高中物理选修精选公式

高中物理选修精选公式
高中物理选修精选公式

高中物理公式定理定律概念大全

选修3-3

第七章 分子动理论

一、分子动理论的基本内容: 分子理论是认识微观世界的基本理论,主要内容有三点。 1、物质是由大量分子组成的。

我们说物质是由大量分子组成的,原因是分子太小了。一般把分子看成球形,分子直径的数量级

是1010

-米。

1摩尔的任何物质含有的微粒数都是×1023个,这个常数叫做阿伏加德罗常数。记作:

阿伏加德罗常数是连接宏观世界和微观世界的桥梁。已知宏观的摩尔质量M 和摩尔体积V ,通过常

数N 可以算出每个分子的质量和体积。 每个分子的质量m M N =

每个分子的体积v V

N

=

根据上述内容我们不难理解一般物体中的分子数目都是大得惊人的,由此可知物质是由大量分子组成的。

2、分子永不停息地做无规则运动。

①布朗运动间接地说明了分子永不停息地做无规则运动。

布朗运动的产生原因:被液体分子或气体分子包围着的悬浮微粒(直径约为10

3

-mm ,称为“布朗

微粒”),任何时刻受到来自各个方向的液体或气体分子的撞击作用不平衡,颗粒朝向撞击作用较强的方向运动,使微粒发生了无规则运动。应注意布朗运动并不是分子的运动,而是分子运动的一种表现。

影响布朗运动明显程度的因素:固体颗粒越小,撞击它的液体分子数越少,这种不平衡越明显;固体颗粒越小,质量也小,运动状态易于改变,因此固体颗粒越小,布朗运动越显着。液体温度越高,布朗运动越激烈。 ②热运动:分子的无规则运动与温度有关,因此分子的无规则运动又叫做热运动。 3、分子间存在着相互作用的引力和斥力。

①分子间同时存在着引力和斥力,实际表现出来的分子力是分子引力和斥力的合力。 ②分子间相互作用的引力和斥力的大小都跟分子间的距离有关。

当分子间的距离r

r ==-01010m 时,分子间的引力和斥力相等,分子间不显示作用力;当分子间

距离从r 0增大时,分子间的引力和斥力都减小,但斥力小得快,分子间作用力表现为引力;当分子间距离从r 0减小时,斥力、引力都增在大,但斥力增大得快,分子间作用力表现为斥力。

③分子力相互作用的距离很短,一般说来,当分子间距离超过它们直径10倍以上,即r

>-109m

时,分子力已非常微弱,通常认为这时分子间已无相互作用。

二、内能:

1、分子的动能:

由于组成任何物体的分子都是在不停地做无规则运动,因此,构成物体的每一个分子在任何时刻都具有动能。

由于分子热运动的无规则性及分子间的频繁碰撞,任何一个分子的动能都是不断变化的。即使一个物体在稳定的状态下,构成物体的每个分子动能的大小也是不相等的。组成物体所有分子动能的平均值,叫做分子热运动的平均动能。平均动能的大小决定了物体所处的状态,分子平均动能大小的宏观标志是物体的温度。物体的温度越高,分子平均动能越大;反之,物体的温度越低,分子平均动能越小。

①分子无规则热运动的动能叫做分子的动能。一切分子都具有动能。

②温度是物体分子平均动能的标志。

做无规则运动的每个分子都具有动能。但由于分子运动的无规则性,每个分子的动能都不相同,讨论每个分子的动能是无意义的。在研究热运动中,有意义的是讨论所有分子动能的平均值,即分子的平均动能。理论和实践均已证明,温度和分子的平均动能有确定的函数关系,因此温度是物体分子平均动能的标志。

2、分子的势能:

由于分子间存在着相互作用力,且分子间又有间隙,分子间的距离可变,这跟物体与地球间的关系相当。物体与地球间存在着相互作用力—重力,物体与地球间有间隙—高度,且距离可变。地球上的重物有势能—由相互作用的物体间相对位置决定的能,那么,分子间也存在着分子势能—由分子间相对位置决定的势能叫分子势能。

因为分子间的相互作用力比较复杂—既存在相互作用的引力又有相互作用的斥力,所以分子势能的规律也是复杂的。当分子间的距离为r0(=10-10m)时,分子处于平衡态势能最低。因为分子间的距离r大于r0时分子间的合作用表现为引力,分子间的距离r小于r0时分子间的合作用表现为斥力,所以,当分子间距离r大于r0时,分子间距离越大分子势能越大,当分子间距离r小于r0时,分子间距离越小分子势能越大。

综上所述,分子势能的大小与分子间的距离是密切相关的。宏观上看物体分子势能的变化可由物体的体积及物体所处的态(固态、液态、气态)决定。

①分子间存在着由相对位置决定的势能叫分子势能。

②分子间势能与分子间的距离的关系可用右图来表示。当分子间的距离大到10r0时,分子间的作用力可认为零,定义比位置势能为零。分子间距离从10r0逐渐小,引力做正功,分子势能减小,到r0时,分子间势能减小到最小。当分子间距离从r0继续减小时,斥力做负功,即要克服斥力做功,分子

间势能增加。

③分子势能与体积有关。

3、物体的内能:

定义:构成物体所有分子动能与势能的总和,叫物体的内能。

显然,物体内能的多少与各分子动能的大小有关,与分子的势能大小有关,与分子的总量有关。宏观上看,物体内能的多少由物体的温度、物体的体积(及所处的态)和物体所包含的分子数决定,即由三个参量决定。

比较两个物体所含内能多少时,目前我们只能讨论相同物质构成的物体。在比较相同物质构成的物体内能时,一定要抓住两者三个参量中的相同因素。如:

1kg的15℃的水与1kg的25℃的水相比,因为分子数相同,分子势能相同,前者分子平均动能小,所以后者的内能多。

1kg的15℃的水与2kg的15℃的水相比,因为分子势能相同,分子的平均动相同,而后者所含分子数多,所以后者的内能多。

1kg的0℃的冰与1kg的0℃的水相比,因为分子数相同,分子的平均动相同,前者分子势能比后者小,所以后者的内能多。

以上比较中它们只有一个参量不同,若有两个或两个以上参量不同时,问题就要复杂的多了。如:

1kg的15℃的水与2kg的25℃的水相比,因为,两者分子势能相同,而分子的平均动能和分子数后者都大于前者,后者所含的内能多是可以确定的。

1kg的0℃的冰与2kg的0℃的水相比,因为,两者分子动能相同,而分子的势能和分子数后者都大于前者,后者所含的内能多也是可以确定的。

1kg的0℃的冰与1kg的25℃的水相比,因为,两者分子数相同,而分子的平均动能和分子势能后者都大于前者,所以,后者所含的内能多也是位移确定的。当然,若1kg的0℃的冰与2kg的25℃的水相比,因为,物体所含的分子数、分子的平均动能和分子势能后者都大于前者,也是好比较的。

但是,在三个参量中有两个相对的不同,在我们不具有定量计算公式的情况下,则不好比较。如:

2kg的0℃的冰与1kg的15℃的水相比,因为,前者分子势能和分子的平均动能都小于后者,而分子数后者却大于前者,具体两者的内能哪个偏大则无法确定。

⒋几个需要说明的问题:

⑴分子势能的大小跟其它势能一样也是相对的。若选分子间的距离无限大时分子势能为零,那么,分子间的距离为r0时,分子势能不但最小且是负的最大值。

⑵物体分子动能、分子势能的大小与物体运动的动能和物体重力势能的大小无关。这两者一个是微观的能量一个是宏观的能量,自身并没有必然的联系。你把一块冰举得再高,且让它具有较大的速度,它的机械能可能很大,但它的内能并没有变。

⑶物体的内能发生变化时,可能仅是物体分子动能发生变化,也可能仅是物体分子势能发生变化,当然可能是分子的动能和势能都发生了变化。

三、热和功:

⒈通过做功可以改变物体的内能。

⑴大家知道摩擦生热的道理,我们把两块冰放在一起互相摩擦对冰做功,过一会冰可以变成水,使原来两块冰的内能(分子势能)增加;给自行车的车胎充气时,人通过气筒压缩气体对气体做功,我们会发现气体的温度升高(使气筒变热),使原来的空气内能(主要是分子的动能)增加。我们也可以举出一些例子说明通过做功不但使物体分子的动能增加还会使物体分子势能增加。总之,外界对物体做功可以使物体的内能增加。

⑵四冲程内燃机工作时,“做功冲程”是高温、高压气体膨胀推动活塞运动对外做功,其特点是气体温度降低(气体分子平均动能减少),气体内能减少。你知道电冰箱能够制冷的基本原理是什么吗?先通过压缩机把致冷剂压缩,在让被压缩的致冷剂在冰箱内的蒸发器中迅速蒸发膨胀对外做功,对外做功的同时致冷剂温度迅速下降。这两个例子说明,物体对外做功(或称外界对物体做负功)时,物体的内能会减少。

综上所述,通过做功的方式可以改变物体的内能。要能理解好这个结论,同学们还要多思考,多注意周围所见的能证明这个结论的实例。

⒉热传递可以改变物体的内能。

⑴用烧热了的电烙铁与焊锡接触,过一段时间焊锡就会熔化。像这样把存在温差的两个物体放在一起,温度较高的物体过一段时间温度会下降,而温度较低的物体过一段时间温度会升高。说明在这个过程中温度较高的物体把一部分内能传递给温度较低的物体(有时把这个过程叙述为温度较高的物体把

一部分热量传递给温度较低的物体),结果使两个物体的温差逐渐减小。这个吸热和放热的过程叫做热传递,能发生热传递的条件是两个物体必须存在温差。

⑵一个物体吸热内能增加;放热内能减小。

⒊关于物体内能的变化。

应该指出的是,做功和热传递的本质是完全不同的。大家知道“功是能量转换多少的量度。”那么,通过做功改变物体内能时,一定存在着内能与其它形式能之间的转化;热传递是内能在物体间转移,能量的形式并没有发生改变。

由上述分析可知:改变物体内能有两种方式,即做功和热传递。做功和热传递在改变物体内能的问题上是完全等效的,并不能由物体内能变化的情况来判定是做功的结果还是热传递的表现。物体内能发生变化也可能是既有做功又有热传递,从能的转化和守恒定律来分析自然可以得到这样的结论:外界对物体所做的功(W)与物体从外界吸收的热量(Q)之和等于物体内能的增量(ΔE)这就是热力学第一定律。热力学第一定律的表达式为:

ΔE=W+Q

1、改变内能的两种方式:做功和热传递都可以改变物体的内能。

2、做功和热传递的本质区别:做功和热传递在改变物体内能上是等效的。但二者本质上有差别。做功是把其他形式的能转化为内能。而热传递是把内能从一个物体转移到另一个物体上。

3、功、热量、内能改变量的关系——热力学第一定律。

①内容:在系统状态变化过程中,它的内能的改变量等于这个过程中所做功和所传递热量的总和。

②实质:是能量转化和守恒定律在热学中的体现。

=+

③表达式:?E W Q

④为了区别不同情况,对?E、W、Q做如下符号规定:

?E> 0 表示内能增加

?E< 0 表示内能减少

Q > 0 表示系统吸热

Q < 0 表示系统放热

W > 0 表示外界对系统做功

W < 0 表示系统对外界做功

四、能的转化和守恒定律:

1、物质有许多不同的运动形式,每一种运动形式都有一种对应的能。

2、各种形式的能都可以互相转化,转化过程中遵守能的转化和守恒定律。

3、能的转化和守恒定律:能量既不能凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。

五、应注意的问题:

1、温度与热量:

①温度:温度是表示物体冷热程度的物理量。从分子动理论观点看,温度是物体分子平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义,对个别分子来说,温度是没有意义的。温度高低标志着物体内部的分子热运动的剧烈程度。温度的变化反映了分子平均动能的变化。

②热量:热量是热传递过程中内能的改变量。离开过程(物体升温降温过程,状态变化过程,燃烧过程等。)讲热量,是没有意义的。

③温度和热量:温度和热量两个完全不同的物理量。它们只是通过热传递过程建立联系。

2、内能与机械能:

①内能:物体内所有分子所具有的动能和势能的总和叫做物体的内能。分子的动能跟温度有关,

分子的势能跟分子间的距离有关,所以物体的内能跟温度、体积有关。内能还跟物体内所含分子的数目有关。

②内能与机械能:内能与机械能是截然不同的。内能是由大量分子的热运动和分子间相对位置所决定的能量。机械能是物体作机械运动和物体形变所决定的能量。机械能可以等于零,而内能永远不会等于零。

第八章 气体

1、 气体的状态:气体状态,指的是某一定量的气体作为一个热力学系统在不受外界影响的条件下,宏观性质不随时间变化的状态,这种状态通常称为热力学平衡态,简称平衡态。所说的不受外界影响是指系统和外界没有做功和热传递的相互作用,这种热力学平衡,是一种动态平衡,系统的性质不随时间变化,但在微观上分子仍永不住息地做热运动,而分子热运动的平均效果不变。

2、气体的状态参量: (1)气体的体积(V )

① 由于气体分子间距离较大,相互作用力很小,气体向各个方向做直线运动直到与其它分子碰撞或与器壁碰撞才改变运动方向,所以它能充满所能达到的空间,因此气体的体积是指气体所充满的容器的容积。(注意:气体的体积并不是所有气体分子的体积之和)

② 体积的单位:米3(m 3) 分米3(dm 3) 厘米3(cm 3) 升(l ) 毫升(ml ) (2)气体的温度(T )

① 意义:宏观上表示物体的冷热程度,微观上标志物体分子热运动的激烈程度,是气体分子的平均动能大小的标志。

② 温度的单位:国际单位制中,温度以热力学温度开尔文(K )为单位。常用单位为摄氏温度。摄氏度(℃)为单位。二者的关系:T=t+273 (3)气体的压强(P )

