fscanf(fid,'%f',[3,(A(1,1)-1)]);

fclose(fid);

B=B';

C=C';

B(2,5)=1/B(2,5);

Y=zeros(A(1,1)); %得4×4的0阵

%%%=============================================================== %与前一实验同法求导纳阵

for a=1:1:A(2,1)

m=B(a,1);

n=B(a,2);

if B(a,5)>0

Y(m,m)=Y(m,m)+1/(B(a,3)+j*B(a,4));

Y(n,n)=Y(n,n)+1/(B(a,3)+j*B(a,4))/(B(a,5)^2);

Y(m,n)=-1/(B(a,3)+j*B(a,4))/B(a,5);

Y(n,m)=Y(m,n);

else if B(a,5)<0

Y(m,m)=Y(m,m)+1/(B(a,3)+j*B(a,4))-j*B(a,5);

Y(n,n)=Y(n,n)+1/(B(a,3)+j*B(a,4))-j*B(a,5);

Y(m,n)=-1/(B(a,3)+j*B(a,4));

Y(n,m)=Y(m,n);

end

end

end

%%%=================================================================

%%%================================================================= %节点电压赋初值

Q=zeros(2*A(1,1),1);

for i=1:1:(A(1,1)-1)

if C(i,3)>0

Q(2*i-1,1)=C(i,3);

Q(2*i,1)=0;

else

Q(2*i-1,1)=1;

Q(2*i,1)=0;

end

Q(2*A(3,1)-1,1)=A(4,1);

Q(2*A(3,1),1)=0;

end

fid=fopen('answer.txt','w');

fprintf(fid,'====================节点电压V=============================\n'); fprintf(fid,'迭代计数\t\t V1=e1+jf1\t\t\t\t V2=e2+jf2\t\t\t\tV3=e3+jf3\t\t\n');

%%%=======================求W阵=================================== W=zeros(2*(A(1,1)-1),50);

for x=1:1:50 %设置迭代次数为50次

for i=1:1:A(7,1)

k=C(i,1);

p=0;

q=0;

m=0;

n=0;

for j=1:1:A(1,1)

g=real(Y(k,j));

b=imag(Y(k,j));

e=Q(2*j-1,1);

f=Q(2*j,1);

p=p+g*e-b*f;

q=q+g*f+b*e;

m=m+g*e-b*f;

n=n+g*f+b*e;

end

W(2*k,x)=C(k,2)-Q(2*k-1,1)*p-Q(2*k)*q;

W(2*k-1,x)=C(k,3)-Q(2*k)*m+Q(2*k-1,1)*n;

End

%%%=========================PQ节点=================================

%%%=========================PV节点================================= for l=1:1:A(8,1)

k=C(l+A(7,1),1);

p=0;

q=0;

m=0;

n=0;

for j=1:1:A(1,1)

g=real(Y(k,j));

b=imag(Y(k,j));

e=Q(2*j-1,1);

f=Q(2*j,1);

p=p+g*e-b*f;

q=q+g*f+b*e;

end

W(2*k,x)=C(k,2)-Q(2*k-1,1)*p-Q(2*k)*q;

W(2*k-1,x)=(C(k,3))^2-(Q(2*k-1,1)^2+Q(2*k)^2);

End

%%%================================================================

%%%=============================================================== %比较是否符合条件

Max=0;

for i=1:1:2*(A(1,1)-1)

Max=max(abs(W(i,x)),Max);

end

if Max

break;

end

%%%=================================================================

%%%================================================================= %求雅克比行列式

for i=1:1:A(1,1)-1

%===========================================

for j=1:1:A(1,1)-1

%===========================i~=j

if i~=j

k=C(i,1);

g=real(Y(k,j));

b=imag(Y(k,j));

e=Q(2*k-1,1);

f=Q(2*k,1);

J(2*k-1,2*j-1)=-(g*e+b*f);

J(2*k-1,2*j)=b*e-g*f;

if i~=3

J(2*k,2*j)=-J(2*k-1,2*j-1);

J(2*k,2*j-1)=J(2*k-1,2*j);

else

J(2*k,2*j-1)=0;

J(2*k,2*j)=0;

end

end

%=============================== i=j ================== if i==j

k=C(i,1);

p=0;

q=0;

m=0;

n=0;

g=real(Y(k,k));

b=imag(Y(k,k));

J(2*k-1,2*j-1)=-g*Q(2*i-1,1)-b*Q(2*i,1);

J(2*k-1,2*j)=b*Q(2*i-1,1)-g*Q(2*i,1);

if k~=3

J(2*k,2*j-1)=b*Q(2*i-1,1)-g*Q(2*i,1);

J(2*k,2*j)=g*Q(2*i-1,1)+b*Q(2*i,1);

end

for r=1:1:A(1,1)

g=real(Y(k,r));

b=imag(Y(k,r));

e=Q(2*r-1,1);

f=Q(2*r,1);

p=p+g*e-b*f;

q=q+g*f+b*e;

end

J(2*k-1,2*j-1)=-p+J(2*k-1,2*j-1);

J(2*k-1,2*j)=-q+J(2*k-1,2*j);

if i~=3

J(2*k,2*j-1)=q+J(2*k,2*j-1);

J(2*k,2*j)=-p+ J(2*k,2*j);

else

J(2*k,2*j-1)=-2*Q(2*i-1,1);

J(2*k,2*j)=-2*Q(2*i,1);

end

end

end

end

%%%==============================================================

%%%============================================================== %解修正方程得修正量Q0

for i=1:2:5

J0(i+1,:)=J(i,:);

J0(i,:)=J(i+1,:);

end

J=J0;

