分子结构分析(精)

分子结构分析(精)
分子结构分析(精)

离子极化:离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。离子极化能对金属化合物性质的影响

配位数:直接同中心离子(或原子)配位的原子数目叫中心离子(或原子)的配位数。晶体学中,配位数是晶格中与某一原子相距最近的原子个数。

晶格能:1mol离子化合物中的阴、阳离子从相互分离的气态结合成离子晶体

时所放出的能量。

晶格能也可以说是破坏1mol晶体,使它变成完全分离的气态自由离子所需要消耗的能量。用化学反应式表示时,相当于下面反应式的焓变的负值。

a Mz+(g) +

b Xz-(g)→ MaXb(s) U=-ΔH

氧原子的电子层结构是:

到了二十世纪四十年代,顺磁共振光谱发现了,并且证实顺磁共振光谱是由分子或离子中存在着未成对电子而引起的。顺磁共振光谱的实验证明氧分子有顺磁性,还证明氧分子里有两个未成对的电子。这个实验说明原来的以双键结合的氧分子结构式不符合实际。

价键理论对这个事实怎样解释呢?它承认未成对电子的存在,认为氧分子里形成了两个三电子键,氧分子的结构式要这样表示:

结构式中…代表三电子键。两个氧原子间怎样会形成三电子键呢?根据保里原理,一个轨道只能容纳两个自旋相反的电子,所以三电子键是由在两个轨道的三个电子形成的。形成一个三电子键放出的能量大约只有由一个电子对形成的单键放出的能量的一半,所以三电子键不稳定。三电子键只有在两个相同的原子间或电负性相差极小的原子间才可能形成。价键理论对于怎样形成三电子键还没有很明确的说明。

价键理论局限于把形成化学键的电子只处于相连的两个原子区域内。后来,着眼于分子整体来研究分子结构的分子轨道法发展起来,应用于对氧分子结构的解释。分子轨道法认为形成化学键的电子应在遍布整个分子的区域内运动。氧分子由两个氧原子构成。每个氧原子有8个电子,两个氧原子就有16个电子。这16个电子中,4个电子处于K层,12个电子处于L层。形成分子轨道的主要是L 层的电子

理论基础

价层电子对互斥理论的基础是,分子或离子的几何构型主要决定于与中心原子相关的电子对之间的排斥作用。该电子对既可以是成键的,也可以是没有成键的(叫做孤对电子)。只有中心原子的价层电子才能够对分子的形状产生有意义的影响。

分子中电子对间的排斥的三种情况为:

?孤对电子间的排斥(孤-孤排斥);

?孤对电子和成键电子对之间的排斥(孤-成排斥);

?成键电子对之间的排斥(成-成排斥)。

分子会尽力避免这些排斥来保持稳定。当排斥不能避免时,整个分子倾向于形成排斥最弱的结构(与理想形状有最小差异的方式)。

孤对电子间的排斥被认为大于孤对电子和成键电子对之间的排斥,后者又大于成键电子对之间的排斥。因此,分子更倾向于最弱的成-成排斥。

配体较多的分子中,电子对间甚至无法保持90°的夹角,因此它们的电子对更倾向于分布在多个平面上。

[编辑]实际预测

下面是价层电子对互斥理论预测的分子形状表。

电子对数杂化类型

(混層類

型)

轨道

形状

单电子对数

(孤電子

對)

分子形状例

2 sp 直线

0 直线型

BeCl

2

、二氧

化碳

3 sp2平面

正三

角形

平面正三角

三氯化硼1

V字型(角

型、彎曲型)

二氧化硫

4 sp3正四

面体

0 正四面体甲烷

1 三角锥氨

2

V 字型(角型、彎曲型) 水

5 sp 3d

三角双锥

0 三角双锥 五氯化磷

1 变形四面体(跷跷板型) TeCl 4

2 T 字型 ClF

3 3 直线型 I 3? 6

sp 3d 2

正八面体

0 正八面体 六氟化硫 1

四方錐 IF 5 2 平面十字型 ICl 4? 3 T 字型 4 直線型 7 sp 3d 3

五角雙錐

0 五角雙錐 IF 7 1

五角錐

电子对数 没有孤电子对 (基本形状)

1个孤电子对 2个孤电子对 3个孤电子对

2

直线型

3

平面三角形型

角型

4

四面体型

三角锥型

角型

5

三角双锥型

变形四面体型

T字型

直线型

6

八面体型

四角锥型

平面四方形型

7

五角双锥型五角锥型

分子类

型分子形状

中心原子价电子对的排

布方式?

分子的几何构

型?

实例

AX

1E

n

双原子分

(直线型)

HF、O

2

AX

2E

直线型

BeCl

2

、HgCl

2

、CO

2

AX

2E

1

角型

NO

2

?、SO

2

、O

3

AX

2E

2

角型

H

2

O、OF

2

AX

2E

3

直线型

XeF

2

、I

3

?

AX

3E

平面三角

形型

BF

3

、CO

3

2?、NO

3

?、

SO

3

AX

3E

1

三角锥型

NH

3

、PCl

3

AX

3E

2

T

字型

ClF

3

、BrF

3

AX

4E

四面体型

CH

4

、PO

4

3?、SO

4

2?、

ClO

4

?

AX

4E

1

变形四面

体型

SF

4

AX

4E

2

平面四方

形型

XeF

4

AX

5E

三角双锥

PCl

5

AX

5E

1

四角锥型

ClF

5

BrF

5

AX

6E

八面体型

SF

6

AX

6E

1

五角锥型XeOF

5

?、

IOF

5

2?

