天体运动高考真题(高考复习一遍过)

天体运动高考真题(高考复习一遍过)
天体运动高考真题(高考复习一遍过)

体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( )

A .地球的半径及重力加速度(不考虑地球自转)

B .人造卫星在地面附近绕地球做圆周运动的速度及周期

C .月球绕地球做圆周运动的周期及月球与地球间的距离

D .地球绕太阳做圆周运动的周期及地球与太阳间的距离

D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2,

所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解

得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2

T 2月r ,则M 地=4π2r 3

GT 2月

,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项.

2.(多选)2016年4月6日1时38分,我国首颗微

重力科学实验卫星——实践十号返回式科学实验卫星,

在酒泉卫星发射中心由长征二号丁运载火箭发射升空,

进入近百万米预定轨道,开始了为期15天的太空之旅,

大约能围绕地球转200圈,如图所示.实践十号卫星的

微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确的有( )

A .实践十号卫星在地球同步轨道上

B .实践十号卫星的环绕速度一定小于第一宇宙速度

C .在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的

D .实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道

BD 实践十号卫星的周期T =15×24200 h =1.8 h ,不是地球同步卫星,所以

不在地球同步轨道上,故A 错误;第一宇宙速度是近地卫星的环绕速度,也是最大的圆周运动的环绕速度,则实践十号卫星的环绕速度一定小于第一宇宙速度,故B 正确;根据题意可知,实践十号卫星内进行的19项科学实验都是在微重力情况下做的,此时重力没有全部提供向心力,不是完全失重状态,故C 错误;实践十号卫星运行中因受微薄空气阻力,轨道半径将变小,速度变小,所以需定期点火加速调整轨道,故D 正确.

3.(多选)(2017·四川资阳二诊)如图所示为一卫星沿椭圆轨道绕

地球运动,其周期为24小时,A 、C 两点分别为轨道上的远地点和

近地点,B 为短轴和轨道的交点.则下列说法正确的是( )

A .卫星从A 运动到

B 和从B 运动到

C 的时间相等

B .卫星运动轨道上A 、

C 间的距离和地球同步卫星轨道的直径相等

C .卫星在A 点速度比地球同步卫星的速度大

D .卫星在A 点的加速度比地球同步卫星的加速度小

BD 根据开普勒第二定律知,卫星从A 运动到B 比从B 运动到C 的时间长,

故A 错误;根据开普勒第三定律a 3

T 2=k ,该卫星与地球同步卫星的周期相等,则卫星运动轨道上A 、C 间的距离和地球同步卫星轨道的直径相等.故B 正确;由v = GM

r ,知卫星在该圆轨道上的线速度比地球同步卫星的线速度小,所以卫星在椭圆上A 点速度比地球同步卫星的速度小.故C 错误;A 点到地心的距离

大于地球同步卫星轨道的半径,由G Mm r 2=ma 得 a =GM r 2,知卫星在A 点的加速

度比地球同步卫星的加速度小,故D 正确.

4.(多选)假设在宇宙中存在这样三个天体A 、B 、C ,它们

在一条直线上,天体A 和天体B 的高度为某值时,天体A 和天

体B 就会以相同的角速度共同绕天体C 运转,且天体A 和天体

B 绕天体

C 运动的轨道都是圆轨道,如图所示.则以下说法正

确的是( )

A .天体A 做圆周运动的加速度大于天体

B 做圆周运动的加速度

B .天体A 做圆周运动的线速度小于天体B 做圆周运动的线速度

C .天体A 做圆周运动的向心力大于天体C 对它的万有引力

D .天体A 做圆周运动的向心力等于天体C 对它的万有引力

AC 由于天体A 和天体B 绕天体C 运动的轨道都是圆轨道,角速度相同,由a =ω2r ,可知天体A 做圆周运动的加速度大于天体B 做圆周运动的加速度,故A 正确;由公式v =ωr ,可知天体A 做圆周运动的线速度大于天体B 做圆周运动的线速度,故B 错误;天体A 做圆周运动的向心力是由B 、C 的万有引力的合力提供,大于天体C 对它的万有引力.故C 正确,D 错误.