① 意义:气体对器壁单位面积上的压力。

② 产生:由于气体内大量分子做无规则运动过程中,对容器壁频繁撞击的结果。 ③单位:国际单位:帕期卡(Pa )

常用单位:标准大气压(atm ),毫米汞柱(mmHg ) 换算关系:1atm=760mmHg=×105Pa 1mmHg=

3、气体的状态变化:一定质量的气体处于一定的平衡状态时,有一组确定的状态参量值。当气体的状态发生变化时,一般说来,三个参量都会发生变化,但在一定条件下,可以有一个参量保持不变,另外两个参量同时改变。只有一个参量发生变化的状态变化过程是不存在的。

4、气体的三个实验定律

(1)等温变化过程——玻意耳定律

① 内容:一定质量的气体,在温度不变的情况下,它的压强跟体积成反比。 ② 表达式:

2

2

11V p V p =

或C V P V P V P n n ====......2211 ③ 图象:在直角坐标系中,用横轴表示体积V ,纵轴表示压强P 。一定质量的气体做等温变化时,压强与体积的关系图线在P-V 图上是一条双曲线。若气体第一次做等

温变化时温度是T 1,第地次做等温变化时温度是T 2,从图上可以看出体积相等时,温度高的对应对压强大的,故T 2>T 1。

温度越高,等温线离原点越远。如果采用P-V

1

坐标轴,不同温度下的等温线是过原点

的斜率不同的直线。(如图2) ④等温变化过程是吸放热过程

气体分子间距离约为10-9m ,分子间相互作用力极小,分子间势能趋于零,可以为分子的内能仅由分子的动能确定。温度不变,气体的内能不变,即ΔE=0。气体对外做功时,据热力学第一定律可知,ΔE=0,W<0,Q>0,气体从外界吸热,气体等温压缩时,Q<0,气体放热。所以,等温过程是个吸热或放热的过程。 ⑤玻意耳定律的微观解释

一定质量的气体,分子总数不变。在等温变化过程中,气体分子的平均支能不变,气体分子碰撞器壁的平均冲量不变。气体体积增大几倍,气体单位体积内分子总数减

小为原来的n 1,单位时间内碰撞单位面积上的分子总数也减小为原来的n

1

,当压强减

小时,结果相反。所以,对于一定质量的气体,温度不变时,压强和体积成反比。 ⑥玻意耳定律的适用条件

玻意耳定律是用真实气体通过实验得出的规律。因此这个规律只能在气体压强不太大,温度不太低的条件下适用。 (2)气体的等容变化——查理定律

① 内容A :一定质量的气体,在体积不变的情况下,温度每升高(或降低)1℃,它

的压强的增加(或减少)量等于在0℃时压强的273

1

B :一定质量的气体,在体积不变的情况下,它的压强跟热力学温度成正比。 ② 表达式:A :

27300P t P P t =- 或 )273

1(0t

P P t += P 0-0℃时一定质量的压强(不是大气压)

P t -t ℃时一定质量的压强(不是大气压) B :

2

1

21T T P P = ③ 图象:

A :P-t 图,以直角坐标系的横轴表示气体的摄氏温度t ,纵轴表示气体的压强P ,

据查理定律表达式)273

1(0t

P P t +=可知一定质量气体在体积不变情况下,P-t 图上等容图线是一条斜直线。与纵轴交点坐标表示0℃时压强。等容线延长线通过横坐标-273℃点。等容线的斜率与体积有关,V 大,斜率小。

B :P-T 图,在直角坐标系中,用横轴表示气体的热力学温度,纵轴表示气体的压强,P-T 图中的等容线是一条延长线过原点的倾斜直线。斜率与体积有关,体积越大,斜率越小。(由于气体温度降低到一定程度时,已不再遵守气体查理定律,甚至气体已液化,所以用一段虚线表示。) ④查理定律的微观解释

一定质量的气体,分子总数不变,在等容变化中,单位体积内分子数不变。在气体温度升高时,气体分子的平均动能增大,碰撞器壁的平均冲量增大,气体的压强随温度升高而增大。反之,温度降低时,气体的压强减小。 ⑤查理定律适用条件

查理定理在气体的温度不太低,压强不太大的条件下适用。 (3)等压变化过程——盖·吕萨克定律

① 内容A :一定质量的气体,在压强不变的条件下,温度每升高(或降低)1℃,它

的体积的增加(或减少)量等于0℃时体积的273

1

B :一定质量的气体,在压强不变的条件下,它的体积跟热力学温度成正比。

② 表达式:A :)2731(0t

V V t +=

B :

2

1

21T T V V = ③ 图象:在直角坐标系中,横轴分别表示摄氏温标,热力学温标;纵轴表示气体的体积,一定质量气体的等压图线分别是图5,图6,如果进行两次等压变化,由图可看出温度相同时,P 2对应体积大于P 1对应体积,所以P 2

一定质量的气体,气体的分子总数不变,当它温度升高时,分子的平均动能增大 ,气体的压强要增大。这时使气体的体积适当增大,使单位体积内分子数减小,在单位时间内撞击单位面积器壁的分子数减小,气体压强就可以保持不变。 ⑤ 盖·吕萨克定律的适应范围:

压强不太大,温度不太低的条件下适用。 5、理想气体的状态方程:

(1)理想气体:能够严格遵守气体实验定律的气体,称为理想气体。理想气体是一种理想化模型。实际中的气体在压强不太大,温度不太低的情况下,均可视为理想气体。

(2)理想气体的状态方程:

C T

PV

T V P T V P ==或222111 一定质量的理想气体的状态发生变化时,它的压强和体积的乘积与热力学温度的

比值保持不变。即此值为—恒量。 6、克拉珀龙方程

由气态方程可知=T

PV

恒量,对于1摩尔理想气体取T=273K 时,可计算此恒量R=mol ,R 叫做普适气体恒量。对于任意质量M 的理想气体,其摩尔数为n=u

M

(M-质量,u-摩尔质量)因而有=T

PV u M

R ,此方程叫克拉珀龙方程。 第九章 物态变化

第十章热力学定律

选修3-4

第十一章机械振动

第十二章机械波

第十三章光(1、几何光学)光的反射

1、反射定律

a

b

c

)

)

)

反射光线与入射光线和法线在同一平面内反射光线和入射光线分层法线两侧

反射角等于入射角

?

?

?

?

?

2、镜面反射和漫反射都遵守反射定律

3、反射定律的应用

(1)平面镜对光线的作用

①不改变入射光的性质

②控制光路

?

?

?

??