[1]

AX

7E

五角双锥

IF

7

?孤电子对以淡黄色球体表示。

?分子的实际几何构型,即不包含孤对电子的构型。

價層電子對互斥理論常用AXE方法計算分子構型。這種方法也叫ABE,其中A代表中心原子,X或B代表配位原子,E代表孤電子對。

甲烷分子(CH4)是四面體結構,是一個典型的AX4型分子。中心碳原子周圍有四個電子對,四個氫原子位於四面體的頂點,鍵角(H-C-H)為109°28'。

一個分子的形狀不但受配位原子影響,也受孤對電子影響。氨分子(NH3)中心原子雜化類型與甲烷相同(sp3),分子中有四個電子雲密集區,電子雲分佈依然呈四面體。其中三個是成鍵電子對,另外一個是孤對電子。雖然它沒有成鍵,但是它的排斥力影響著整個分子的形狀。因此,這是一個AX3E型分子,整個分子的形狀是三角錐形,因為孤對電子是不可「見」的。

事實上,電子對數為七是有可能的,軌道形狀是五角雙錐。但是它們僅存在於不常見的化合物之中,比如在六氟化氙中,有一對孤電子,它的構型趨向於八面體結構,因為孤對電子傾向於位於五角形的平面上。另一个例子为七氟化碘,碘沒有孤電子,七個氟原子呈五角雙錐狀排列。

電子對數為八也是有可能的,这些化合物一般为四方反棱柱体结构,[2]例子有八氟合氙酸亚硝酰中的 [XeF8]2?离子[3][4]以及八氰合钼(Ⅳ)阴离子 [Mo(CN)8]4?和八氟合锆(Ⅳ)阴离子 [ZrF8]4?。

[编辑]与其他相关理论的对比

价层电子对互斥理论、价键理论和分子轨道理论都是关于分子如何构成的理论。价键理论主要关注于σ键和π键的形成,通过研究受成键情况影响的轨道形状描述分子的形状。价键理论也会借助VSEPR。分子轨道理论则是关于原子和电子是如何组成分子或多原子离子的一个更精密的理论。

纤维的分子结构和化学性质(精)

第一节纤维的分子结构和化学性质 成纤高分子:1)线性、长链的分子结构,即使有侧基或支链,也比较短、小。 2)以碳原子为主链的构成元素,因此大多数纤维高分子是有机高分子,即有机纤维。 3)分子链有一定长度,分子间可以达到高的相互作用而有强度。 染整关注:纤维高分子与水有无结合基团、与染料分子有无作用点、与整理剂等有无结合点,是共价键结合、离子键结合、氢键结合还是范得华作用力结合。 例如: 棉纤维麻纤维聚乙烯纤维聚丙烯纤维: 分子结构差异大,左者所用染料和整理剂右者就无法使用。 一、纤维分类 二、纤维素纤维的分子结构和化学性质纤维素分子结构式

结构特点: 1) 环上三个—OH,反应活性点 2) 环间—O—,酸分解之,碱稳 3) 链端:有一隐-CHO,M低还原性 4) 链刚性,H-键多,强度高 5)聚合度 (二)纤维素分子化学性质 1、与酸作用 酸促使苷键水解:(反应式) 酸作用情况 酸使纤维素纤维织物初始手感变硬,然后强度严重下降。 纤维结构、酸的种类、作用时间、温度、纤维结构影响水解反应速率。 生产上应用:含氯漂白剂漂白后,稀酸处理,起进一步漂白作用;中和过剩碱;烂花、蝉翼等新颖印花处理。 用酸注意:稀酸、低温、洗净,避免带酸干燥。 2、与氧化剂作用 纤维素氧化后分子断裂,基团氧化变化,织物强度损伤。 纤维素分子对不同氧化剂作用有不同的敏感程度。 强氧化剂完全分解纤维素。中、低强度氧化剂在一定条件下氧化分解纤维素能力弱,可用来漂白织物。注意:空气中O2在强碱、高温条件易氧化、脆损纤维素织物,应避免。 氧化反应:Cell-OH + [O] Cell-CHO, Cell-C=O, Cell-COOH

分子模型晶体模型的制作

分子模型、晶体模型的制作 赤壁一中化学组 刘光利 二○○四年五月 制作目的: 1.充分利用分子模型等直观的教学用具,有利于培养学生的联想能力,通过各种模型可以提高教学速度和教学质量,解决书上难以表明的立体结构,从而达到突破难点的目的。 2.理解分子结构和晶体结构 培养用物质结构特点来认识物质的特性 制作材料:厚硬纸板、胶水或透明胶、铁丝、直尺、三角板、剪刀 制作方法: 1、正四面体的制作 在厚硬纸板上划好四个等边三角形如图1a 所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图1b 所示。 2、三角双锥分子模型的制作 在厚硬纸板上划好六个等腰三角形如图2a 所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图2b 所示。 图2a 图 2b 图1a 图 1b

3、正八面体分子模型的制作 在厚硬纸板上划好八个等边三角形如图3a所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图3b。 图3a 图3b 4、正二十面体分子模型的制作(B12) 在厚硬纸板上划好二十个等边三角形如图5a所示,然后沿实线剪下,再沿虚线划痕迹以便折叠,折叠后用粘合剂粘牢即成图5b所示。 图5a 图5b

使用说明 1.正四面体模型直接应用于白磷分子、甲烷分子、四氯化碳分子等正四面体分子结构的教学,也可应用于数学中立体几何的有关异面直线等方面的教学。利用正四面体还可以组合成其他形状的立体图形。例如,由一个正四面体可以切割成较小的正八面体,其方法是将正四面体的四个顶点从它的三条棱的中点切下,便可得到一个较小的正八面体。如果以一个正四面体为中心,另用四个与之全等的正四面体分别与它的四个面相連接,就可以得到一个十二个面全等的凹十二面体。 2.三角双锥模型直接应用于五氯化磷(PCl5)等具有三角双锥结构的分子结构的教学。也可用于数学教学。 3.正八面体应用于分子或离子组成为RX6、RX6n-型结构的教学。两个或两个以上的正八机体之间还可以进行不同方式的重叠就可以得到多种空间图形,对讲解超八面体等空间结构教学有很大的帮助。 4.正二十面体是专门用于B12分子结构的教学。在正二十面体中,每个顶点上有一个硼原子,每一条棱表示一根B—B键。有了这个模型,我们就可以清楚地算出在B12分子中所含有的B—B键数以及每一个硼原子跟周围的五个硼原子以五个B—B单键相结合。 在教学过程中,常常遇到有关C60的结构的教学难点,如果我们从硼12的结构开始讲起,就可以达到教学目的。因为B12是由12个硼原子构成的正二十面体,将正二十面体的每条棱三等分,然后将十二个硼原子等同地割下,因每个硼原子原有五条棱,所以割下后留下了一个正五边形的面,一个顶点就变成了五个顶点,原来的正三角形的面成变成了一个以原三角形边长的三分之一为边长的正六边形,这样新的图形就有5×12=60个顶点,有12个正五边形和20个正六边形。这种结构就是我们通常所说的C60的结构。 以上的使用说明只是一些典型的应用,其实它们应该还有很多的应用,这就得看看每个教学工作者在实际教学中如何发挥它们的用途。 赤壁一中化学组刘光利 二00四年五月二十八日