5.如图所示,一颗卫星绕地球沿椭圆轨道运动,A 、B

是卫星运动的远地点和近地点.下列说法中正确的是( )

A .卫星在A 点的角速度大于在

B 点的角速度

B .卫星在A 点的加速度小于在B 点的加速度

C .卫星由A 运动到B 过程中动能减小,势能增加

D .卫星由A 运动到B 过程中万有引力做正功,机械能增大

B 近地点的速度较大,可知B 点线速度大于A 点的线速度,根据ω=v r 知,

卫星在A 点的角速度小于B 点的角速度,故A 错误;根据牛顿第二定律得,a =F m =GM r 2,可知卫星在A 点的加速度小于在B 点的加速度,故B 正确;卫星沿椭圆轨道运动,从A 到B ,万有引力做正功,动能增加,势能减小,机械能守恒,故C 、D 错误.

6.(多选)如图所示,两质量相等的卫星A 、B 绕地球

做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半

径、周期、动能、与地心连线在单位时间内扫过的面积.下

列关系式正确的有( )

A .T A >T B

B .E k A >E k B

C .S A =S B

D.R 3A T 2A =R 3B T 2B

AD 由GMm R 2=m v 2R =m 4π2T 2R 和E k =12m v 2可得T =2π R 3GM ,E k =GMm 2R ,

因R A >R B ,则T A >T B ,E k A

7.(多选)(2017·河南六市一模)随着地球资源的枯竭和空气污染如雾霾的加重,星球移民也许是最好的方案之一.美国NASA 于2016年发现一颗迄今为止与地球最类似的太阳系外的行星,与地球的相似度为0.98,并且可能拥有大气层和流动的水,这颗行星距离地球约1400光年,公转周期约为37年,这颗名叫Kepler452b 的行星,它的半径大约是地球的1.6倍,重力加速度与地球的相近.已知地球表面第一宇宙速度为7.9 km/s ,则下列说法正确的是( )

A .飞船在Kepler452b 表面附近运行时的速度小于7.9 km/s

B .该行星的质量约为地球质量的1.6倍

C .该行星的平均密度约是地球平均密度的58

D .在地球上发射航天器到达该星球,航天器的发射速度至少要达到第三宇宙速度

CD 飞船在该行星表面附近运行时的速度v k =g k R k =g 地·1.6R 地>g 地R 地

=7.9 km/s ,A 项错误.由GMm R 2=mg ,得M =gR 2G ,则M k M 地=R 2k R 2地

=1.62,则M k = 1.62M 地=2.56M 地,B 项错误.由ρ=M V ,V =43πR 3,M =gR 2G ,得ρ=3g 4πGR ,则ρk ρ地

=R 地R k

=58,C 项正确.因为该行星在太阳系之外,则在地球上发射航天器到达该星球,航天器的发射速度至少要达到第三宇宙速度,D 项正确.

8. (2017·江西上饶模拟)太空中进行开采矿产资源项目,必须建立“太空加油站”.假设“太空加油站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面高度的十分之一,且运行方向与地球自转方向一致.下列说法中正确的是( )

A .“太空加油站”运行的加速度等于其所在高度处的重力加速度

B .“太空加油站”运行的速度大小等于同步卫星运行速度大小的10倍

C .站在地球赤道上的人观察到“太空加油站”向西运动

D .在“太空加油站”工作的宇航员因不受重力而在舱中悬浮或静止

A 根据GMm r 2=mg ′=ma ,知“太空加油站”运行的加速度等于其所在高

度处的重力加速度,选项A 正确;“太空加油站”绕地球做匀速圆周运动,由

地球的万有引力提供向心力,则有GMm

r2=

m v2

r,得v=

GM

r=

GM

R+h

,“太

空加油站”距地球表面的高度为同步卫星离地球表面高度的十分之一,但“太空加油站”距地球球心的距离不等于同步卫星距地球球心距离的十分之一,选项B

错误;角速度ω=GM

r3,轨道半径越大,角速度越小,同步卫星和地球自转的

角速度相同,所以“太空加油站”的角速度大于地球自转的角速度,所以站在地球赤道上的人观察到“太空加油站”向东运动,选项C错误;在“太空加油站”工作的宇航员只受重力作用,处于完全失重状态,靠万有引力提供向心力做圆周运动,选项D错误.