Q0=-inv(J)*W(:,x);

for i=1:1:6

Q(i,1)=Q(i,1)+Q0(i,1);

End

fprintf(fid,'\t%d\t\t',x);

for i=1:A(1,1)-1

k=C(i,1);

if Q(2*k,1)>=0

fprintf(fid,'%8.4f+%8.4fj\t\t ',Q(2*k-1,1),Q(2*k,1));

else

fprintf(fid,'%8.4f%8.4fj\t\t',Q(2*k-1,1),Q(2*k,1));

end

end

fprintf(fid,'\n');

end

%%%================================================================= %%%==================================平衡点功率======================

k=A(3,1);

v=0;

j=sqrt(-1);

for b=1:A(1,1)

m=conj(Y(k,b));

p=Q(2*b-1,1)+Q(2*b,1)*j;

n=conj(p);

v=v+m*n;

end

Wp=(Q(2*k-1,1)+j*Q(2*k,1))*v;

end

%%%===========================节点电压V===========================

%fid=fopen('answer.txt','w');

fprintf(fid,'节点电压V\n');

for i=1:A(1,1)-1

k=C(i,1);

if Q(2*k,1)>=0

fprintf(fid,'node%d:%8.4f+%8.4fj\n',k,Q(2*k-1,1),Q(2*k,1));

else

fprintf(fid,'node%d:%8.4f%8.4fj\n',k,Q(2*k-1,1),Q(2*k,1));

end

end

fprintf(fid,'平衡点功率P+jQ=%8.4f+%8.4fj',real(Wp),imag(Wp));

fclose(fid);

附注:node4.txt %输入数据

2、程序输出结果

五、实验总结

本次实验是我把应用理论知识的重要实践,经过实验,我有两点感想,首先,作为一名工科学生,应该能熟练运用C语言和MATLAB等工具,其次,理论如果不用于实践,就永远不知道理论是用来干什么的,学到头一直是满脑子的浆糊,所以,以我的切身经历建议,把这门实验放在跟课程平行的时间上进行,这样不仅有利于实验开展,也有利于学生更加深刻地学习!

电路分析总复习题-分析计算题

三、计算分析题 1、图1.5.1所示电路,已知U =3V ,求R 。(2k Ω) 2、图1.5.2所示电路,已知U S =3V ,I S =2A ,求U AB 和I 。(1V 、5A ) 3、电路如图1.5.5所示,求10V 电压源发出的 功率。 (-35W ) 4、分别计算S 打开与闭合时图1.5.6电路中A 、B 两点的电位。(S 打开:A -10.5V,B -7.5V S 闭合:A 0V ,B 1.6V ) 5、试求图1.5.7所示电路的入端电阻R AB 。(150Ω) U - 图1.5.1 1Ω 图1.5.2 6V 图1.5.5 B -图1.5.6 Ω 图1.5.7

6、试求图2.4.1所示电路的电压U 。 7、已知图2.5.1电路中电压U =4.5V ,试应用已经学过的电路求解法求电阻R 。 (18Ω) 8、求解图2.5.2所示电路的戴维南等效电路。 (U ab =0V ,R 0=8.8Ω) 9、列出图2.5.4所示电路的结点电压方程。 解:画出图2.5.4等效电路图如下: 图2.5.1 9V 图2.5.2 2A Ω U 图2.4.1题电路

对结点A 对结点B 10、应用等效变换求图示电路中的I的值。(10分) 解:等效电路如下: 11、应用等效变换求图示电路中的I的值。

12、应用戴维南定理求解图示电路中的电流I 13、如下图所示,RL等于何值时,能得到最大传输功率P0max?并计算P0max 。

16、图示电路中,开关闭合之前电路已处于稳定状态,已知R1=R2=2Ω 解开关闭合后电感电流iL的全响应表达式。 17、图示电路中,t=0时开关闭合,闭合之前电路已处于稳定状态,请用三要素法求解开关闭合后电容电压uc的全响应表达式。

电力系统分析之短路电流计算讲课稿

电力系统分析之短路电流计算 电力系统是由生产、输送、分配、及使用电能的发电机、变压器、电力线路和用户组成一个整体,它除了有一次设备外还应有用于保护一次设备安全可靠运行的二次设备。对电力系统进行分析应包括正常运行时的运行参数和出现故障时的故障参数进行分析计算。短路 是电力系统出现最多的故障,短路电流的计算方法有很多,而其中以“应用运算曲线”计算短路电流最方便实用。应用该方法的步骤如下: 1、 计算系统中各元件电抗标幺值; 1)、基准值,基准容量(如取基准容量Sj=100MV A ),基准电压Uj 一般为各级电压的平均电压。 2)系统中各元件电抗标幺值计算公式如下: 发电机 ? Cos P S X X e j d d /100%' '"* ? = 式中" *d X 为发电机次暂态电抗百分值 变压器 e j d b S S U X ?=100%* 式中U d %为变压器短路电压的百分值 线路 20*e j j U S L X X ? = 式中X 0为每仅是电抗的平均值(架空线为0.4欧/公里) 电抗器 2*3100%j j e e k k U S I U X X ??= 式中X k %为电抗器的短路电抗百分值 系统阻抗标幺值 Zh j x S S X = * S Zh 断路器的遮断容量 2、 根据系统图作出等值电路图, 将各元件编号并将相应元件电抗标幺值标于元件编号 下方; 3、 对网络化简,以得到各电源对短路点的转移电抗,其基本公式有: 串联 X 1 X 2X 3 X 3 =X 1+X 2 并联 X 1 X 2 X 3 2 12 1213//X X X X X X X +?= =