判断同分异构体的五种常用方法和有机分子结构的测定教案

专题学案62判断同分异构体的五种常用方法和有机 分子结构的测定 一、确定同分异构体数目的五种常用方法 1.等效氢法 在确定同分异构体之前,要先找出对称面,判断“等效氢”,从而确定同分异构体数目。 有机物的一取代物数目的确定,实质上是看处于不同位置的氢原子数目。可用“等效氢法”判断。 判断“等效氢”的三条原则是: (1)同一碳原子上的氢原子是等效的;如CH4中的4个氢原子等同。 (2)同一碳原子上所连的甲基是等效的;如C(CH3)4中的4个甲基上的12个氢原子等同。 (3)处于对称位置上的氢原子是等效的,如CH3CH3中的6个氢原子等同;乙烯分子中的4个H等同;苯分子中的6个氢等同;CH3C(CH3)2C(CH3)2CH3上的18个氢原子等同。 【典例导悟1】下列有机物一氯取代物的同分异构体数目相等的是()

A.①和②B.②和③C.③和④ D.①和④ 2.换位思考法 将有机物分子中的不同原子或基团进行换位思考。如乙烷分子中共有6个H原子,若有一个氢原子被Cl原子取代所得一氯乙烷只有一种结构,那么五氯乙烷有多少种?假设把五氯乙烷分子中的Cl看作H原子,而H原子看成Cl原子,其情况跟一氯代烷完全相同,故五氯乙烷也有一种结构。同理,二氯乙烷有两种结构,则四氯乙烷也有两种结构。 典例导悟

2已知化学式为C12H12的物质 其结构简式为,该环上的二溴代物有9种同分异构体,由此推断该环上的四溴代物的同分异构体数目有() A.4种B.9种C.12种D.6种 3.基团位移法 该方法比等效氢法更直观,该方法的特点是,对给定的有机物先将碳键展开,然后确定该有机物具有的基团并将该基团在碳链的不同位置进行移动,得到不同的有机物。需要注意的是,移动基团时要避免重复。此方法适合烯、炔、醇、醛、酮等的分析。 【典例导悟3】分子式为C5H10的链状烯烃,可能的结构有() A.3种B.4种C.5种D.6种4.基团连接法 将有机物看作由基团连接而成,由基团的异构体数目可推断有机物的异构体数目。如丁基有四种,丁醇(看作丁基与羟基连接而成)也有四种,戊醛、戊酸(分别看作丁基跟醛基、羧基的连接物)也分别有四种。

“测定有机物分子结构的常用分析方法”题型几例

龙源期刊网 https://www.360docs.net/doc/289081826.html, “测定有机物分子结构的常用分析方法”题型几例 作者:蒋赵军 来源:《化学教学》2009年第08期 文章编号:1005-6629(2009)08-0094-03中图分类号:G424.74文献标识码:B 通过对苏教版《有机化学基础》专题1“有机化合物分子结构”教学后,结合新课标要求和各地近年来所命试题,将有关有机物分子结构测定方法的试题归纳为以下几种题型,介绍如下。 题型一: 1H核磁共振类 1H核磁共振法的原理:氢原子核具有磁性,如用电磁波照射氢原子核,它能通过共振吸收电 磁波能量,发生跃迁,用核磁共振仪可以记录到有关信号。处于不同化学环境中的氢原子因产生 共振时吸收的频率不同,在谱图上出现的位置也不同,且吸收峰的面积与氢原子数成正比。因此,从核磁共振氢谱图(1H-NMR)上可以推知该有机物分子有几种不同类型的氢原子及它们的数 目。分子式为C2H6O的有机物有下述两种图谱: [例1]在有机物分子中,处于不同环境的氢原子在核磁共振谱中给出的峰值(信号)也不同,根据峰值(信号)可以确定有机物分子中氢原子的种类和数目。例如二乙醚的结构简式为CH3—CH2—O—CH2—CH3。其核磁共振谱中给出的峰值(信号)有两个如图2所示: (1)下列物质中,其核磁共振氢谱中给出的峰值(信号)只有一个的是______。 A.CH3CH3 B.CH3COOH C.CH3COOCH3 D.CH3COCH3 (2)化合物A和B的分子式都是C2H4Br2,A的核磁共振氢谱如图3所示,A的结构简式为 ______,请预测B的核磁共振氢谱上有______个峰(信号)。 (3)请简要说明根据核磁共振氢谱的结果来确定C2H6O分子结构的方法是 ______________。 解析:本题考查了根据1H核磁共振谱确定有机化合物的分子结构。(1)AD; (2)BrCH2CH2Br; 2 (3)若图谱中给出了3个吸收峰(信号),则说明C2H6O的结构是CH3CH2OH;若图谱中给出了1个吸收峰(信号),则说明C2H6O的结构是CH3OCH3

中药化学成分单体化合物结构鉴定方法和程序

中药化学成分单体化合物结构鉴定方法和程序 黄峰中药学 2110948107 摘要:中药化学成分单体化合物的结构鉴定是深入探讨有效成分的生物活性、构效关系、体内代谢以及进行结构改造、人工合成等的前提条件,本文主要对中药化学成分单体化合物结构鉴定的程序做一个综述,并对所涉及的色谱法、光谱法等在结构鉴定中的运用做一个具体探讨。 关键词:化学成分;结构鉴定;色谱法;光谱法 前言 中医药现代化是当今我国政府大力倡导和中医药领域各位同仁共同努力的奋斗目标,同时也是中华民族文化,尤其是中医药走向世界的重要特征之一。中药中发挥各种药理作用的物质基础(如其中的生理活性成分和有效成分)的认知不仅是阐明中药作用机制的基础,也是中医药能够走向世界的关键。 从中药中经过提取、分离、精制得到的有效成分,运用各种物理或化学的科学技术鉴定或测定其化学结构,才能为深入探讨有效成分的生物活性、构效关系、体内代谢以及进行结构改造、人工合成等研制提供必要的依据。因此,研究清楚中药中的化学成分是现代科学技术发展和中药现代化的关键步骤。 因此,研究清楚中药的化学成分是现代科学技术发展和中药现代化的关建步骤。本文主要对中药化学成分单体化合物结构鉴定方法和程序做一个综述,以在这个基础上,运用我们所学的知识对中药未知化学成分单体化合物进行探索。 1 单体化合物结构鉴定的一般程序 1.1纯度检测 在进行有效成分的结构研究之前,必须对该成分的纯度进行检验,以确定其为单体化学成分,这是鉴定或测定化学结构的前提。一般常用各种色谱法进行纯度检测,此外,固体物质还可通过测定其熔点,考察其熔距的大小作为纯度的参考[1]。液体物质还可通过测定沸点、沸程、折光率及比重等判断其纯度[2]。对已知物质来说无论是固体还是液体物质,如其比旋度与文献数据相同,则表明其已是或接近纯品。 用于纯度检测的物理常数的测定包括熔点、沸点、比旋度、折光率和比重等的测定。固体纯物质的熔点,其熔距应在0.5度~1.0度的范围内,如熔距过大,