9.(多选)(2017·安微江南十校联考)据报道,2016年10月23日7时31分,随天宫二号空间实验室(轨道舱)发射入轨的伴随卫星成功释放.伴随卫星重约47千克,尺寸相当于一台打印机大小.释放后伴随卫星将通过多次轨道控制,伴星逐步接近轨道舱,最终达到仅在地球引力作用下对轨道舱的伴随飞行目标.之后对天宫二号四周表面进行观察和拍照以及开展其他一系列试验,进一步拓展空间应用.根据上述信息及所学知识可知()

A.轨道控制阶段同一轨道上落后的伴星需点火加速才能追上前方的天宫二号

B.轨道控制阶段同一轨道上落后的伴星需经历先减速再加速过程才能追上前方的天宫二号

C.伴随飞行的伴星和天宫二号绕地球做椭圆轨道运行时具有相同的半长轴D.由于伴星和天宫二号的轨道不重合,故他们绕地运行的周期不同

BC在轨道控制阶段若要同一轨道上落后的伴星追上前方的天宫二号,伴星应先减速到较低轨道,然后再加速上升到原轨道才能追上天宫二号,B正确,A错误.以地心为参考系,伴星与天宫二号间距离可忽略不计,认为它们在同一轨道上运动,它们具有相同的半长轴和周期,C正确,D错误.

10.太空行走又称为出舱活动.狭义的太空行走即指

航天员离开载人航天器乘员舱进入太空的出舱活动.如图

所示,假设某宇航员出舱离开飞船后身上的速度计显示其

相对地心的速度为v,该航天员从离开舱门到结束太空行

走所用时间为t ,已知地球的半径为R ,地球表面的重力加速度为g ,则( )

A .航天员在太空行走时可模仿游泳向后划着前进

B .该航天员在太空“走”的路程估计只有几米

C .该航天员离地高度为gR 2

v 2-R

D .该航天员的加速度为R v 2

t 2

C 由于太空没有空气,因此航天员在太空中行走时无法模仿游泳向后划着前进,故A 错误;航天员在太空行走的路程是以速度v 运动的路程,即为v t ,

故B 错误;由GMm R 2=mg 和GMm (R +h )2=m v 2R +h

,得h =gR 2v 2-R ,故C 正确;由a g =R 2

(R +h )2

得a =v 4gR 2,故D 错误. 11.A 、B 两颗卫星围绕地球做匀速圆周运动,A 卫星运行的周期为T 1,轨道半径为r 1;B 卫星运行的周期为T 2,且T 1>T 2.下列说法正确的是( )

A .

B 卫星的轨道半径为r 1(T 1T 2

) 23 B .A 卫星的机械能一定大于B 卫星的机械能

C .A 、B 卫星在轨道上运行时处于完全失重状态,不受任何力的作用

D .某时刻卫星A 、B 在轨道上相距最近,从该时刻起每经过

T 1T 2T 1-T 2

时间,卫星A 、B 再次相距最近

D 由开普勒第三定律r 31r 32=T 21T

22,A 错误;由于卫星的质量未知,机械能无法比较,B 错误;A 、B 卫星均受万有引力作用,只是由于万有引力提供向心力,

卫星处于完全失重状态,C 错误;由2πT 2t -2πT 1

t =2π知经t =T 1T 2T 1-T 2两卫星再次相距最近,D 正确.

12.(多选)(2017·广东华南三校联考)石墨烯是目前世

界上已知的强度最高的材料,它的发现使“太空电梯”

的制造成为可能,人类将有望通过“太空电梯”进入太空.设想在地球赤道平面内有一垂直于地面延伸到太空

的轻质电梯,电梯顶端可超过地球的同步卫星A 的高度延伸到太空深处,这种所谓的太空电梯可用于降低成本发射绕地人造卫星.如图所示,假设某物体B 乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星C 相比较

( )

A .

B 的线速度大于

C 的线速度

B .B 的线速度小于

C 的线速度

C .若B 突然脱离电梯,B 将做离心运动

D .若B 突然脱离电梯,B 将做近心运动

BD A 和C 两卫星相比,ωC >ωA ,而ωB =ωA ,则ωC >ωB ,又据v =ωr ,r C

=r B ,得v C >v B ,故B 项正确,A 项错误.对C 星有G Mm C r 2C

=m C ω2C r C ,又ωC >ωB ,对B 星有G Mm B r 2B

>m B ω2B r B ,若B 突然脱离电梯,B 将做近心运动,D 项正确,C 项错误.