①不改变入射光的性质:(见图二)

(图二)

②控制光路:

a:平面镜转过θ角,其反射光线转过2θ角(见图三)

b:互相垂直的两平面镜,可使光线平行反向射光(见图四)

c:光线射到相互平行的两平面镜上,出射光线与入射光线平行(见图五)

(2)平面镜成像

①像的形成:如图所示,光源“S”发出的光线,经平面镜反射后, 反射光线的反向沿长线全部交于“S ?”, 即反射光线好像都从点“S ?”。(见图六)

②平面镜成像作用

a . 已知点源S,作图确定像S的位置(见图七)

方法: 根据反射定律作出两条入射光线的反射光线,反射光线的反向沿长线的交点即像S’

b . 已知光源S’位置,作图确定能经平面镜观察到(见图八)

S的像S?,眼睛所在的范围

方法: ①根据成像规律找到S’

②光线好象从S’射出

c.已知眼睛上的位置,作图确定眼睛经平面镜所能观察到的范围.

方法一: 根据反射定律作用(见图九)

方法二: 光线“好象”直接入射眼睛的像E?(见图十)

②平面镜成像规律:正立、等大、虚像、像与物关于平面镜对称

光的折射:

(一)、折射定律:

1、折射现象:

光从一种介质,斜射入另一种介质的界面时,其中一部分光进另一种介质中传播,并且改变了传播方向:这种现象叫折射观察(光由一种介质,垂直界面方向入射另一种介质时传播方向不发生改变)。

2、折射定律:

3、折射率(n ):

①定义:光从真空射入某介质时,入射角正弦和折射角正弦的比,称为该介质的折射率。用n 表

示。 即n

i

r

=

sin sin ②折射率反映了介质对光的折射能力。如图光从真空以相同的入射角i ,入射不同介质时,n 越大,根据折射定律,折射角r 越小,则偏折角θ越大。

③折射率和光在该介质中传播速度有关。

a .折射率等于光在真空中速度c ,与光在介质中速度v 之比。

即n

c v

=

b .由于

c v >。所以n >1

④光疏介质和光密介质:

光疏介质:折射率小的介质叫光疏介质。在光疏介质中,光速较大。 光密介质:折射率大的介质叫光密介质在光密介质中,光速较小。 4、反射和抑射现象中,光路可逆。 (二)全反射: 1、全反射现象:

①光从光密介质射入光疏介质时,折射角大于入射角,当入射角增大到某一角度时,折射光消失,只剩下反射光,光全部被反射回光密介质中,这种现象叫全反射。 ②增大入射角时,不但折射角和反射角增大,光的强度也在变化,即折射光越来越弱;反射光越来越强;全反射时,入射光能量全部反射回到原来的介质中。

2、临界角(A ):

定义:当光从某种介质射向真空时,折射角度为90?时的入射角叫做临界角。 用A 表示。根据折射定律:sin A n

=

1 3、发生全反射的条件: ①光从光密介质入射光疏介质。 ②入射角大于临界角。 (三)棱镜: 1、棱镜的色散:

(1)棱镜对一束单色兴的作用:

一束光从空气,射向棱镜的一侧面时,经过两次折射,出射光相对入射光方向偏折δ角,出射光偏向底边。

(2)棱镜对白光的色散作用:

a .现象:白光通过三棱镜后被分解成不同的色光。并按顺序排列为红、橙、黄、绿、蓝、靛、紫。这种现象称色散现象。

b .说明:①白光是复色光,由不同颜色

的单色光组成。

②各种色光的偏折角度不同,所

以介质对不同色光的折射率

不同。由于n c

v

=

所以各种色 光在同一介质中的传播速度不同。

如图对红光偏折角最小;对红光折射率最小;红光在玻璃中传播速度最大。

对紫光偏折角最大;对紫光折射率最大;紫光在玻璃中传播速度最小。

2、全反射棱镜:

全反射棱镜,为横截面是等腰直角三角形的棱镜它可以将光全部反射,常用来控制光路。(四)、透镜:

1、透镜:是利用光的折射控制光路和成像的光学器材。

①透镜:是两个表面分别为球面(或一面为球面,另一面为平面)的透明体。

凸透镜:中间厚边缘薄的透镜。

凹透镜:中间薄边缘厚的透镜。

②透镜的光心、主轴、焦点和焦距的概念(略)。

③本节研究的内容适用薄透镜、近轴光线。

2、透镜对光线的作用

凸透镜:对光线有会聚作用。

凹透镜:对光线有发散作用。

注意理解:

①透镜对光线的作用,是通过两次折射来实现的。

②从凸透镜射出的光线不一定是会聚光束。

从凹透镜射出的光线也不一定是发散光束。

3、透镜成像规律:

4、透镜成像公式:

(1)公式:111 u v f +=

符号:物距u:取“+”。

像距v:实像取“+”;虚像取“-”。

焦距f:凸透镜取“+”;凹透镜取“-”。

(2)放大率(m):

5、透镜成像光路作图。

(1)三条基本光线。

a.平行主轴的光线,经透镜折射后,出射光线过焦点。

b.过焦点的光线,经透镜折射后平行主轴。

c.过光心的光线,经透镜后不改变方向。

第十三章(2、光的波动性)

一、光的波动性

1、光的干涉

(1)双缝干涉实验

①装置:如图包括光源、单缝、双缝和屏

双缝的作用是将一束光分为两束

②现象:

③产生明暗条纹的条件:

如图两列完全相同的光波, 射到屏上一点时,到两缝的路程差等于波长的整数倍(即半波长的偶数倍),则该点产生明条纹;

到两缝的路程差等于半波长的奇数倍, 则该点产生暗条纹。

即?S=

λ

λ

2

2

?

?

?

?

??

?

?

?

偶数为明条纹

奇数为暗条纹

P

P

④光的干涉现象说明了光具有波动性。

由于红光入射双缝时,条纹间距较宽,所以红光波长较长,频率较小紫光入射双缝时,条纹间距较窄,所以紫光波长较短,频率较大

⑤光的传播速度,折射率与光的波长,频率的关系。

a)v与n的关系:v=c n

b)v,λ和f的关系:v=λf

(3)薄膜干涉

①现象:

单色光照射薄膜,出现明暗相等距条纹

白色光照射薄膜,出现彩色条纹

实例:动膜、肥皂泡出现五颜六色

②发生干涉的原因:是由于前表面的反射光线和反表面的反射光线叠加而成(图1)

③应用:a) 利用空气膜的干涉,检验工作是否平整(图2)

(图1)(图2)

若工作平整则出现等间距明暗相同条纹

若工作某一点凹陷则在该点条纹将发生弯曲

若工作某一点有凸起,则在该点条纹将变为

b) 增透膜

2、光的衍射

(1)现象:

①单缝衍射

a) 单色光入射单缝时,出现明暗相同不等距条纹,中间亮条纹较宽,较亮两边亮

条纹较窄、较暗

b) 白光入射单缝时,出现彩色条纹

②园孔衍射:

光入射微小的圆孔时,出现明暗相间不等距的圆形条纹

③泊松亮斑

光入射圆屏时,在园屏后的影区内有一亮斑

(2)光发生衍射的条件

障碍物或孔的尺寸与光波波长相差不多,甚至此光波波长还小时,出现明显的衍射现象

3、光的电磁说

(1)麦克斯伟计算出电磁波传播速度与光速相同,说明光具有电磁本质

无线电波红外线可见光紫外线X射线 射线组成频率波增大

减小

产生机理在振荡电路

中,自由电

子作周期性

运动产生原子的外层电子受到激发产生的原子的内层

电子受到激

发后产生的

原子核受到

激发后产生

(3)光谱

产生特征

发射光谱连续光谱由炽热的固体、液体和

高压气体发光产生的由连续分布的,一切波

长的光组成

明线光谱由稀薄气体发光产生的由不连续的一些亮线组

吸收光谱高温物体发出的白光,

通过物质后某些波长的

光被吸收而产生的在连续光谱的背景上,由一些不连续的暗线组

成的光谱

③光谱分析:

一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。

第十四章、电磁波

第十五章、相对论简介

选修3-5

第十六章、动量守恒定律

第十七章、波粒二象性

一、光的核子性

1、光电效应

(1)光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。

(2)光电效应的实验规律:

装置:

①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。

③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。

④金属受到光照,光电子的发射一般不超过10-9秒。

2、波动说在光电效应上遇到的困难

波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。所以波动说对解释上述实验规律中的①②④条都遇到困难

3、光子说

(1)量子论:1900年德国物理学家普郎克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量E=hv

(2)光子论:1905年受因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。

即:E=hv

其中h为普郎克恒量

h=×10-34JS

4、光子论对光电效应的解释

金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。

二、波粒二象性

1、光的干涉和衍射现象,说明光具有波动性,光电效应,说明光具有粒子性,所以光具有波粒二象性。

2、个别粒子显示出粒子性,大量光子显示出波动性,频率越低波动性越显着,频率越高粒子性越显着

3、光的波动性和粒子性与经典波和经典粒子的概念不同

(1)光波是几率波,明条纹是光子到达几率较大,暗条纹是光子达几率较小

这与经典波的振动叠加原理有所不同

(2)光的粒了性是指光的能量不连续性,能量是一份一份的光子,没有一定的形状,也不占有一定空间,这与经典粒子概念有所不同

第十八章原子结构

一、原子结构:

1、电子的发现和汤姆生的原子模型:

(1)电子的发现:

1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

(2)汤姆生的原子模型:

1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、α粒子散射实验和原子核结构模型

(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成

①装置:

②现象:

a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数α粒子发生较大角度的偏转

c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

(2)原子的核式结构模型:

由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径小于10-14m,原子轨道半径约10-10m。

3、玻尔的原子模型

(1)原子核式结构模型与经典电磁理论的矛盾(两方面)

a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

(2)玻尔理论

上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:

①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E2-E1

③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道

半径跟电了动量mv的乘积等于h/2π的整数倍,即mvr n h

n

==

2123

π

、、……n为正整数,称量数数

(3)玻尔的氢子模型:

①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,

计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)

氢原子中电子在第几条可能轨道上运动时,氢原子的能量E n ,和电子轨道半径r n 分别为:

E E n r n r n n n =

=???

??=121123、、……

其中E 1、r 1为离核最近的第一条轨道(即n =1)的氢原子能量和轨道半径。即:E 1=-, r 1=×10-10m (以电子距原子核无穷远时电势能为零计算) ②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

其中n =1的定态称为基态。n =2以上的定态,称为激发态。 第十九章、原子核 1、天然放射现象

(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性 放射性元素:具有放射性的元素称放射性元素

天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象 天然放射现象:表明原子核存在精细结构,是可以再分的

(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如图

(1):

2、原子核的衰变:

(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷

数和质量数守恒

γ射线是伴随αβ、衰变放射出来的高频光子流

在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电

子,即:

(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。 一放射性元素,测得质量为m,半衰期为T ,经时间t 后,剩余未衰变的放射性元素的质量为m

m m t T

o

=

2/

3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。

(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。 (2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。 4、原子核的组成和放射性同位素

(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子 在原子核中: 质子数等于电荷数 核子数等于质量数

中子数等于质量数减电荷数

(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用α粒子轰击铝时,发生核反应。

发生+β衰变,放出正电子

三、核能: 1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。 例如:

2、质能方程:爱因斯坦提出物体的质量和能量的关系:

E mc =2——质能方程

3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反

就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。 吸收或放出的能量,与质量变化的关系为:??E mc =2

例:计算??m kg E ==?=-1166061027μ

.?的质量相当的能量

为了计算方便以后在计算核能时我们用以下两种方法

方法一:若已知条件中?m 以千克作单位给出,用以下公式计算 公式中单位:??m kg C m s E J ——;

/;=

方法二:若已知条件中?m 以μ作单位给出,用以下公式计算

公式中单位:Dm kg —; ?E =Mev

4、释放核能的途径——裂变和聚变 (1)裂变反应:

①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。 例如:

②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

链式反应的条件:a b ))裂变物质的体积,超过临界体积

有中子进入裂变物质???

③裂变时平均每个核子放能约1Mev 能量

1kg

全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量

(2)聚变反应:

①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。 例如:12

13

24

01

176H H He n Mev +→++. ②平均每个核子放出3Mev 的能量

③聚变反应的条件;几百万摄氏度的高温

高中物理选修公式

高中物理选修公式 The Standardization Office was revised on the afternoon of December 13, 2020

物理选修3-5公式 一、碰撞与动量守恒 1、动量:p =mv ,矢量,单位:kg ·m/s 2、动量的变化:△p =mv 2-mv 1 (一维) 是矢量减法,一般选初速度方向为正方向 3、动量与动能的关系:k mE p 2=,m p E k 22= 4、冲量: I =Ft ,矢量,单位:N ·s 5、动量定理: I =△p ,或Ft =mv 2-mv 1 (一维) 6、动量守恒定律: m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ (一维) 条件:系统受到的合外力为零. 7、实验——验证动量守恒定律: m 1·OP=m 1·ON+m 2·O ′M 8、弹性碰撞:没有动能损失 021211'v m m m m v +-=,0 2112'v m m v += (牛顿摆中m 1=m 2,故v 1′=0,v 2′=v 0,入射球... 损失的动能最多) 9、完全非弹性碰撞:系统.. 损失的动能最多 m 1v 0=(m 1+m 2)v ′ 10、若m 、M 开始均静止,且系统动量守恒,则:mv 1=Mv 2,ms 1=Ms 2

二、波粒二象性 1、光子的能量:λ hc hv E == v 为光的频率,λ为光的波长 其中h =×10-34J ·s 2、遏止电压:km E mv eU ==2max 2 1 3、爱因斯坦光电效应方程:W mv hv +=2max 2 1 4、光源发出的光子数:hc Pt n λ= 5、康普顿效应——光子的动量:λ h p = 6、德布罗意波的波长:p h =λ 三、原子结构之谜 1、汤姆生用电磁场测定带电粒子的荷质比:2 2d B Eh m q = 2、分子、原子的半径约为10-10m 原子核的半径约为10-14m 核子(质子、中子)的半径约为10-15m 3、巴耳末系(可见光区): 5... 4, ,3 ),121 (122=-=n n R λ 对于氢原子,R =×107m -1 4、氢原子的能级公式和轨道半径公式: 121E n E n =,12r n r n = 其中n 叫量子数,n =1, 2, 3…. E 1=-,r 1=×10-10m 5、能级跃迁:hv =E m -E n 四、原子核