有机物分子结构的鉴定(精)

有机物分子结构的鉴定 ■教材:人教社高中化学选修5 ■任课教师:牛桓云(北医附中) 〖教学设计说明〗 本节为课程标准增加了仪器分析的一节,内容新。是本章最后一节《研究有机物方法和步骤》的第三课时,学生已经具备了有机化学初步知识,掌握了典型有机化合物代表物如甲烷、乙烯、苯、乙醇、乙酸的的结构与性质,了解常见有机物官能团名称和结构简式,掌握了碳链异构、位置异构、官能团异构。本节首先介绍人们研究有机化合物的一般步骤和方法,使学习者有个总体的认识;然后再分步按顺序介绍具体的研究内容和研究方法;从介绍元素分析开始以未知物A(乙醇)为例介绍运用化学和物理方法确定有机物结构的一般步骤:有机物最简式→相对分子质量→官能团→分子结构。整体逻辑结构如下图: 步骤方法

课标要求:对于质谱的教学,不要求学生会看质谱图,但应该知道质荷比最大的分子碎片为“分子离子峰”,其对应的质荷比值就是样本的相对分子质量。对于红外光谱的教学,不要求学生会看红外光谱图,更不要求记住各官能团的吸收频率。对于核磁共振氢谱的教学,只需要学生了解,不要求记忆核磁共振频率,但能根据简化的核磁共振图谱判断氢原子的种类与个数比。初步了解现代分析技术在有机化学研究中的应用,提高科学素养和探究能力。显然知识要求较低,重在其意义。 基于这些认识,我在教学中充分利用教材的图文素材对学生进行阅读训练,教会学生如何读图、提取所需信息,明确每种图谱能解决什么问题。明确质谱、红外光谱、核磁共振氢谱到底能做什么?它们是鉴定有机分子结构的常用现代先进工具。其中核磁共振氢谱在后续“烃的含氧衍生物”一章中多次出现,也是学生解题时判断同分异构体、确定有机物结构的一个重要依据,教学时在巩固练习中让学生在理解的基础上加以应用。 由于图谱分析属于现代仪器分析在化学结构分析中的应用,首次出现在新教材中,把握难度是最重要的,教学设计时充分考虑学生的认知水平,循序渐进,层层递进,逐步让学生对三种图谱有所认识,不觉得难,也不觉得神秘,而要让学生感觉到现代科学仪器分析在化学结构分析中的应用,方便快捷,精确。首先从学生熟悉的醛基检验实验入手,提出化学实验检验结构的弊端,引入现代仪器分析方法的优点,引起学生兴趣,而以后设计三个环节,层层递进。 环节一:以未知物A乙醇为例逐一介绍讲解质谱、红外光谱、核磁共振氢谱的原理,谱图是什么样的?从每种谱图中能看到什么信息?如何利用这些信息进行有机物结构分析。根据质谱图,我们可以快速精确地得到未知物A相对分子质量,但此时学生会发现并不能判断未知物A的分子结构,继续介绍红外光谱,从红外光谱谱图,可以得到官能团和化学键的信息,结合质谱图所得到的相对分子质量,引导学生如何把质谱和红外光谱的信息进行

VSEPR模型判别分子构型

1940年,西奇威克(Sidgwick)等在总结实验事实的基础上提出了一种简单的模型,用于预测简单分子或离子的立体结构。六十年代初,吉列斯比(RJ.Gillespie)和尼霍尔姆(Nyholm)等发展了这一模型。因该模型思想方法质朴浅显,在预见分子结构方面简单易行,而成为大学基础化学的基本教学内容,并于新一轮课程改革中引入高中化学教学。这就是价层电子对互斥模型(Valence Shell Electron Pair Repulsion),常以其英文的缩写形式VSEPR来表示。 1、来自生活中的一个游戏现象 吹气球是大家熟悉的生活游戏,如果将每个气球吹成一样大小,将其中的两个通过吹气口系在一起,你会发现这两个气球自然成一直线,再向其中加入一个气球并通过吹气口系在一起,你会发现这三个气球均匀地分开成正三角形分布。依次再向其中加入一个气球并通过吹气口系在一起,你会有什么预期?你会发现结果与你的预期如此地吻合:四个大小相同的气球成正四面体分布,五个大小相同的气球成三角双锥分布,六个大小相同的气球成正八面体分布。见图: 我们很容易从这一游戏现象受到启迪:当物体所占空间因素相同时,它们彼此趋向均匀分布。这一规律在自然界乃至人类社会生活中并不鲜见,我们不难找到类似的和接近的例子。 2、VSEPR模型要点 VSEPR模型认为,分子的几何构型总是采取电子对排斥作用最小的那种结构。因为这样可使体系的能量最低,中心原子价层的电子对总是按照最合适的空间方式进行分布。见下表。

电子对的空间分布 电子对数 空间分布几何构型 2 直线 3 在角形 4 四面体 5 三角双锥 6 八面体 VSEPR模型简朴通俗,应用简单易行,显现了它的独特魅力并引人入胜。 3、VSEPR模型判别分子构型的基本程序 中心原子的价层如果没有孤电子对,那么每一个电子对就代表一个共价键,此时电子对的空间分布就是分子的几何构型。例如,BeCl2分子中Be原子的两个价电子分别与两个Cl原子形成的两个共价键,没有孤电子对,故它是直线型结构。又如CH4分子中的C原子价层有四个电子对,这四个价电子对代表了四条C-H 健,C原子价层无孤电子对,故CH4属四面体结构。 如果中心原子的价层存在孤电子对时,则应先考虑不同电子对之间的斥力后,再确定分子的构型。不同电子对间斥力的大小的顺序是:孤电子对-孤电子对>孤电子对-键电子对>键电子对-键电子对。 价层电子对互斥模型是根据中心原子周围价层电子对的数目,确定价层电子对在中心原子周围的理想排布,然后再根据价层电子对间斥力的大小,以体系的排斥能最小为原则来确定分子的几何构型。