13.2017年3月,美国宇航局的“信使”号水星探测器

按计划将陨落在水星表面,工程师找到了一种聪明的办法,

能够使其寿命再延长一个月.这个办法就是通过向后释放推

进系统中的高压氦气来提升轨道.如图所示,设释放氦气前,探测器在贴近水星表面的圆形轨道Ⅰ上做匀速圆周运动,释放氦气后探测器进入椭圆轨道Ⅱ上,忽略探测器在椭圆轨道上所受外界阻力.则下列说法正确的是( )

A .探测器在轨道Ⅰ和轨道Ⅱ上A 点加速度大小不同

B .探测器在轨道Ⅰ上A 点运行速率小于在轨道Ⅱ上B 点速率

C .探测器在轨道Ⅱ上某点的速率可能等于在轨道Ⅰ上速率

D .探测器在轨道Ⅱ上远离水星过程中,引力势能和动能都减少

C 探测器在轨道Ⅰ和轨道Ⅱ上A 点所受的万有引力相同,根据F =ma 知,加速度大小相同,故A 错误;根据开普勒第二定律知探测器与水星的连线在相等时间内扫过的面积相同,则知A 点速率大于B 点速率,故B 错误;在圆轨道A 实施变轨成椭圆轨道是做逐渐远离圆心的运动,要实现这个运动必须万有引力小于飞船所需向心力,所以应给飞船加速,故在轨道Ⅱ上速度大于A 点在Ⅰ速度 GM

r A ,在Ⅱ远地点速度最小为 GM r B ,故探测器在轨道Ⅱ上某点的速率在

这两数值之间,则可能等于在轨道Ⅰ上的速率 GM

r A ,故C 正确.探测器在轨

道Ⅱ上远离水星过程中,引力势能增加,动能减小,故D 错误.

14.如图所示,“嫦娥”三号探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道Ⅰ为圆形,轨道Ⅱ为椭圆.下列说法正确的是( )

A .探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期

B .探测器在轨道Ⅰ经过P 点时的加速度小于在轨道Ⅱ经过P 点时的加速度

C .探测器在轨道Ⅰ运行时的加速度大于月球表面的重力加速度

D .探测器在P 点由轨道Ⅰ进入轨道Ⅱ必须点火加速

A 根据开普勒第三定律知,r 3

T 2=k ,

因为轨道Ⅰ的半径大于轨道Ⅱ的半长轴,则探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期,故A 正确;根据牛顿

第二定律知,a =GM r 2,探测器在轨道Ⅰ经过P 点时的加速度等于在轨道Ⅱ经过P

点时的加速度,故B 错误;根据G Mm r 2=ma 知,探测器在轨道Ⅰ运行时的加速

度a =GM r 2,月球表面的重力加速度g =GM R 2,因为r >R ,则探测器在轨道Ⅰ运行时的加速度小于月球表面的重力加速度,故C 错误.探测器在P 点由轨道Ⅰ进入轨道Ⅱ需减速,使得万有引力大于向心力,做近心运动,故D 错误.

15.(多选) 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做圆周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图乙所示.设这三个星体的质量均为m ,且两种系统中各星间的距离已在图甲、乙中标出,引力常量为G ,则下列说法中正确的是( )

A .直线三星系统中星体做圆周运动的线速度大小为 Gm L

B .直线三星系统中星体做圆周运动的周期为4π L 3

5Gm

C .三角形三星系统中每颗星做圆周运动的角速度为2

L 3

3Gm D .三角形三星系统中每颗星做圆周运动的加速度大小为3Gm L 2

BD 在直线三星系统中,星体做圆周运动的向心力由其他两星对它的万有

引力的合力提供,根据万有引力定律和牛顿第二定律,有G m 2L 2+G m 2 2L 2=m v 2

L ,

解得v = 12 5Gm L ,A 项错误;由周期T =2πr v 知直线三星系统中星体做圆周运

动的周期为T =4π L 3

5Gm ,B 项正确;同理,对三角形三星系统中做圆周运动

的星体,有2G m 2L 2cos 30°=mω2·L 2cos 30°

,解得ω=3Gm L 3,C 项错误;由2G m 2

L 2cos 30°=ma 得a =3Gm L 2,D 项正确.