电路理论基础课后答案(哈工大陈希有)第9章

答案9.1 解:由分压公式得: U U H R /)(j =ωRC RC C R R ωωωj 1j )j /(1+=+= )j (ωH 具有高通特性,令2 1 )j (c =ωH 得 截止频率RC 1 c =ω,通带范围为∞~c ω 答案9.2 解:由阻抗并联等效公式得: Ω+=+=---3 3 636310 j 110)10j /(110)10j /(10)j (ωωωωZ 阻抗模及幅角分别为: 2 33 )10(110)j (ωω-+= Z , )10arctan()(3ωωθ--= 令 2/1)j (c =ωZ 求得截止角频率rad/s 103c =ω,故通带及阻带分别为: 通带=ω0~rad/s 103,阻带=ωrad/s 103~∞。幅频特性和相频特性如图(b)和(c)所示。 (b) -- 答案9.3 解:等效输入阻抗 )1() j j ()j 1j ()(j j j j )j (1221212122 11C R LR C L R R C L R R C L R R C R C R L R L R Z ωωωωωωωωω++++++=-++?= 取极端情况,令0=ω,得20)j (R Z ==ωω; 令∞→ω,得1)j (R Z =∞→ωω。由)j (ωZ 不随频率变化得R R R ==21,式(1)简化为

)j 1j () j 1j (2 )j 1j ()j 1j (2)j (22 C L R C L R C L R C L R C L R C L R C L R C L R Z ωωωωωωωωω+++++=+++++= 由)j (ωZ 为实数得: C L R R C L R R C L =+=2,2 故当C L R R ==21时端口电流与端口电压的波形相似,此时C L Z =)j (ω。 答案9.4 解: RC 并联的等效阻抗 RC R C R C R Z RC ωωωj 1j /1j /+=+= RC RC Z L Z U U H +==ωωj /)j (1 2 R L LC RC L R R /j 11 )j 1(j 2 ωωωω+-=++= 幅频特性 2 22) /()1(1 )j (R L LC H ωωω+-= 当0→ω时,1)j (=ωH ;当∞→ω时,0)j (=ωH 所以它具有低通特性。 答案9.5 解:由KVL 及分压公式得 1 db cb 2)j 1j 1j 1(U C R R C R C U U U ωωω+-+=-= 整理得 RC RC U U H ωωωj 1j 1)j (1 2+-= = 其幅频特性 1) (1)(1)j (2 2 22=++= RC RC H ωωω 相频特性 )arctg(2)(RC ωω?-= 当ω从0变到∞时,)(ω?从0变化到π-。 注释:图中电路幅频特性为常量,与频率无关,具有全通特性,常用作移相。 答案9.6 解:设

电力系统分析课程设计-潮流计算

目录 摘要 (1) 1.任务及题目要求 (2) 2.计算原理 (3) 2.1牛顿—拉夫逊法简介 (3) 2.2牛顿—拉夫逊法的几何意义 (7) 3计算步骤 (7) 4.结果分析 (9) 小结 (11) 参考文献 (12) 附录:源程序 (13) 本科生课程设计成绩评定表 (32)

摘要 电力系统的出现,使高效,无污染,使用方便,易于调控的电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,发生率第二次技术革命。电力系统的规模和技术水准已经成为一个国家经济发展水平的标志之一。 电力系统稳态分析包括潮流计算和静态安全分析。电力系统潮流计算是电力系统最基本的计算,也是最重要的计算。所谓潮流计算,就是已知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、个支路电流与功率及网损。对于正在运行的电力系统,通过潮流计算可以判断电网母线电压、支路电流和功率是否越限,如果有越限,就应采取措施,调整运行方式。对于正在规划的电力系统,通过潮流计算,可以为选择电网供电方案和电气设备提供依据。潮流计算还可以为继电保护和自动装置定整计算、电力系统故障计算和稳定计算等提供原始数据。 在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。 关键词:电力系统潮流计算牛顿-拉夫逊法

电力系统分析潮流计算例题

电力系统的潮流计算 西安交通大学自动化学院 2012.10 3.1 电网结构如图3—11所示,其额定电压为10KV 。已知各节点的负荷功率及参数: MVA j S )2.03.0(2 +=, MVA j S )3.05.0(3+=, MVA j S )15.02.0(4+= Ω+=)4.22.1(12j Z ,Ω+=)0.20.1(23j Z ,Ω+=)0.35.1(24j Z 试求电压和功率分布。 解:(1)先假设各节点电压均为额定电压,求线路始端功率。 0068.00034.0)21(103.05.0)(2 2223232232323j j jX R V Q P S N +=++=++=?0019.00009.0)35.1(10 15.02.0)(2 2 224242242424j j jX R V Q P S N +=++=++=?

则: 3068.05034.023323j S S S +=?+= 1519.02009.024424j S S S +=?+= 6587.00043.122423' 12 j S S S S +=++= 又 0346 .00173.0)4.22.1(106587.00043.1)(2 2 212122'12'1212j j jX R V Q P S N +=++=++=? 故: 6933.00216.112'1212 j S S S +=?+= (2) 再用已知的线路始端电压kV V 5.101 =及上述求得的线路始端功率 12 S ,求出线 路 各 点 电 压 。

kV V X Q R P V 2752.05 .104.26933.02.10216.1)(11212121212=?+?=+=? kV V V V 2248.101212=?-≈ kV V V V kV V X Q R P V 1508.100740.0) (24242 2424242424=?-≈?=+=? kV V V V kV V X Q R P V 1156.101092.0) (23232 2323232323=?-≈?=+=? (3)根据上述求得的线路各点电压,重新计算各线路的功率损耗和线路始端功率。 0066.00033.0)21(12.103.05.02 2 223j j S +=++=? 0018.00009.0)35.1(15 .1015.02.02 2 224j j S +=++=? 故 3066.05033.023323j S S S +=?+= 1518.02009.024424j S S S +=?+= 则 6584.00042.122423' 12 j S S S S +=++= 又 0331.00166.0)4.22.1(22 .106584.00042.12 2 212j j S +=++=? 从而可得线路始端功率 6915.00208.112 j S +=