超分子结构化学_周公度

第17卷 第5期大学化学2002年10月今日化学 超分子结构化学 周公度 (北京大学化学学院 北京100871) 超分子(supramolecule)通常是指由两种或两种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,使其具有明确的微观结构和宏观特性。由分子到超分子和分子间相互作用的关系,正如由原子到分子和共价键的关系一样。 1987年,诺贝尔化学奖授予C.Pedersen(佩德森)、J M.Lehn(莱恩)和D.Cram(克拉姆)等在超分子化学领域中的奠基工作:佩德森发现冠醚化合物,莱恩发现穴醚化合物并提出超分子概念,克拉姆是主客体化学的先驱者[1~3]。此后,作为化学的前沿领域,超分子化学引起了人们的广泛关注,近10多年来获得了很大的发展。研究超分子的形成、作用、结构和性能的超分子化学,已扩展到化学的各个分支,还扩展到生命科学和物理学等许多其他学科,并形成新的学科领域[4~11]。 超分子和超分子化学通常包括以下两个范围较广而部分交叠的领域。 (1)将超分子定义为由确定的少数组分(受体和底物)在分子识别原则基础上经过分子间缔合形成的分立的低聚分子物种。 (2)由大量不确定数目的组分按其性质自发缔合成超分子聚集体(supramolecular assem blies)。它又可分为两类: 薄膜、囊泡、胶束、介晶相等,它的组成和结合形式在不断变动,但具有或多或少确定的微小组织,按其性质,可以宏观表征的体系; 由分子组成的晶体,它组成确定,并且具有整齐排列的点阵结构,研究这种超分子的工作常称为晶体工程。 下面首先根据结构化学的原理和观点,探讨促使超分子体系稳定形成的因素;其次讨论各种分子间的相互作用,使分子相互识别和自组装;然后再讨论晶体工程的特点;最后讨论超分子结构化学原理的应用。在讨论中辅以实例,使内容丰富生动。 1 超分子稳定形成的因素 超分子体系和其他化学体系一样,由分子形成稳定超分子的因素,在不做有用功(如光、电 )时,可从热力学自由焓的降低( G<0)来理解: G= H-T S 式中 H是焓变,代表降低体系的能量因素; S是体系熵增的因素。 1.1 能量降低因素 分子聚集在一起,依靠分子间的相互作用使体系的能量降低。下面列出常见的降低体系能量的因素。 1.1.1 静电作用 静电作用包括盐键,即带电基团间的作用,如R NH+3-OOC R;离子 偶极子作用,

有机化学基础+判断同分异构体的五种常用方法和有机分子结构的测定

判断同分异构体的五种常用方法和有机分子结构的测定 一、确定同分异构体数目的五种常用方法 1.等效氢法 在确定同分异构体之前,要先找出对称面,判断“等效氢”,从而确定同分异构体数目。有机物的一取代物数目的确定,实质上是看处于不同位置的氢原子数目。可用“等效氢法”判断。判断“等效氢”的三条原则是: (1)同一碳原子上的氢原子是等效的;如CH4中的4个氢原子等同。 (2)同一碳原子上所连的甲基是等效的;如C(CH3)4中的4个甲基上的12个氢原子等同。 (3)处于对称位置上的氢原子是等效的,如CH3CH3中的6个氢原子等同;乙烯分子中的4个H等同;苯分子中的6个氢等同;CH3C(CH3)2C(CH3)2CH3上的18个氢原子等同。 【典例导悟1】下列有机物一氯取代物的同分异构体数目相等的是( ) A.①和②B.②和③C.③和④D.①和④ 2.换位思考法 将有机物分子中的不同原子或基团进行换位思考。如乙烷分子中共有6个H 原子,若有一个氢原子被Cl原子取代所得一氯乙烷只有一种结构,那么五氯乙烷有多少种?假设把五氯乙烷分子中的Cl看作H原子,而H原子看成Cl原子,其情况跟一氯代烷完全相同,故五氯乙烷也有一种结构。同理,二氯乙烷有两种结构,则四氯乙烷也有两种结构。 典例导悟2 已知化学式为C12H12的物质其结构简式为,该环上的二溴代物有9

种同分异构体,由此推断该环上的四溴代物的同分异构体数目有( ) A.4种B.9种C.12种D.6种 3.基团位移法 该方法比等效氢法更直观,该方法的特点是,对给定的有机物先将碳键展开,然后确定该有机物具有的基团并将该基团在碳链的不同位置进行移动,得到不同的有机物。需要注意的是,移动基团时要避免重复。此方法适合烯、炔、醇、醛、酮等的分析。 【典例导悟3】分子式为C5H10的链状烯烃,可能的结构有( ) A.3种B.4种C.5种D.6种 4.基团连接法 将有机物看作由基团连接而成,由基团的异构体数目可推断有机物的异构体数目。如丁基有四种,丁醇(看作丁基与羟基连接而成)也有四种,戊醛、戊酸(分别看作丁基跟醛基、羧基的连接物)也分别有四种。 典例导悟4 烷基取代苯可以被酸性KMnO4溶液氧化,生成,但若烷基R中直接与苯环相连的碳原子上没有C—H键,则不容易被氧化得到。现有分子式为C11H16的一烷基取代苯,已知它可以被氧化成为的异构体有7种,其中3种是 , 请写出其他4种的结构简式: __________________, ___________________, ___________________, ___________________。 5.轴线移动法 对于多个苯环并在一起的稠环芳香烃,要确定两者是否为同分异构体,可以画一根轴线,再通过平移或翻转来判断是否互为同分异构体。

高中化学选修三几种典型晶体晶胞结构模型总结

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体 金 刚石 (1)每个碳与相邻个碳以共价键 结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不 在同一个平面内 (4)每个C参与条C—C键的形成,C 原子数与C—C键数之比为 S iO 2 (1)每个Si与个O以共价键结合,形成正 四面体结构 (2)每个正四面体占有1个Si,4个“ 1 2 O”,n(Si)∶n(O)= (3)最小环上有个原子,即个O,个 Si 分子晶体 干 冰 (1)8个CO 2 分子构成立方体且在6个面心 又各占据1个CO 2 分子 (2)每个CO 2 分子周围等距紧邻的 CO 2 分子 有个 冰 每个水分子与相邻的个水分子,以 相连接,含1 mol H 2 O的冰中,最多可形成 mol“氢键”。 N aCl(型) 离 子晶 体 (1)每个Na+(Cl-)周围等距且紧邻的 Cl-(Na+)有个。每个Na+周围等距且紧邻 的 Na+有个 (2)每个晶胞中含个Na+和个Cl-