高中物理天体运动经典习题

十年高考试题分类解析-物理 1.假设地球是一半径为R 、质量分布均匀的球体。一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为 A.R d - 1 B.R d +1 C.2)(R d R - D.2 )(d R R - 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v 。假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,,则这颗行星的质量为 A .mv 2 /GN B .mv 4 /GN . C .Nv 2 /Gm .D .Nv 4 /Gm . 3.(2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是 4A C 5A. B.各小行星绕太阳运动的周期均小于一年 C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心 加速度值 D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值 6.(2012·全国理综)一单摆在地面处的摆动周期与在某矿井底部摆动周期的比值为k 。设地球的半径为R 。假定地球的密度均匀。已知质量均匀分布的球壳对壳内物体的引力为零,求矿井的深度d . 1.(2011重庆理综第21题)某行星和地球绕太阳公转的轨道均可视为圆。每过N 年,该行星会运行到日地连线的延长线上,如题21图所示。该行星与地球的公转半径比为

A .231N N +?? ??? B.23 1N N ?? ?-?? C .3 2 1N N +?? ??? D.32 1N N ?? ?-?? 2(2011四川理综卷第17题)据报道,天文学家近日发现了 一颗距地球40光年的 “超级地球”,名为“55Cancrie ”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的 1 480 ,母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie ”与地球均做匀速圆周运动,则“55Cancrie ”与地球的 A. B. C.1.m 1、m 2、M (M >>m 1,M >>m 2).在C 的万有引力作用下,a 、b 从2运行周期和相应的圆轨道半径,T 0和R 0是 3.(2010,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则 A .1g a =B .2g a =C .12g g a +=D .21g g a -= 4(2010四川理综卷第17题).a 是地球赤道上一栋建筑,b 是在赤道平面内做匀速圆周运动、距地面9.6×106 m 的卫星,c 是地球同步卫星,某一时刻b 、c 刚好位于a 的正上方(如图甲所示),经48h ,a 、b 、c 的大致位置 是图乙中的(取地球半径R=6.4×106m ,地球表面重力加速度g=10m/s 2 ,π 5.(2010安徽理综)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。仅利用以上数据,可以计算出 A .火星的密度和火星表面的重力加速度

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

天体运动高考真题(高考复习一遍过)

天体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2, 所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解 得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2 T 2月 r ,则M 地=4π2r 3 GT 2月 ,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗微 重力科学实验卫星——实践十号返回式科学实验卫星, 在酒泉卫星发射中心由长征二号丁运载火箭发射升空, 进入近百万米预定轨道,开始了为期15天的太空之旅, 大约能围绕地球转200圈,如图所示.实践十号卫星的 微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确的有( ) A .实践十号卫星在地球同步轨道上 B .实践十号卫星的环绕速度一定小于第一宇宙速度 C .在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的 D .实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T =15×24200 h =1.8 h ,不是地球同步卫星,所以

万有引力与航天 典型例题

万有引力与航天--例题 考点一 天体质量与密度的计算 1.解决天体(卫星)运动问题的基本思路 (1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度). 2.天体质量与密度的计算 (1)利用天体表面的重力加速度g 与天体半径R 、 由于G Mm R 2=mg ,故天体质量M =gR 2G , 天体密度ρ=M V =M 43 πR 3=3g 4πGR 、 (2)通过观察卫星绕天体做匀速圆周运动的周期T 与轨道半径r 、 ①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3 GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43 πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密 度ρ=3πGT 2、可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.

例 1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2、您能计算出( ) A.地球的质量m 地=gR 2G B.太阳的质量m 太=4π2L 32GT 22 C.月球的质量m 月=4π2L 31GT 21 D.可求月球、地球及太阳的密度 1.[天体质量的估算]“嫦娥一号”就是我国首次发射的探月卫星,它在距月球表面高度为200