电力系统分析课程设计 三相短路故障分析计算

课程设计报告 题目电力系统课程设计 《三相短路故障分析计算》 课程名称电力系统课程设计 院部名称龙蟠学院 专业电气工程及其自动化 班级M08电气工程及其自动化学生姓名 学号0821113 课程设计地点C304 课程设计学时一周 指导教师朱一纶 金陵科技学院教务处制

目录 摘要 (ii) 一、基础资料 (3) 1.电力系统简单结构图................................................ ....... . ..... .. ... . .... . .. . (3) 2.电力系统参数 (3) 3参数数据 (4) 二、元件参数标幺值的计算及电力系统短路时的等值电路 (4) 1.发电机电抗标幺值..................................................... ....... . ..... .. ... (4) 2.负载电抗标幺值 (4) 3变压器电抗标幺值 (4) 4.线路电抗标幺值............................................. ........ ....... . ..... .. ... ... .. (4) 5.电动机电抗标幺值........................................ ........ ....... . ..... .. ... ... .. (4) 三、化简等值电路 (4) 四、求出短路点的次暂态电流 (4) 五、求出短路点冲击电流和短路功率 (4) 六、设计心得............................................................. . . . . .. (20) 七、参考文献............................................................. (21) 电力系统课程设计《三相短路故障分析计算》

哈工大电路理论基础 78讲 刘洪臣主讲

课程名称:哈工大电路理论基础 78讲刘洪臣主讲 参考教材: 邱关源主编.电路.第4版.高等教育出版社,1999 课程介绍 电路理论基础是研究电网络分析、设计与综合的基础工程学科, 它属于电类各专业共同的理论基础。本课程是电路理论的入门课。通过本课程的学习, 使学生掌握电路的基本理论知识、分析计算的基本方法和初步的实验技能, 为学习后续有关课程准备必要的电路知识, 并为进一步学习电路理论打下基础。在教学过程中综合运用先修课程中所学到的有关知识与技能,结合各种实践教学环节,进行电气工程技术人员所需的基本训练,为学生进一步学习有关专业课程和日后从事电气工程工作打下基础。因此本课程在电类专业的教学计划中占有重要地位和作用。该课程是哈尔滨工业大学首批优秀课程,也是学校重点建设课程。 本课程主要内容为:基尔霍夫定律及电路元件,线性直流电路,电路定理,非线性直流电路,电容元件和电感元件,正弦电流电路,三相电路,非正弦周期电流电路,频率特性和谐振现象,线性动态电路暂态过程的时域分析。

重点难点 本课程中重要的知识点: 1.参考方向的概念; 2.功率的计算及功率与参考方向之间的关系; 3.回路电流法的基本列写规则; 4.节点电压法的基本列写规则; 5.理想运算放大器的端口特性及利用此特性分析含运算放大器的电路。 6.齐性定理与叠加定理的使用条件,综合应用这两个定理来求解电路; 7.应用等效电源定理来化简线性一端口网络; 8.负载获得最大功率传输的条件及最大功率的求解; 9.非线性直流电路方程的列写方法; 10.非线性直流电路的分段线性分析法; 11.互感元件的端口电压和电流关系方程列写; 12.互感串联、并联及T型连接的去耦等效电路; 13.理想变压器的端口特性方程及从输入端口等效的电阻表达式。 14.相量形式的KCL、KVL表达式及RLC元件端口特性方程; 15.正弦电流电路的相量分析法; 16.含互感元件的正弦电流电路求解; 17.正弦电流电路的各种功率求解及最大功率传输定理的应用。 18.对称三相电路的计算——单相计算法; 19.对称三相电路的各种功率计算。 20.非正弦周期电压和电流的有效值及平均功率的计算;

电力系统三相短路电流的计算

能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:将________________________ 学号:1310240006__________________

目录 摘要 (1) 课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算 (6) 第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

电力系统分析是电气工程、电力工程的专业核心课程,通过学习电力系统分析,学生可以了解电力系统的构成,电力系统的计算分析及方法、电力系统常见的故障及其处理方法、电力系统稳定性的判断,为从事电力系统打下必要的基础。 电力系统短路电流的计算是重中之重,电力系统三相短路电流计算主要是短路电流周期(基频)分理的计算,在给定电源电势时,实际上就是稳态交流电路的求解。采用近似计算法,对系统元件模型和标幺参数计算作简化处理,将电路转化为不含变压器的等值电路,这样,就把不同电压等级系统简化为直流系统来求解。 在电力系统中,短路是最常见而且对电力系统运行产生最严重故障的后果之一。

电力系统分析试题答案(全)