C sCl (型) (1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-) 有个 (2)如图为个晶胞,每个晶胞中含 个Cs+、个Cl- 金属晶体 简 单六 方堆 积 典型代表Po,配位数为,空间利用率 52% 面 心立 方 最 密堆 积 又称为A 1 型或铜型,典型代表, 配位数为,空间利用率74% 体 心立 方 堆 积 又称为A 2 型或钾型,典型代表, 配位数为,空间利用率68% 六 方最 密 堆 积 又称为A 3 型或镁型,典型代表, 配位数为,空间利用率74% 混合晶体石墨 (1)石墨层状晶体中, 层与层之间的作用是 (2)平均每个正六边形 拥有的碳原子个数是,C

1 超分子化学基础

应用有机化学
超分子化学
研究由两种以上的化学物质(分子、离子等)借分
第一章 超 分 子 化 学 基 础
子间力相结合而形成的超分子实体,这种有一定组 织构造的实体具有很好设定的性能。
分子化学:共价键的化学
W?hler合成尿素;Robert B. Woodward 和Albert Eschenmoser 在上百位合作者的参与下合成维他命B12
超分子化学: 分子间键的化学,其目标是控制分子 间价键。
从分子化学到超分子化学:分子、超分子、分子和超分子器件
三位超分子化学研究方面的科学家 获得1987年的 年的Nobel化学奖 获得 年的 化学奖
美国的C. 美国的 J. Pederson、D. J. Cram教授 、 教授 法国的J. 教授。 法国的 M. Lehn教授。 教授
1

1967 年Pederson 等第一次发现了冠醚。
原先想合成的是一个非环聚醚(多元醚),但在纯化过程中分离出极少 量产率仅0.4%的丝状有纤维结构并不溶于羟基溶剂的白色晶体。受好奇心 驱使,他进行了深入研究,发现它是一种大环聚醚,即命名为冠醚,它是 由于非环聚醚前体与碱金属离子配位结合,阳离子使配体预组织后更有利 于环化而形成的。这可以说是第一个在人工合成中的自组装作用。 Pederson 诺贝尔演说的题目就是“冠醚的发现”,他提到要是当年忽略了这 种并非期待的杂质,他可能就与冠醚失之交臂。
O O O O O O
杯芳烃
杯芳烃:苯酚衍生物与甲醛反应得到的一类环状缩合物。 杯芳烃:苯酚衍生物与甲醛反应得到的一类环状缩合物。 分子形状与希腊圣杯( 分子形状与希腊圣杯(Calixcrater)相似 )
IUPAC: 含-O(CH2CH2O)n-结构的环状聚醚化合物 简称为(王)冠醚化合物(Crown ether)
Cram 诺贝尔演说的题目是“分子主客体以及它们的配 合物的设计”。
受到酶和核酸的晶体结构以及免疫系统专一性的启发,从1950 年代起就想设计和合成较简单的有机化合物,来模仿自然界存在的一 些化合物的功能,他认识到高度结构化的配合物是中心,Pederson 的 工作一发表,他就意识到这是一个入口,由此开展了系列的主客体化 学的研究。主客体也就是生物学中常采用的受体与基质,它们间的作 用是典型的自组装作用。
Lehn 诺贝尔演说的题目则是“超分子化学——范围与展 望、分子、超分子和分子器件”
直接地提出了超分子化学的命题,他建议将超分子化学定义为 “超出分子的化学”(Chemistry beyond the molecule)。早在1966 年, 对于神经系统中的过程的兴趣,促使他想到一个化学家如何为这 种最高生物功能的研究作出贡献,由于神经细胞运作与跨越细胞 膜的Na+ 和K+ 的分布变化有关,因而想设计合成环肽来监控膜间 K+ 的传递。Pederson 工作发表后,Lehn 意识到这种物质可以将大 环抗菌素的配价能力与醚的化学稳定性结合起来,进一步考虑到 具有三维球形空腔的物质,能够整体包围离子,将形成比平面大 环更强的配合物,由此设计了大双环配体、多重识别配体等,研 究了它们的结构、催化性能、传递性能,并进一步进行分子器件 的设计。
新型超分子化合物
超分子有三个重要特征:自组装、自组织和自复制 自组装、 自组装
超分子化学作为化学的一个独立的分支,是一个交叉学 科,涉及无机与配位化学、有机化学、高分子化学、生物化 学和物理化学,由于能够模仿自然界已存在物质的许多特殊 功能,形成器件,因此它也构成了纳米技术、材料科学和生 命科学的重要组成部分。
多年前提出的许多拓扑结构: 多年前提出的许多拓扑结构: 轮烷( 轮烷(Roxtaxane) ) 索烃( 索烃(Catenane) ) 绳结( 绳结(Knot) ) 双螺旋( 双螺旋(Helix) ) 奥林匹克环( 奥林匹克环(Olympic Ring) ) 等新颖的超分子结构 已利用模板反应 模板反应有效地合成出来 已利用模板反应有效地合成出来
2

判断同分异构体的五种常用方法和有机分子结构的测定

高考化学一轮复习测试卷及解析(51): 判断同分异构体的五种常用方法和有机分子结构的测定 一、确定同分异构体数目的五种常用方法 1.等效氢法 在确定同分异构体之前,要先找出对称面,判断“等效氢”,从而确定同分异构体数目。 有机物的一取代物数目的确定,实质上是看处于不同位置的氢原子数目。可用“等效氢法”判断。 判断“等效氢”的三条原则是: (1)同一碳原子上的氢原子是等效的;如CH4中的4个氢原子等同。 (2)同一碳原子上所连的甲基是等效的;如C(CH3)4中的4个甲基上的12个氢原子等同。 (3)处于对称位置上的氢原子是等效的,如CH3CH3中的6个氢原子等同;乙烯分子中的4个H等同;苯分子中的6个氢等同;CH3C(CH3)2C(CH3)2CH3上的18个氢原子等同。 【典例导悟1】下列有机物一氯取代物的同分异构体数目相等的是() A.①和②B.②和③C.③和④D.①和④ 2.换位思考法 将有机物分子中的不同原子或基团进行换位思考。如乙烷分子中共有6个H原子,若有一个氢原子被Cl原子取代所得一氯乙烷只有一种结构,那么五氯乙烷有多少种?假设把五氯乙烷分子中的Cl看作H原子,而H原子看成Cl原子,其情况跟一氯代烷完全相同,故五氯乙烷也有一种结构。同理,二氯乙烷有两种结构,则四氯乙烷也有两种结构。 典例导悟2已知化学式为C12H12的物质其结构简式为CH3CH3,该环上的二溴代物有9种同分异构体,由此推断该环上的四溴代物的同分异构体数目有() A.4种B.9种C.12种D.6种 3.基团位移法 该方法比等效氢法更直观,该方法的特点是,对给定的有机物先将碳键展开,然后确定该有机物具有的基团并将该基团在碳链的不同位置进行移动,得到不同的有机物。需要注意的是,移动基团时要避免重复。此方法适合烯、炔、醇、醛、酮等的分析。 【典例导悟3】分子式为C5H10的链状烯烃,可能的结构有() A.3种B.4种C.5种D.6种 4.基团连接法 将有机物看作由基团连接而成,由基团的异构体数目可推断有机物的异构体数目。如丁基有四种,丁醇(看作丁基与羟基连接而成)也有四种,戊醛、戊酸(分别看作丁基跟醛基、羧基的连接物)也分别有四种。 典例导悟4烷基取代苯R可以被酸性KMnO4溶液氧化,生成COOH,但若烷基R 中直接与苯环相连的碳原子上没有C—H键,则不容易被氧化得到COOH。现有分子式为