高考物理真题分类汇编:万有引力和天体运动

高中物理学习材料 金戈铁骑整理制作 2014年高考物理真题分类汇编:万有引力和天体运动 19.[2014·新课标全国卷Ⅰ] 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( ) 地球 火星 木星 土星 天王星 海王星 轨道半径(AU) 1.0 1.5 5.2 9.5 19 30 A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日 C .天王星相邻两次冲日的时间间隔为土星的一半 D .地外行星中,海王星相邻两次冲日的时间间隔最短 19.BD [解析] 本题考查万有引力知识,开普勒行星第三定律,天体追及问题.因为冲日现象实质上是角速度大的天体转过的弧度恰好比角速度小的天体多出2π,所以不可能每年都出现(A 选项).由开普勒行星第三定律有T 2木T 2地=r 3木 r 3地=140.608,周期的近似比值为12,故木星的周期为12年,由曲线运动追及公式 2πT 1t -2πT 2t =2n π,将n =1代入可得t =12 11年,为木星两次冲日的时间间隔,所以2015年能看到木星冲日现象, B 正确.同理可算出天王星相邻两次冲日的时间间隔为1.01年.土星两次冲日的时间间隔为1.03年.海王星两次冲日的时间间隔为1.006年,由此可知 C 错误, D 正确. 18.[2014·新课标Ⅱ卷] 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3πGT 2 g 0-g g 0 B.3πGT 2g 0 g 0-g C. 3πGT 2 D.3πGT 2g 0 g 18.B [解析] 在两极物体所受的重力等于万有引力,即 GMm R 2 =mg 0,在赤道处的物体做圆周运动的周期等于地球的自转周期T ,则GMm R 2-mg =m 4π2T 2R ,则密度 ρ=3M 4πR 3=34πR 3 g 0R 2 G =3πg 0GT 2(g 0-g ) .B 正确. 3. [2014·天津卷] 研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种

【重磅】天体运动高考真题(高考复习一遍过)

天体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2,所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2 T 2月 r ,则M 地=4π2r 3 GT 2月 ,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗 微重力科学实验卫星——实践十号返回式科学实验卫 星,在酒泉卫星发射中心由长征二号丁运载火箭发射升 空,进入近百万米预定轨道,开始了为期15天的太空 之旅,大约能围绕地球转200圈,如图所示.实践十号卫星的微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确

的有( ) A.实践十号卫星在地球同步轨道上 B.实践十号卫星的环绕速度一定小于第一宇宙速度 C.在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的D.实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T=15×24 200 h=1.8h,不是地球同步卫星,所以不 在地球同步轨道上,故A错误;第一宇宙速度是近地卫星的环绕速度,也是最大的圆周运动的环绕速度,则实践十号卫星的环绕速度一定小于第一宇宙速度,故B正确;根据题意可知,实践十号卫星内进行的19项科学实验都是在微重力情况下做的,此时重力没有全部提供向心力,不是完全失重状态,故C错误;实践十号卫星运行中因受微薄空气阻力,轨道半径将变小,速度变小,所以需定期点火加速调整轨道,故D正确. 3.(多选)(2017·四川资阳二诊)如图所示为一卫星沿椭圆轨道绕 地球运动,其周期为24小时,A、C两点分别为轨道上的远地点和 近地点,B为短轴和轨道的交点.则下列说法正确的是( ) A.卫星从A运动到B和从B运动到C的时间相等 B.卫星运动轨道上A、C间的距离和地球同步卫星轨道的直径相等 C.卫星在A点速度比地球同步卫星的速度大 D.卫星在A点的加速度比地球同步卫星的加速度小 BD 根据开普勒第二定律知,卫星从A运动到B比从B运动到C的时间长, 故A错误;根据开普勒第三定律a3 T2= k,该卫星与地球同步卫星的周期相等,则

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

2017-2019高考物理真题分类解析---万有引力定律与航天

2017-2019高考物理真题分类解析---万有引力定律 与航天 1.(2019·新课标全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M 的半径是星球N 的3倍,则 A .M 与N 的密度相等 B .Q 的质量是P 的3倍 C .Q 下落过程中的最大动能是P 的4倍 D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC 【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:mg kx ma -=,变形式为:k a g x m =- ,该图象的斜率为k m -,纵轴截距为重力加速度g 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为: 0033 1 M N a g g a ==;又因为在某星球表面上的物体,所受重力和万有引力相等,即:2Mm G m g R '=',即该星球的质量2gR M G =。又因为:3 43R M πρ=,联立得34g RG ρπ=。 故两星球的密度之比为: 1:1N M M N N M R g g R ρρ=?=,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kx m g = ;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:00122 P Q x x x x ==,故物体P 和物体Q 的质量之比