2、停电有可能导致人员伤亡或主要生产设备损坏的用户的用电设备属于( )。 A 、一级负荷; B 、二级负荷; C 、三级负荷; D 、特级负荷。 4、衡量电能质量的技术指标是( )。 A 、电压偏移、频率偏移、网损率; B 、电压偏移、频率偏移、电压畸变率; C 、厂用电率、燃料消耗率、网损率; D 、厂用电率、网损率、电压畸变率 5、用于电能远距离输送的线路称为( )。 A 、配电线路; B 、直配线路; C 、输电线路; D 、输配电线路。 7、衡量电力系统运行经济性的主要指标是( )。 A 、燃料消耗率、厂用电率、网损率; B 、燃料消耗率、建设投资、网损率; C 、网损率、建设投资、电压畸变率; D 、网损率、占地面积、建设投资。 8、关于联合电力系统,下述说法中错误的是( )。 A 、联合电力系统可以更好地合理利用能源; B 、在满足负荷要求的情况下,联合电力系统的装机容量可以减少; C 、联合电力系统可以提高供电可靠性和电能质量; D 、联合电力系统不利于装设效率较高的大容量机组。 9、我国目前电力系统的最高电压等级是( )。 A 、交流500kv ,直流kv 500±; B 、交流750kv ,直流kv 500±; C 、交流500kv ,直流kv 800±;; D 、交流1000kv ,直流kv 800±。 10、用于连接220kv 和110kv 两个电压等级的降压变压器,其两侧绕组的额定电压应为( )。 A 、220kv 、110kv ; B 、220kv 、115kv ; C 、242Kv 、121Kv ; D 、220kv 、121kv 。 11、对于一级负荷比例比较大的电力用户,应采用的电力系统接线方式为( )。 A 、单电源双回路放射式; B 、双电源供电方式; C 、单回路放射式接线; D 、单回路放射式或单电源双回路放射式。 12、关于单电源环形供电网络,下述说法中正确的是( )。 A 、供电可靠性差、正常运行方式下电压质量好; B 、供电可靠性高、正常运行及线路检修(开环运行)情况下都有好的电压质量; C 、供电可靠性高、正常运行情况下具有较好的电压质量,但在线路检修时可能出现电压质量较差的情况; D 、供电可靠性高,但电压质量较差。 13、关于各种电压等级在输配电网络中的应用,下述说法中错误的是( )。 A 、交流500kv 通常用于区域电力系统的输电网络; B 、交流220kv 通常用于地方电力系统的输电网络; C 、交流35kv 及以下电压等级通常用于配电网络; D 、除10kv 电压等级用于配电网络外,10kv 以上的电压等级都只能用于输电网络。 14、110kv 及以上电力系统应采用的中性点运行方式为( )。 A 、直接接地; B 、不接地; C 、经消弧线圈接地; D 、不接地或经消弧线圈接地。 16、110kv 及以上电力系统中,架空输电线路全线架设避雷线的目的是( )。

哈工大电路原理基础课后习题

第一章习题 1.1 图示元件当时间t<2s时电流为2A,从a流向b;当t>2s时为3A,从b流向a。根据图示参考方向,写出电流的数学表达式。 1.2图示元件电压u=(5-9e-t/τ)V,τ>0。分别求出t=0 和t→∞时电压u的代数值及其真实方向。 图题1.1 图题1.2 1.3 图示电路。设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C发出功率为-10W,求。 图题1.3 1.4求图示电路电流。若只求,能否一步求得? 1.5 图示电路,已知部分电流值和部分电压值。 (1) 试求其余未知电流。若少已知一个电流,能否求出全部未知电流? (2) 试求其余未知电压u14、u15、u52、u53。若少已知一个电压,能否求出全部未知电压? 1.6 图示电路,已知,,,。求各元件消耗的功率。 1.7 图示电路,已知,。求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。 1.8 求图示电路电压。 1.9 求图示电路两个独立电源各自发出的功率。 1.10 求网络N吸收的功率和电流源发出的功率。 1.11 求图示电路两个独立电源各自发出的功率。

1.12 求图示电路两个受控源各自发出的功率。 1.13 图示电路,已知电流源发出的功率是12W,求r的值。 1.14 求图示电路受控源和独立源各自发出的功率。 1.15图示电路为独立源、受控源和电阻组成的一端口。试求出其端口特性,即关系。 1.16 讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。 第二章习题 2.1 图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。 2.2 求图示电路的电压及电流。 2.3 图示电路中要求,等效电阻。求和的值。 2.4求图示电路的电流I。

《电力系统分析》朱一纶课后习题解

电力系统分析xx课后习题选择填空解答第一章 1)电力系统的综合用电负荷加上网络中的功率损耗称为(D) A、厂用电负荷 B、发电负荷 C、工业负荷 D、供电负荷 2)电力网某条线路的额定电压为Un=110kV,则这个电压表示的是(C)A、相电压B、1 相电压C、线电压D、3线电压 3)以下(A)不是常用的中性点接地方式。 A、中性点通过电容接地 B、中性点不接地 C、中性点直接接地 D、中性点经消弧线圈接地 4)我国电力系统的额定频率为(C) A、30Hz B、40Hz C、50Hz D、60Hz 5)目前,我国电力系统中占最大比例的发电厂为(B) A、水力发电厂 B、火力发电厂 C、核电站 D、风力发电厂 6)以下(D)不是电力系统运行的基本要求。 A、提高电力系统运行的经济性 B、安全可靠的持续供电 C、保证电能质量 D、电力网各节点电压相等 7)一下说法不正确的是(B) A、火力发电需要消耗煤、石油 B、水力发电成本比较大 C、核电站的建造成本比较高D太阳能发电是理想能源 8)当传输的功率(单位时间传输的能量)一定时,(A)