原子结构和分子结构(精)

原子结构和分子结构 原子是由质子、中子等组成的原子核与核外电子所构成的。有与胆汁和化合物的化学性质主要决定与核外电子运动的状态,因此,在化学中研究原子结构主要在于解决核外电子运动的规律。 我们对于核外电子排布,只要掌握一般排布规律,按电子在核外各亚层中分布情况表示即按 ,5,7,6,5,4,6,5,4,5,4,4,3,3,2,2,114221014261026262622f s p d f s p d s p s p s p s s 例如:原子序数为18的Ar 的电子排布为6 262233221p s p s s 。 又如:原子序数为24的Cr 的电子排布为51626223433221d s p s p s s 而不是 42626223433221d s p s p s s 根据光谱实验得到的结果,可归纳为一个规律:等价轨道在全充满、半充满或全空的状态是比较稳定的,也即下列电子结构是比较稳定的: 半充满753f d p 或或; 全充满14106f d p 或或 全 空0 00f d p 或或 几种杂化轨道示意图: 图一:sp 轨道杂化过程示意图(sp 过程.jpg) 图二:sp 杂化轨道及2BeCl 分子的构型示意图(sp.jpg) 图三:2sp 杂化轨道及3BF 分子的构型示意图 图四: 3sp 杂化轨道及 4CH 分子的构型示意图

分子间力(又称范德华力)是指除了原子间较强的作用力之外的在分子之间存在的一种较弱的相互作用力。分子间力可分为色散力、诱导力和取向力三种。 一般来说,分子量越大,分子所含的电子数越多,分子间的色散力越大。 分子的极性强度越大,分子变形性大,分子间距离小,诱导力就大。 分子的极性越强,分子间的取向力越大。 在非极性分子之间只存在色散力;在极性分子和非极性分子间存在着色散力和诱导力;在极性分子之间,存在着色散力、诱导力和取向力。 对于类型相同的分子,其分子间力常随着分子量的增大而变大。分子间力阅读阿,物质的熔点、沸点和硬度就越高。 氢键的强弱与X和Y元素原子的电负性大小及半径有关。X和Y元素的电负性越大,原子半径越小,形成的氢键就越强。 氢键的存在,强烈地影响物质的物理性质,使他们具有较高的熔点、沸点和较低的蒸气压。

分子结构的测定方法的原理及应用

第七章 分子结构的测定方法的原理及应用 7.1 分子光谱 基本内容 分子光谱乃是对分子所发出的光或被分子所吸收的光进行分光所得到的光谱。原子光谱为线状光谱,而分子光谱为带状光谱。 一. 分子光谱的分类极其所在的波段 1. 分子内部运动的三种方式及能量 1).电子相对于原子核的运动 能量为Ee,能级差为1~20eV 2). 各原子核的相对振动运动 能量为Ev 能级差为0.05~1eV 3). 整个分子的转动 能量为ErE 级差为1×10-4~0.05eV 分子从低能E”跃迁到高能级E’时吸收电磁波产生谱线,其波数为 ~'"'"'" υ λ == -+-+-1 Ee Ee hc Ev Ev hc Er Er hc 当分子的价电子能级发生跃迁是,常伴随着振动能级和转动能级的跃迁,故价电子在两个能级之间的跃迁所对应的能量差往往不是一个确定的值而是多个彼此相差很小的数值。 2. 当只有转动能级发生跃迁时所对应的分子光谱称为转动光谱。波数介于0.8~0.81cm -1,波长为1.25~0.012cm,相当于微波和远红外波段。 3. 当振动能级发生跃迁时,总是伴随着转动能级的跃迁,所以对应的光谱称为震动-转动光谱。波数为400~8000cm -1波长为2.5×10-3~1.25×10-4cm,相当于红外光谱区,故称分子的振动-转动光谱为红外光谱。 4. 分子的电子光谱结构比较复杂,波数为8000~160000cm -1波长为1250nm~62.5nm,相当于近红外到远紫外波段。 二. 分子的转动光谱:(双原子) 1. 双原子分子AB 的刚性转子模型 (1).把两个原子看着体积可以忽略不计的质点,质量为m A m B (2)认为原子间的平衡核间距离Req 在转动过程中,保持不变。 2.求绕质心以角速度ω转动时的能量及能级: ε转=h I 2 2 8πJ(J+1),J=0,1,2,............

探究活动2作分子结构模型

实验探究活动2 作分子结构模型 实验目的 1 制作氯化氢分子、水分子、氨分子、甲烷分子的球棍模型,了解这些分子的空间结构。 2 制作丁烷、异丁烷和乙醇、二甲醚的结构模型,对比它们的分子结构,了解有机化合物的同分异构现象。 3 认识模型在物质结构研究中的重要作用。 实验原理 物质中直接相邻的原子之间存在着强烈的相互作用叫做化学键。在氢分子、水分子、氨分子、甲烷分子内相邻的原子之间存在共价键,在金刚石中相邻的原子之间存在着共价键。在共价化合物中,原子按一定顺序和规则相互结合,形成具有一定结构的分子,用球棍模型可以表示共价分子的结构。 由碳原子组成的化合物种类繁多,这不仅与碳原子的成键特点有关,也与有机物的同分异构现象有关。在只含碳、氢元素的物质中,丁烷是具有同分异构现象的最简单的有机物,丁烷有两种同分异构体,一种有支链,一种没有支链。在含碳、氢、氧三种元素的物质中,乙醇和二甲醚互为同分异构体,其中氧原子和其他原子的连接方式不同。 仪器和药品 仪器:制作分子结构模型的教具 实验步骤 用不同颜色的小球代表不同的原子,用金属小棍表示价键,按一定的空间伸展方向将各原子连接成分子模型。 1 制作氯化氢分子、水分子、氨分子、甲烷分子的球棍模型。 制作规则:(1)氯原子、氢原子只能形成一个共价键,氧原子可以形成两个共价键,氮原子可以形成三个共价键,碳原子可以形成四个共价键;(2)各分子中价键在空间的伸展方向可参考教材中的分子结构模型。 对比氯原子、氢原子、氧原子、氮原子、碳原子的成键特点,比较分子的球棍模型和分子的结构式。