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

2015年高考物理真题分类汇编:万有引力和天体运动

2015年高考物理真题分类汇编:万有引力和天体运动 (2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器 A. 着落前的瞬间,速度大小约为8.9m/s B. 悬停时受到的反冲作用力约为2×103N C. 从离开近月圆轨道这段时间内,机械能守恒 D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 【答案】B、D 【考点】万有引力定律及共应用;环绕速度 【解析】在中心天体表面上万有引力提供重力:= mg , 则可得月球表面的重力加速度 g月= ≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探 g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道 万有引力提供向心力:= m,解得运行的线速度V月= = < , 小于近地卫星线速度,选项D正确。 【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。已知同步卫星的环绕速度约为3.1x103/s,某次发 射卫星飞经赤道上空时的速度为1.55x103/s,此时 卫星的高度与同步轨道的高度相同,转移轨道和 同步轨道的夹角为30°,如图所示,发动机给卫星 的附加速度的方向和大小约为 A. 西偏北方向,1.9x103m/s B. 东偏南方向,1.9x103m/s C. 西偏北方向,2.7x103m/s D. 东偏南方向,2.7x103m/s 【答案】B

高中天体运动必备基础知识及例题讲解

授课主题 万有引力与重力的关系 教学目的 理解万有引力与重力之间的关系及会运用知识解此类问题 授课日期及时段 2013.04.06 ;3课时 教学内容 一, 本周错题讲解 二, 知识归纳 .考点梳理 (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2).估算天体的质量和密度 由G 2r Mm =mr T 224π得:M=2 3 24Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量. 由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 为中心天体的星体半径 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题

表面重力加速度g 0,由02GMm mg R = 得:02GM g R = 轨道重力加速度g ,由 2()GMm mg R h =+ 得:2 2 0()()GM R g g R h R h ==++ (4)卫星的绕行速度、角速度、周期与半径的关系 (1)由Gr v m r Mm 22=得:v=r GM . 即轨道半径越大,绕行速度越小 (2)由G 2 r Mm =mω2 r得:ω=3r GM 即轨道半径越大,绕行角速度越小 (3)由2 224Mm G m r r T π=得:3 2r T GM π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G 2 224()Mm m R h T π=+(R+h) 得: 2 3 2 4h R GMT π=-=3.6×104km=5.6R R表示地球半径 三.热身训练 1.把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳运动的周期之比可求得 A .火星和地球的质量之比 B .火星和太阳的质量之比 C .火星和地球到太阳的距离之比 D .火星和地球绕太阳运动速度之比 2.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q .在一次实验时,宇航员将一带负电q (q <

天体运动高考真题(高考复习一遍过)

天 体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2, 所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解 得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2 T 2月r ,则M 地=4π2r 3 GT 2月 ,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗微 重力科学实验卫星——实践十号返回式科学实验卫星, 在酒泉卫星发射中心由长征二号丁运载火箭发射升空, 进入近百万米预定轨道,开始了为期15天的太空之旅, 大约能围绕地球转200圈,如图所示.实践十号卫星的 微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确的有( ) A .实践十号卫星在地球同步轨道上 B .实践十号卫星的环绕速度一定小于第一宇宙速度 C .在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的 D .实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T =15×24200 h =1.8 h ,不是地球同步卫星,所以

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥&asymp;0,F分子力&asymp;0,E分子势能&asymp;0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

【选择题专练】2015高考物理大一轮复习专题系列卷 万有引力定律 天体运动

选择题专练卷(四) 万有引力定律 天体运动 一、单项选择题 1.(2014·潍坊模拟)截止到2011年9月,欧洲天文学家已在太阳系外发现50余颗新行星,其中有一颗行星,其半径是地球半径的1.2倍,其平均密度是地球0.8倍。经观测发现:该行星有两颗卫星a 和b ,它们绕该行星的轨道近似为圆周,周期分别为9天5小时和15天12小时,则下列判断正确的是( ) A .该行星表面的重力加速度大于9.8 m/s 2 B .该行星的第一宇宙速度大于7.9 km/s C .卫星a 的线速度小于卫星b 的线速度 D .卫星a 的向心加速度小于卫星b 的向心加速度 2.一位同学为了测算卫星在月球表面附近做匀速圆周运动的环绕速度,提出了如下实验方案:在月球表面以初速度v 0竖直上抛一个物体,测出物体上升的最大高度h ,已知月球的半径为R ,便可测算出绕月卫星的环绕速度。按这位同学的方案,绕月卫星的环绕速度为 ( ) A .v 0 2h R B .v 0h 2R C .v 02R h D .v 0 R 2h 3.(2014·皖南八校联考)2012年6月24日,航天员刘旺手动控制“神舟九号”飞船完成与“天宫一号”的交会对接,形成组合体绕地球圆周运动,速率为v 0,轨道高度为340 km 。“神舟九号”飞船连同三位宇航员的总质量为m ,而测控通信由两颗在地球同步轨道运行的“天链一号”中继卫星、陆基测控站、测量船,以及北京飞控中心完成。下列描述错误的是 ( ) A .组合体圆周运动的周期约1.5 h B .组合体圆周运动的线速度约7.8 km/s C .组合体圆周运动的角速度比“天链一号”中继卫星的角速度大 D .发射“神舟九号”飞船所需能量是12m v 20 4.“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成。地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是( ) A .静止轨道卫星的周期约为中轨道卫星的2倍 B .静止轨道卫星的线速度大小约为中轨道卫星的2倍 C .静止轨道卫星的角速度大小约为中轨道卫星的1/7