A、输电的压越高,则传输的电流越小 B、输电的电压越高,线路上的损耗越大 C、输电的电压越高,则传输的电流越大 D、线路损耗与输电电压无关9)对(A)负荷停电会给国民经济带来重大损失或造成人身事故。 A、一级负荷 B、二级负荷 C、三级负荷 D、以上都不是 10)一般用电设备满足(C) A、当端电压减小时,吸收的无功功率增加 B、当电源的频率增加时,吸收的无功功率增加 C、当端电压增加时,吸收的有功功率增加 D、当端电压增加时,吸收的有功功率减少 填空题在后面 第二章 1)电力系统采用有名制计算时,三相对称系统中电压、电流、功率的关系表达 式为(A)A.S=UI B.S=3UI C.S=UIcos? D.S=UIsin? 2)下列参数中与电抗单位相同的是(B)A、电导B、电阻C、电纳D、导纳3)三绕组变压器的分接头,一般装在(B)A、高压绕组好低压绕组B、高压绕组和中压绕组C、中亚绕组和低压绕组D、三个绕组组装4)双绕组变压器,Γ型等效电路中的导纳为(A ) A.GT-jBT B.-GT-jBT C.GT+jBT D.-GT+jBT 5)电力系统分析常用的五个量的基准值可以先任意选取两个,其余三个量可以 由其求出,一般选取的这两个基准值是(D )

电力系统分析课后作业题及练习题

第一章 电力系统的基本概念 1-1 什么叫电力系统、电力网及动力系统 1-2 电力线、发电机、变压器和用电设备的额定电压是如何确定的 1-3 我国电网的电压等级有哪些 1-4 标出图1-4电力系统中各元件的额定电压。 1-5 请回答如图1-5所示电力系统中的二个问题: ⑴ 发电机G 、变压器1T 2T 3T 4T 、三相电动机D 、单相电灯L 等各元件的额定电压。 ⑵ 当变压器1T 在+%抽头处工作,2T 在主抽头处工作,3T 在%抽头处工作时,求这些变压器的实际变比。 1-6 图1-6中已标明各级电网的电压等级。试标出图中发电机和电动机的额定电压及变压器的额定变比。 1-7 电力系统结线如图1-7所示,电网各级电压示于图中。试求: ⑴发电机G 和变压器1T 、2T 、3T 高低压侧的额定电压。 习题1-4图

⑵设变压器1T 工作于+%抽头, 2T 工作于主抽头,3T 工作于-5%抽头,求这些变压器的实际变比。 1-8 比较两种接地方式的优缺点,分析其适用范围。 1-9 什么叫三相系统中性点位移它在什么情况下发生中性点不接地系统发生单相接地时,非故障相电压为什么增加3倍 1-10 若在变压器中性点经消弧线圈接地,消弧线圈的作用是什么 第二章 电力系统各元件的参数及等值网络 2-1 一条110kV 、80km 的单回输电线路,导线型号为LGJ —150,水平排列,其线间距离为4m ,求此输电线路在40℃时的参数,并画出等值电路。 2-2 三相双绕组变压器的型号为SSPL —63000/220,额定容量为63000kVA ,额定电压为242/,短路损耗404=k P kW ,短路电压45.14%=k U ,空载损耗93=o P kW ,空载电流 41.2%=o I 。求该变压器归算到高压侧的参数,并作出等值电路。 2-3 已知电力网如图2-3所示: 各元件参数如下: 变压器:1T :S =400MVA ,12%=k U , 242/ kV 2T :S =400MVA ,12%=k U , 220/121 kV 线路:2001=l km, /4.01Ω=x km (每回路) 602=l km, /4.01Ω=x km 115kV T 1 T 2 l 1 l 2 习题2-3图

《电力系统分析》试题

《电力系统分析》试题 一、选择题 1.采用分裂导线的目的是(A) A.减小电抗 B.增大电抗 C.减小电纳 D.增大电阻 2.下列故障形式中对称的短路故障为( C ) A.单相接地短路 B.两相短路 C.三相短路 D.两相接地短路 3.简单系统静态稳定判据为(A) A.>0 B.<0 C.=0 D.都不对 4.应用等面积定则分析简单电力系统暂态稳定性,系统稳定的条件是( C )A.整步功率系数大于零 B.整步功率系数小于零 C.最大减速面积大于加速面积 D.最大减速面积小于加速面积 5.频率的一次调整是(A) A.由发电机组的调速系统完成的 B.由发电机组的调频系统完成的 C.由负荷的频率特性完成的 D.由无功补偿设备完成的 6.系统备用容量中,哪种可能不需要( A) A.负荷备用 B.国民经济备用 C.事故备用 D.检修备用

7.电力系统中一级负荷、二级负荷和三级负荷的划分依据是用户对供电的(A)A.可靠性要求 B.经济性要求 C.灵活性要求 D.优质性要求 9.中性点不接地系统发生单相接地短路时,非故障相电压升高至(A) A.线电压 B.1.5倍相电压 C.1.5倍线电压 D.倍相电压 10.P-σ曲线被称为( D ) A.耗量特性曲线 B.负荷曲线 C.正弦电压曲线 D.功角曲线 11.顺调压是指( B ) A.高峰负荷时,电压调高,低谷负荷时,电压调低 B.高峰负荷时,允许电压偏低,低谷负荷时,允许电压偏高 C.高峰负荷,低谷负荷,电压均调高 D.高峰负荷,低谷负荷,电压均调低 12.潮流方程是( D ) A.线性方程组 B.微分方程组 C.线性方程 D.非线性方程组 13.分析简单电力系统的暂态稳定主要应用( B ) A.等耗量微增率原则 B.等面积定则 C.小干扰法 D.对称分量法 14.电力线路等值参数中消耗有功功率的是(A) A.电阻 B.电感 C.电纳 D.电容

哈工大电力系统分析短路及潮流计算实验上机程序

上机实验 实验一节点导纳阵生成和短路电流计算实验二简单系统的牛顿法潮流计算 姓名: 班级:141班 学号: 实验说明:本程序的电路结构来自翁增银、何仰赞主编的《电力系统分析》的例题