2 制作丁烷的球棍模型 取四个碳原子、十个氢原子小球,按照碳原子的成键特点先把碳原子连接成链状,碳链可以带有支链,碳链连接好后,再再各个碳原子上连接氢原子。 在不违背各原子成键个数的前提下将各原子重新连接,看看还能连接成几种结构。 3 根据乙醇、二甲醚的结构式制作他们的球棍模型。 对比乙醇和二甲醚分子的结构式和结构模型。 实验记录 1 对照你所制作的氯化氢分子、水分子、氨分子、甲烷分子的球棍模型,练习书写氯化氢、水、氨、甲烷的结构式和电子式。 2 写出正丁烷和异丁烷的分子式和结构式。对照你所制作的正丁烷和异丁烷的球棍模型,说明它们在结构上有什么不同。 3 写出乙醇和二甲醚的分子式和结构式。对照你所制作的乙醇和二甲醚的球棍模型,说明它们在结构上有什么不同。

分子结构与晶体结构最全版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力, 体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

计算化学实验_分子结构模型的构建及优化计算

实验9 分子结构模型的构建及优化计算 一、目的要求 1.掌握Gaussian 和GaussView程序的使用。 2.掌握构建分子模型的方法,为目标分子设定计算坐标。 3.能够正确解读计算结果,采集有用的结果数据。 二、实验原理 量子化学是运用量子力学原理研究原子、分子和晶体的电子结构、化学键理论、分子间作用力、化学反应理论、各种光谱、波谱和电子能谱的理论,以及无机、有机化合物、生物大分子和各种功能材料的结构和性能关系的科学。 Gaussian程序是目前最普及的量子化学计算程序,它可以计算得到分子和化学反应的许多性质,如分子的结构和能量、电荷密度分布、热力学性质、光谱性质、过渡态的能量和结构等等。GaussView是一个专门设计的与Gaussian配套使用的软件,其主要用途有两个:构建Gaussian的输入文件;以图的形式显示Gaussian计算的结果。本实验主要是借助于GaussView程序构建Gaussian的输入文件,利用Gaussian程序对分子的稳定结构和性质进行计算和分析。 三、软件与仪器 1.软件:Gaussian03、GaussView计算软件,UltraEdit编辑软件。 2.仪器:计算机1台。 四、实验步骤 1.利用GaussView程序构建Gaussian的输入文件 打开GaussView程序,如图9-1所示,在GaussView中利用建模工具 (View→Builder→),如图9-2所示,在程序界面元素周期表的位置处找到所需的元素,单击即可调入该元素与氢元素的化合物。 图9-1 GaussView打开时的界面

图9-2点击Builder及双击图标后出现的元素周期表窗口图若要构建像乙烷这样的链状分子,需要先点击工具栏中的按钮,常见的链状分子就显示在新打开的窗口中,如图9-3所示。 图9-3 常见链状官能团窗口图 若要构建像苯、萘等环状结构的分子结构,需要双击工具栏中的按钮,常见的环状有机分子就显示在新打开的窗口中,如图9-4所示。 进行分子的基本构型搭建后,在进行元素及键型、特殊基团的选择,重现构建分子直至构建为所需分子。选定要编辑的原子后,在对原子之间的键长、键角或者二面角进行选定,输入所需要的键长、键角或二面角值。要求学生练习构建H2O、CH4、乙烯和乙醛等分子的构型。 绘制出分子的结构式后,把图形保存成gjf文件(File→Save,取名为*.gjf,注意文件名和路径都不能包含中文字符)。

探究乙醇分子结构测定方法

探究乙醇分子结构测定方法 一、探究冲动 在中学化学教材第二册第六章第三节中有这样一个实验:“实验装置如图所示。在烧瓶中放入几小块钠,从漏斗中缓缓滴入一定物质的量的无水乙醇。乙醇与适量钠完全反应放出的H2把中间瓶子里的水压入量筒,通过测量量筒中水的体积,就可知反应生成的H2体积。根据数据,推断乙醇的结构式。” 本实验的目的是要取得准确的H2的体积的数据去确定乙醇的分子结构,所以,用排水法测量气体的体积成为了整个实验的关键。该如何才能准确测出H2的体积,保证整个实验的成功呢?在教师的提议下,学生要求自己动手操作。 二、思维的火花 根据书上所给的装置,学生在整个实验中遇到诸多问题,比如:如何准确量取乙醇的体积?反应过程中乙醇与钠反应析出的乙醇钠即附着在钠表面,妨碍乙醇与钠的接触,从而阻止反应的进行,如何解决这个问题?在装置气密性没有任何问题的情况下,所以H2的体积远远小于理论应产生H2的体积,为什么?实验装置应作何改进? 三、实验设计 根据以上的疑惑,学生查阅资料,设计了不同的实验来解决上述问题。 问题一:如何准确量取乙醇体积加入到烧瓶中? 1、实验所需乙醇的体积小于10ml,要精确测量乙醇体积可用滴定管。并且滴定管可代替原装置中的分液漏斗,即可达到计量所加酒精的体积,更可控制液体的流速。 2、由于无水乙醇的密度小,滴定管尖内的气泡不易排尽,因此不宜用盛装酸碱溶液的方法在滴定管内注入无水乙醇。为此应将滴定管末端浸入无水乙醇中,打开瓶塞,用洗耳球将无水乙醇吸进滴定管,然后关闭旋塞。 问题二:实验过程中,打开滴定管活塞,乙醇为何不能顺利流下?如何解决? 当活塞打开时,滴定管内的酒精被瓶内产生的H2和空气的压强托住而滴不下来,即使下滴,当乙醇的量很少时,空气和H2产生的压强大于大气压强,加

相关文档
最新文档