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修3-1公式

高中物理选修3-1公式 第一章 静电场 1、库仑力:221r q q k F = (适用条件:真空中静止的点电荷) k = 9.0×109 N ·m 2/ c 2 静电力常量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场性质的物理量。是矢量。 定义式: q F E = 单位: N / C 或V/m 点电荷电场场强 2r Q k E = 匀强电场场强 d U E = 3、电势能:电势能的单位:J 通常取无限远处或大地表面为电势能的零点。 静电力做功等于电势能的减少量 PB PA AB E E W -= 4、电势: 电势是描述电场能的性质的物理量。是标量。 电势的单位:V 电势的定义式:q E p = ? 顺着电场线方向,电势越来越低。 一般点电荷形成的电场取无限远处的电势为零,在实际应用中常取大地的电势为零。 5、电势差U ,又称电压 q W U = U AB = φA -φB 电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量(侧移距离): 做类似平抛运动 2 22022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角度 2 0tan mdv qUl v at v v x y == = θ 8、电容器的电容: 电容是表示电容器容纳电荷本领大小的物理量。单位:F 定义式: c Q U = 电容器的带电荷量: Q=cU 平行板电容器的电容: kd S c πε4= 平行板电容器与电源的两极相连,则两极板间电压不变

高中物理选修精选公式

高中物理公式定理定律概念大全 选修3-3 第七章 分子动理论 一、分子动理论的基本内容: 分子理论是认识微观世界的基本理论,主要内容有三点。 1、物质是由大量分子组成的。 我们说物质是由大量分子组成的,原因是分子太小了。一般把分子看成球形,分子直径的数量级 是1010 -米。 1摩尔的任何物质含有的微粒数都是×1023个,这个常数叫做阿伏加德罗常数。记作: 阿伏加德罗常数是连接宏观世界和微观世界的桥梁。已知宏观的摩尔质量M 和摩尔体积V ,通过常 数N 可以算出每个分子的质量和体积。 每个分子的质量m M N = 每个分子的体积v V N = 根据上述内容我们不难理解一般物体中的分子数目都是大得惊人的,由此可知物质是由大量分子组成的。 2、分子永不停息地做无规则运动。 ①布朗运动间接地说明了分子永不停息地做无规则运动。 布朗运动的产生原因:被液体分子或气体分子包围着的悬浮微粒(直径约为10 3 -mm ,称为“布朗 微粒”),任何时刻受到来自各个方向的液体或气体分子的撞击作用不平衡,颗粒朝向撞击作用较强的方向运动,使微粒发生了无规则运动。应注意布朗运动并不是分子的运动,而是分子运动的一种表现。 影响布朗运动明显程度的因素:固体颗粒越小,撞击它的液体分子数越少,这种不平衡越明显;固体颗粒越小,质量也小,运动状态易于改变,因此固体颗粒越小,布朗运动越显着。液体温度越高,布朗运动越激烈。 ②热运动:分子的无规则运动与温度有关,因此分子的无规则运动又叫做热运动。 3、分子间存在着相互作用的引力和斥力。 ①分子间同时存在着引力和斥力,实际表现出来的分子力是分子引力和斥力的合力。 ②分子间相互作用的引力和斥力的大小都跟分子间的距离有关。 当分子间的距离r r ==-01010m 时,分子间的引力和斥力相等,分子间不显示作用力;当分子间 距离从r 0增大时,分子间的引力和斥力都减小,但斥力小得快,分子间作用力表现为引力;当分子间距离从r 0减小时,斥力、引力都增在大,但斥力增大得快,分子间作用力表现为斥力。 ③分子力相互作用的距离很短,一般说来,当分子间距离超过它们直径10倍以上,即r >-109m 时,分子力已非常微弱,通常认为这时分子间已无相互作用。

高中物理选修3-1公式

选修3-1公式 第一章、电场 1、电荷先中和后均分:2 2 1q q q += (带正负号) 2、库仑定律:2 2 1r q q k F = (不带正负号) (k=9.0×109 N 〃m 2/C 2 ,r 为点电荷球心间的距 离) 3、电场强度定义式:q F E = 场强的方向:正检验电荷受力的方向. 4、点电荷的场强:2A A r Q k E = (Q 为场源电量) 5、电场力做功:AB AB qU W = (带正负号) 6、电场力做功与电势能变化的关系:P E W ?-=电 7、电势差的定义式:q W U AB AB = (带正负号) 8、电势的定义式:q W AP A = ? (带正负号) (P 代表零势点或无穷远处) 9、电势差与电势的关系:B A AB U ??-= 10、匀强电场的电场强度与电势差的关系: d U E = (d 为沿场强方向的距离) 11、初速度为零的带电粒子在电场中加速: m qU v 2= 12、带电粒子在电场中的偏转: 加速度——md qU a = 偏转量——2 2 2v md l qU y ??= 偏转角——2 tan v md l qU ??= θ 13、初速度为零的带电粒子在电场中加速并偏转: 1 2 2122422dU l U m qU md l qU y =? ?= 14、电容的定义:U Q C = 单位:法拉 F 15、平行板电容器的电容:kd S C ??=πε4 第二章、电路 1、电阻定律:S l R ρ= (l 叫电阻率) 2、串联电路电压的分配:与电阻成正比 2121R R U U =,总U R R R U 211 1+= 3、并联电路电流的分配:与电阻成反比 1221R R I I =,干I R R R I 212 1+= 4、串联电路的总电阻:)( 21nR R R R =+=串 5、并联电路的总电阻:)( 212 1n R R R R R R =+= 并 6、I-U 伏安特性曲线的斜率:R k 1tan == θ 7、部分电路欧姆定律:R U I = 8、闭合电路欧姆定律:r R E I += 9、闭合电路的路端电压与输出电流的关系: r I E U ?-= 10、电源输出特性曲线: 电动势E :等于U 轴上的截距 内阻r :直线的斜率短 I E r ==θtan

高中物理选修的内容和公式

高中物理选修3-1的内容和公式如下,仅供参考 一、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k= 9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=W AB/q=-ΔEAB/q 8.电场力做功:W AB=qUAB=Eqd{W AB:带电体由A到B时电场力所做的功(J),q:带电量 (C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器 14.带电粒子在电场中的加速(V o=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V ot(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表

高中物理选修3-1公式 (1)