实验一节点导纳阵生成和短路电流计算 一、实验目的 根据所给的电力系统,编制短路电流计算程序,通过计算机进行调试,最后完成一个切实可行的电力系统计算应用程序。通过自己设计电力系统计算程序加深对电力系统分析的理解,同时加强计算机实际应用能力。 二、实验内容 1、编写数据输入、形成导纳阵程序 2、电力系统短路计算实用公式的计算程序及编制和调试 三、实验过程 1、程序代码及说明 %清屏 clear %读数据 fid=fopen('node5.txt','r'); A=fscanf(fid,'%d',2); B=fscanf(fid,'%f',[5,A(2,1)]); fclose(fid); B=B'; %求节点导纳矩阵 Y=zeros(A(1,1)); % 形成5×5的0阵 %%%%%==================================================== %导纳阵元素计算 for a=1:1:A(2,1) m=B(a,1); n=B(a,2); if B(a,5)>0 Y(m,m)=Y(m,m)+1/(B(a,3)+j*B(a,4)); Y(n,n)=Y(n,n)+1/(B(a,3)+j*B(a,4))/(B(a,5)^2); Y(m,n)=-1/(B(a,3)+j*B(a,4))/B(a,5); Y(n,m)=Y(m,n); elseif B(a,5)<0 Y(m,m)=Y(m,m)+1/(B(a,3)+j*B(a,4))-j*B(a,5); Y(n,n)=Y(n,n)+1/(B(a,3)+j*B(a,4))-j*B(a,5); Y(m,n)=-1/(B(a,3)+j*B(a,4)); Y(n,m)=Y(m,n); end end %%%%%=======================================================

电力系统分析练习题

电力系统分析练习题 一、单项选择题 1.对电力系统的基本要求就是(A) A.保证供电可靠性、保证良好的电能质量、保证系统运行的经济性 B.保证供电可靠性、保证良好的电能质量、保证继电保护动作的选择性 C.保证供电可靠性与良好的电能质量 D.保证供电可靠性与系统运行的经济性 2.下图所示的电力系统中,变压器T1的额定变比应为(B) A.242/121/11kV B.220/121/11kV C.220/110/10kV D.242/121/10kV 3.连接220kV 电力系统与110kV 电力系统的降压变压器,其额定变比应为(D) A.220/110kV B.220/115、5kV C.242/121kV D.220/121kV 4.我国110kV 以上电力系统中性点通常采用的运行方式就是(B) A 、不接地 B 、直接接地 C 、经消弧线圈接地 D 、经电容器接地 5.电力系统中性点经消弧线圈接地时,应采用的补偿方式为(A) A.过补偿 B.欠补偿 C.全补偿 D.全补偿或欠补偿 6.采用同一型号导线的三相架空输电线路,相间距离增大时,其电容(B) A.增大 B.减小 C.不变 D.无法确定 7.架空输电线路采用分裂导线的目的就是(A) A 、减小线路电抗 B 、减小线路电阻 C 、减小线路电容 D 、增大线路电抗 8.三相架空输电线路导线全换位的目的就是(A) A.减小三相参数的不平衡 B.减小线路电抗 C.减小线路电容 D.提高输电线路的输送容量 9.变压器参数B T 由试验数据 确定。(2章)(B) A.%K U B.%0I C.0P ? D.K P ? 10.变压器的电抗参数 T X ,由实验数据 确定。(A) A 、%K U B 、%0I C 、0P ? D 、K P ? 11.变压器的电纳参数T G ,由实验数据 确定。(C) A.%K U B.%0I C.0P ? D.K P ? 12.变压器的电阻参数T R ,由实验数据 确定。(D) A.%K U B.%0I C.0P ? D.K P ? 13.如果三相功率基准值为b S 、线电压基准值为b U ,则阻抗基准值为(D) A.b b U S / B. b b U S 3/ C.2/b b U S D.b b S U /2 14.输电线路运行时,其始端电压电压与末端电压的大小关系就是(C) A.始端电压一定高于末端电压 B. 始端电压始终等于末端电压 C.在不计电压降落横分量影响情况下,PR+QX>0时,始端电压高于末端电压 D.在不计电压降落横分量影响情况下,PR+QX>0时,始端电压低于末端电压 15.输电线路的电压降落就是指(A) A 、线路始端电压与末端电压的相量差 B 、线路始端电压与末端电压的数值差 C 、线路始端电压与额定电压的数值差 D 、线路末端电压与额定电压的数值差

电力系统分析短路电流的计算

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求: (1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 25 .02=T X 25.02==''X X d 图1-1 1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入

代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1.单相(a 相)接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I = 经过整理后便得到用序量表示的边界条件为: (2)(0)(1)(2)(0)00fa fa fa fa fa fa V V V I I I ? =++=? ??==? 2.两相(b 相和c 相)短路 b 相和c 相短路的边界条件 . 0fa I = ; ..0fb fc I I += ; . . fb fc V V = 经过整理后便得到用序量表示的边界条件为: (0) (1)(2)(1)(2)00fa fa fa fa fa I I I V V ? =??? +=??? =?? 3. 两相(b 相和c 相)短路接地 b 相和 c 相短路接地的边界条件 0fa I = ; 0fb V = ; 0fc V =