天体运动经典例题含答案

1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。当其角速度变为原来的 24倍后,运动半径为_________,线速度大小为_________。 【解析】由22Mm G m r r ω=可知,角速度变为原来的24倍后,半径变为2r ,由v r ω=可知,角速度变为原来的24倍后,线速度大小为22v 。【答案】2r ,22 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力 计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为 N ,已知引力常量为G,则这颗行星的质量为 A .2GN mv B.4GN mv C . 2Gm Nv D.4Gm Nv 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 R v m M G 2/2/R m =,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则 N M G =2R m ,解得M=GN 4 mv ,B 项正确。【答案】B 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说法正确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值 【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的 速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g=10 m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地. 答案 (1)2 m/s2 (2)1∶80

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

2011年高考试题中的天体运动问题

2011年高考试题中的天体运动问题 2011年高考试题中的天体运动问题,试题情境熟悉,多为匀速圆周运动模型,不是卫星环绕地球的圆周运动,就是行星环绕太阳的圆周运动。运算简单,大多数试题直接运用开普勒第三定律进行分析或计算,有些试题则需运用牛顿第二定律与万有引力定律、“黄金代换”等分析计算。 一、运用开普勒第三定律类问题 开普勒第三定律适用于一个天体绕另一个天体的椭圆运动。对于天体沿椭圆轨道的环绕运动,椭圆轨道的半长轴立方与运动周期平方的比值等于常数,对于环绕同一天体运动的天体,定律中的常数是相同的。对于一个天体环绕另一天体的圆周运动,开普勒第三定律照样适用,这时定律中的半长轴应变为圆形轨道的半径。 例1.(全国课标卷-19)卫星电话信号需要通过地球同步卫星传送。如果你与同学在地面上用卫星电话通话,则从你发出信号至对方接收到信号所需最短时间最接近于(可能用到的数据:月球绕地球运动的轨道半径约为3.8×105km,运行周期为27天,地球半径为6400km,无线电信号的传播速度为3.0×108m/s) A.0.1s B.0.25s C.0.5s D.1s 解析:对月球绕地球的运动、卫星绕地球的运动分别运用开普勒定律可得:。 电磁波信号从地球表面到卫星再到地面的传播时间为:,代入月球绕地球轨道半径r、地球半径R、月球运动周期(27天)、卫星运动周期(1天)及光速解得:t=0.24s,最接近0.25s。选项B对。 例2.(海南物理-12)2011年4月10日,我国成功发射第8颗北斗导航卫星。建成以后的北斗导航卫星系统将包含多颗地球同步卫星,这有助于减少我国对GPS导航系统的依赖,GPS系统由运行周期为12小时的卫星群组成,设北斗系统的同步卫星和GPS导航卫星的轨道半径分别为R1和R2,向心加速度分别为a1和a2,则R1:R2=_____;a1:a2=_____(可用根式表示)。 解析:北斗系统的同步卫星的运动周期为T1=24h,GPS导航卫星的运动周期为T1=12h。对北斗系列同步卫星及GPS导航卫星绕地球的运动分别运用开普勒第三定律有:、。解得: R1:R2=;由万有引力定律、牛顿第二定律分别有:、。解得: a1:a2=。 例3.(山东理综-17)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。以下判断正确的是

相关文档
最新文档