高中物理选修3-1公式 电磁学常用公式 库仑定律:F=kQq/r2 电场强度:E=F/q 点电荷电场强度:E=kQ/r2 匀强电场:E=U/d 电势能:E?=qφ 电势差:U??=φ?-φ? 静电力做功:W??=qU?? 电容定义式:C=Q/U 电容:C=εS/4πkd 带电粒子在匀强电场中的运动 加速匀强电场:1/2*mv2 =qU v2 =2qU/m 偏转匀强电场: 运动时间:t=x/v? 垂直加速度:a=qU/md 垂直位移:y=1/2*at? =1/2*(qU/md)*(x/v?)2偏转角:θ=v⊥/v?=qUx/md(v?)2 微观电流:I=nesv 电源非静电力做功:W=εq 欧姆定律:I=U/R 串联电路 电流:I?=I?=I?= …… 电压:U =U?+U?+U?+ …… 并联电路 电压:U?=U?=U?= …… 电流:I =I?+I?+I?+ …… 电阻串联:R =R?+R?+R?+ …… 电阻并联:1/R =1/R?+1/R?+1/R?+ …… 焦耳定律:Q=I2 Rt P=I2 R P=U2 /R 电功率:W=UIt 电功:P=UI 电阻定律:R=ρl/S 全电路欧姆定律:ε=I(R+r) ε=U外+U内 安培力:F=ILBsinθ 磁通量:Φ=BS 电磁感应 感应电动势:E=nΔΦ/Δt

导线切割磁感线:ΔS=lvΔt E=Blv*sinθ 感生电动势:E=LΔI/Δt 高中物理电磁学公式总整理 电子电量为库仑(Coul),1Coul= 电子电量。 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、电路学 1.理想电池两端电位差固定为。实际电池可以简化为一理想电池串连内电阻r。实际电池在放电时,电池的输出电压,故输出之最大电流有限制,且输出电压之最大值等于电动势,发生在输出电流=0时。 实际电池在充电时,电池的输入电压,故输入电压必须大于电动势。 2.若一长度d的均匀导体两端电位差为,则其内部电场。导线上没有电荷堆积,总带电量为零,故导线外部无电场。理想导线上无电位降,故内部电场等于0。 3.克希荷夫定律 a.节点定理:电路上任一点流入电流等于流出电流。 b.环路定理:电路上任意环路上总电位升等于总电位降。 三、静磁学 1.必欧-沙伐定律,描述长的电线在处所建立的磁场

高中物理选修-4公式

高中物理选修3-4公式 第十一章 机械运动 1、简谐运动的表达式 )sin(?ω+=t A x x 表示位移,A 振幅 单位m ω圆频率,单位rad/s,表示简谐运动振动的快慢。f T ππω22== 2、简谐振动的回复力: F=-kx 加速度x m k a -= 3、单摆: 回复力:x l mg F -= 振动周期: g L T π 2= (与摆球质量、振幅无关) 4、弹簧振子周期: k m T π2= 5、共振:驱动力的频率等于物体的固有频率时,物体的振幅最大 第十二章 机械波 1、机械波:机械振动在介质中传播形成机械波。它是传递能量的一种方式。 产生条件:要有波源和介质。 波的分类:①横波:质点振动方向与波的传播方向垂直,有波峰和波谷。 ②纵波,质点振动方向与波的传播方向在同一直线上。有密部和疏部。 波长λ:两个相邻的在振动过程中对平衡位置的位移总是相等的质点间的距离。 f v vT ==λ 注意:①横波中两个相邻波峰或波谷问距离等于一个波长。 ②波在一个周期时间里传播的距离等于一个波长。 波速:波在介质中传播的速度。机械波的传播速度由介质决定。 波速v 波长λ频率f 关系:f T v λλ == (适用于一切波) 注意:波的频率即是波源的振动频率,与介质无关。 第十三章 光 1、规律: (1)光的直线传播规律:光在同一均匀介质中是沿直线传播的。 (2)光的独立传播规律:光在传播时,虽屡屡相交,但互不干扰,保持各自的规律传播。 (3)光在两种介质交界面上的传播规律 ① 光的反射定律:反射光线与入射光线、法线处在同一平面内,反射光线与入射光线分别位于法线的两侧;反射角等于入射角。 ② 光的析射定律: 折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折 固 f

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

高中物理选修-公式总结

十一、恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W =Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成反比)电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3 I并=I1+I2+I3+电压关系U总=U1+U2+U3+ U 总=U1=U2=U3功率分配P总=P1+P2+P3+ P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。11.伏安法测电阻电流表内接法:电流表外接法:电压表示数:U=UR+UA 电流表示数:I=IR+IVRx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件Rx<Rx 便于调节电压的选择条件Rp

人教版高中物理选修3-1知识点归纳总结

物理选修3- 1 知识总结 第一章第1节电荷及其守恒定律 、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分 ,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 、电荷量 1、 电荷量:电荷的多少。 2、 元电荷:电子所带电荷的绝对值 1.6 X 10 19C 3、 比荷:粒子的电荷量与粒子质量的比值。 第一章第2节库仑定律 一、 电荷间的相互作用 1、 点电荷:带电体的大小比带电体之间的距离小得多。 2、 影响电荷间 相互作用的因素 二、 库仑定律: 适用条件为真空中静止点电荷 计算时各量带入绝对值,力的方向利用电性来判断 第一章第3节电场电场强度 、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、 电场强度 1、 检验电荷与场源电荷 2、 电场强度 检验电荷在电场中某点所受的电场力 F 与检验电荷的电荷 q 的比值。 E F 国际单位:NC q 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、 点电荷的场强公式 F . Q E — k —2 q r 四、 电场的叠加 五、 电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线, 曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。 在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比, 成反比,作用力的方向在它们的连线上。 跟它们距离的平方 注意(1) (2)

高中物理选修31公式知识点总结

物理选修3-1电场知识点总结 库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。 QQkF?(静电力常量——k=9.0×109N·m2/C2)r注意1.定律成立条件:真空、点电荷 2.静电力常量——k=9.0×109N·m2/C2(库仑扭秤) 3.计算库仑力时,电荷只代入绝对值 4.方向在它们的连线上,同种电荷相斥,异种电荷相吸 5.两个电荷间的库仑力是一对相互作用力 电场强度 放入电场中某点的电荷受到的电场力与它所带电荷量的比值,叫做这一点的电场强F?E NC / 度,简称场强。国际单位:q电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。即如果Q是正电荷,E的方向就是沿着PQ的连线并背离Q;如果Q是负电荷,E的方向就是沿着PQ的连线并指向Q。(“离+Q而去,向-Q而来”) 电场强度是描述电场本身的力的性质的物理量,反映电场中某一点的电场性质,其大小表示电场的强弱,由产生电场的场源电荷和点的位置决定,与检验电荷无关。数值上等于单位电荷在该点所受的电场力。 1V/m=1N/C