电力系统分析计算题.doc

电力系统分析计算题 1.假设电压U 1固定不变,试就图示系统分析为什么投入电容器C 后可以降低线损和提高电压U 2。 2. 试就图示系统分析为什么对中枢点U 1进行逆调压可以对负荷点电压U 2进行控制的原理。 3. 试就图示系统分析(a )、(b )两种情况下线路的电能损耗ΔA ,你的结论是什么? 4.某负荷由发电厂经电压为110kV 的输电线路供电。 Ω, X=41Ω,C Q 2 1 =1.7Mvar , 发 线路的参数为:R=17 电厂高压母线电压U 1=116kV, 线路末端负荷为20+j10 MVA,求输电线路的功率损耗和末端电压U 2(计及电压降落的横分量)。(12分) 5、某降压变电所装有两台并联工作的有载调压变压器,电压为110±5×2.5/11 kV ,容量为31.5MVA, 已知最大负荷时:高压母线电压为103 kV,两台变压器并列运行时的电压损耗为5.849 kV,最小负荷时: 高压母线电压为108.5 kV, 两台变压器并列运行时的电压损耗为2.631 kV 。变电所低压母线要求逆调压,试选择有载调压变压器分接头。(12分) 6.一双电源电力系统如下图所示,如在f 点发生b 、 P+jQ P+jQ S ~ (h ) (a ) (b ) 20+j10 MVA U 2 2 T 1 1 MVA X X j E d G 3013.013.01"2., ,. 1. === U K %=10.5 60MV A U K %=10.5 31.5MV A 80km X 1=0.4Ω/km X 0=3.5 X 1 MVA X X j E d G 60125.0125.01".2, ,. 2. ===

电力系统分析考试题讲解学习

电力系统分析考试题

电力系统分析考试题 一、判断题 1、分析电力系统机电暂态过程时,通常认为电磁暂态过程已经结束,即不再考虑发电机内部的电磁暂态过程。(√) 2、短路冲击电流出现在短路发生后约半个周期。(√) 3、不管发电机的各个绕组是由超导体还是非超导体构成,短路电流中的非周期分量都将逐渐衰减到零。(×) 4、当发电机定子绕组之间的互感系数为常数时,发电机为隐极机。 (√) 5、电力系统发生不对称短路时,不仅短路点三相参数不对称,电力系统其他部分三相参数也将成为三相不对称的。(×) 6、不管架空输电线路是否假设避雷线,其负序电抗都是一样的。 (√) 7、电力系统发生不对称接地短路时,故障处三相电压不对称分解出的零序电压是电力系统中出现零序电流的原因。(√)8、小干扰法既可用于电力系统静态稳定性的分析,也可用于电力系统暂态稳定性的分析。(×) 9、线路串联电容器可以提高电力系统并列运行的静态稳定性。 (√) 10、从严格的意义上讲,电力系统总是处于暂态过程之中。(√) 11、无限大电源的频率保持不变,而电压却随着负荷的变化而变化,负荷越大,电源的端电压越低。(×)

12、不管同步发电机的类型如何,定子绕组与转子绕组之间互感系数都是变化的。(√) 13、对称分量法只能用于线性电力系统不对称故障的分析计算。(叠加)(√) 14、派克变换前后,发电机气隙中的磁场保持不变。(√) 15、具有架空地线的输电线路,架空地线的导电性能越强,输电线路的零序阻抗越大。(×) 16、不对称短路时,发电机机端的零序电压最高。 (×) 17、同步发电机转子的惯性时间常数JT反映了转子惯性的大小。(√) 18、短路计算时的计算电抗是以发电机的额定容量为基准的电抗标幺值。(√) 19、切除部分负荷是在电力系统静态稳定性有被破坏的危机情况下,采取的临时措施。(√) 20、变压器中性点经小电阻接地可以提高接地短路情况下电力系统并列运行的暂态 稳定性(√) 21、对称分量法不能用于非线性电力网的不对称短路分析。(√) 22、不管电力系统中性点采用什么样的运行方式,其零序等值电路都是一样的。(×) 23、在三序电抗相等的情况下,三相短路与单相接地短路时故障相的短路电流相同,因此它们对于电力系统并列运行暂态稳定性的影响也相同。(×) 24、输电线路采用单相重合闸与采用三相重合闸相比较,单相重合闸更有利于提高单相接地短路情况下电力系统并列运行的暂态稳定性。(√)

电力系统分析-试题第二套

第二套 一、判断题 1、分析电力系统并列运行稳定性时,不必考虑负序电流分量的影响。() 2、任何不对称短路情况下,短路电流中都包含有零序分量。() 3、发电机中性点经小电阻接地可以提高和改善电力系统两相短路和三相短路时并列运行的暂态稳定性。() 4、无限大电源供电情况下突然发生三相短路时,短路电流中的周期分量不衰减, 非周期分量也不衰减。() 5、中性点直接接地系统中,发生儿率最多且危害最大的是单相接地短路。() 6、三相短路达到稳定状态时,短路电流中的非周期分量已衰减到零,不对称短 路达到稳定状态时,短路电流中的负序和零序分量也将衰减到零。() 7、短路电流在最恶劣短路情况下的最大瞬时值称为短路冲击电流。() 8、在不计发电机定子绕组电阻的情况下,机端短路时稳态短路电流为纯有功性质。() 9、三相系统中的基频交流分量变换到系统中仍为基频交流分量。() 10、不对称短路时,短路点负序电压最高,发电机机端正序电压最高。() 二、选择题 1、短路电流最大有效值出现在()。 A短路发生后约半个周期时B、短路发生瞬间;C、短路发生后约1/4周期时。 2、利用对称分量法分析计算电力系统不对称故障时,应选()相作为分析计算的基本相。 A、故障相; B、特殊相; C、A相。 3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是 ()。 A、短路电流中除正序分量外,其它分量都将逐渐衰减到零; B、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都不会衰减: C、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减 到其稳态值。 4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在()。

相关文档
最新文档