三、点电荷的场强公式 FQ?kE?2qr 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,曲线上某点的切线方向表示场强的方向。 2、电场线的特征 1)、电场线密的地方场强强,电场线疏的地方场强弱 2)、静电场的电场线起于正电荷止于负电荷,孤立的正电荷(或负电荷)的电场线止无穷远处点3)、电场线不会相交,也不会相切 4)、电场线是假想的,实际电场中并不存在 5)、电场线不是闭合曲线,且与带电粒子在电场中的运动轨迹之间没有必然联系 几种典型电场的电场线 1)正、负点电荷的电场中电场线的分布、离点电荷越近,电场线越密,场强越大特点:a 、以点电荷为球心作个球面,电场线处处与球面垂直,b 在此球面上场强大小处处相等,方向不同。 、等量异种点电荷形成的电场中的电场线分布2)特点:a、沿点电荷的连线,场强先变小后 变大 b、两点电荷连线中垂面(中垂线)上,场强方向均相同,且总与中垂面(中垂线)垂直等距离c、在中垂面(中垂线)上,与两点电荷连线的中点0 各点场强相等。

高中物理选修3知识点公式总结

1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。(元电荷常用符号e 自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。 2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。 3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间 9109? =k N ﹒m 2/C 2。 45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。 67、电场线的性质: a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷; b .任何两条电场线不会相交; c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。 9 q E P ?= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。 11A B BA U ?? -=( 电势差的正负表示两点间电势的高低) 12、电势差与静电力做功:q W U = qU W =? 表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。 13 14、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed = 15 电容的单位是法拉(F ) 决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。 ②对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况: 16、带电粒子在电场中运动: ①.带电粒子在电场中平衡。(二力平衡) ②.带电粒子的加速:动力学分析及功能关系分析:经常用2022 121qU mv mv -= ③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电 场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。 t v L 0= ,U d mv qL L md Uq y 202202)v (21=?=

物理选修3-1公式总结

?选修3-1知识点记忆 【第一章 静电场】 1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。(元电荷常用符号e 自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。 2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。 3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间 9109?= k N ﹒m 2/C 2。 45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。 67、电场线的性质: a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷; b .任何两条电场线不会相交; c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。 9 q E P ?= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。 11A B BA U ??- =( 电势差的正负表示两点间电势的高低) 12、电势差与静电力做功:q W U = qU W =? 表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。 1314、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed = 15、带电粒子在电场中运动: ①.带电粒子在电场中平衡。(二力平衡) ②.带电粒子的加速: 2022 121qU mv mv -= ③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电 场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。 t v L 0= ,U d mv qL L md Uq y 2 02 202)v (21=?= 16 电容的单位是法拉(F ) 决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。

最新高中物理选修3-1公式总结

精品文档 精品文档 选修3-1公式 第一章、电场 1、电荷先中和后均分:2 2 1q q q += (带正负号) 2、库仑定律:2 21r q q k F = (不带正负号) (k=9.0×109 N·m 2/C 2,r 为点电荷球心间的距离) 3、电场强度定义式:q F E = 场强的方向:正检验电荷受力的方向. 4、点电荷的场强:2A A r Q k E = (Q 为场源电 量) 5、电场力做功:AB AB qU W = (带正负号) 6、电场力做功与电势能变化的关系: P E W ?-=电 7、电势差的定义式:q W U AB AB = (带正负号) 8、电势的定义式:q W AP A = ? (带正负号) (P 代表零势点或无穷远处) 9、电势差与电势的关系:B A AB U ??-= 10、匀强电场的电场强度与电势差的关系: d U E = (d 为沿场强方向的距离) 11、初速度为零的带电粒子在电场中加速: m qU v 2= 12、带电粒子在电场中的偏转: 加速度——md qU a = 偏转量——2 2 2v md l qU y ??= 偏转角——2 tan v md l qU ??= θ 13、初速度为零的带电粒子在电场中加速并偏转: 1 2 2122422dU l U m qU md l qU y = ? ?= 14、电容的定义:U Q C = 单位:法拉 F 15、平行板电容器的电容:kd S C ??=πε4 第二章、电路 1、电阻定律:S l R ρ= (l 叫电阻率) 2、串联电路电压的分配:与电阻成正比 2121R R U U =,总U R R R U 211 1+= 3、并联电路电流的分配:与电阻成反比 1221R R I I =,干I R R R I 212 1+= 4、串联电路的总电阻:)( 21nR R R R =+=串 5、并联电路的总电阻:)( 212 1n R R R R R R =+= 并 6、I-U 伏安特性曲线的斜率:R k 1tan ==θ 7、部分电路欧姆定律:R U I = 8、闭合电路欧姆定律:r R E I += 9、闭合电路的路端电压与输出电流的关系: r I E U ?-= 10、电源输出特性曲线: 电动势E :等于U 轴上的截距 内阻r :直线的斜率短 I E r ==θtan

高中物理选修3-1_3-2公式

高中物理公式定理定律概念大全 选修3-1 第一章 电场 1、 电荷、元电荷、电荷守恒(A ) (1)自然界中只存在两种电荷:用_丝绸_摩擦过的_玻璃棒_带正电荷,用_毛皮__摩擦过的_硬橡胶棒_带负电荷。同种电荷相互_排斥_,异种电荷相互_吸引_。电荷的多少叫做电荷量_,用_Q_表示,单位是_库仑,简称库,用符号C 表示。 (2)用_摩擦_和_感应_的方法都可以使物体带电。无论那种方法都不能_创造_电荷,也不能_消灭_电荷,只能使电荷在物体上或物体间发生_转移_,在此过程中,电荷的总量_不变_,这就是电荷守恒定律。 2、 库仑定律(A ) (1)内容:真空中两个静止点电荷之间的相互作用力,跟它们电荷量的乘积成正比,跟它们距离的二次方成反比,作用力的方向在它们的连线上。 (2)公式:1 22Q Q F k r 其中k=9.0×109 N ﹒m 2/C 2 3、 电场、电场强度、电场线(A ) (1)带电体周围存在着一种物质,这种物质叫_电场_,电荷间的相互作用就是通过_电场_发生的。 (2)电场强度(场强)①定义:放在电场中某点的电荷所受电场力F 跟它的电荷量的比值 ②公式: E=F /q _由公式可知,场强的单位为牛每库 ③场强既有大小_,又有方向,是矢量。方向规定:电场中某点的场强方向跟正电荷在该点所受的电场力的方向相同。 (3)电场线可以形象地描述电场的分布。电场线的疏密程度反映电场的强弱;电场线上某点的切线方向表示该点的场强方向,即电场方向。匀强电场的电场线特点:距离相等的平行直线。(几种特殊电场的电场线线分布) 4、静电的应用及防止(A ) (1)静电的防止: 放电现象:火花放电、接地放电、尖端放电等。 避雷针利用_尖端放电_原理来避雷:带电云层靠近建筑物时,避雷针上产生的感应电荷会通过针尖放电,逐渐中和云中的电荷,使建筑物免遭雷击。 (2)静电的应用: 静电除尘、静电复印、静电喷漆等。 5、电容器、电容、电阻器、电感器。(A ) (1)两个正对的靠得很近的平行 金属板间夹有一层绝缘材料,就构成了平行板电容器。这层绝缘材料称为电介质。电容器是 容纳电荷的装置。 (2)电容器储存电荷的本领大小用电容表示,其国际单位是法拉(F )。平行板电容器的电

相关文档
最新文档