海德汉伺服驱动编码器

海德汉伺服驱动编码器
海德汉伺服驱动编码器

伺服电机编码器

伺服电机编码器 伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算一种特殊的伺服编码器,市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有可靠,便宜,抗污染等特点,有赶超光电编码器的趋势。 基本信息 ?中文名称 伺服电机编码器 ?OC输出 三极管输出 ?推挽输出 接口连接方便 ?分类 abz uvw 目录1原理 2输出信号 3分类 4正余弦 5维修更换 6注意事项 7选型注意 8订货代码 原理 伺服编码器这个基本的功能与普通编码器是一样的,比如绝对型的有A,A反,B,B反,Z,Z反等信号,除此之外,伺服编码器还有着跟普通编码器不同的地方,那就是伺服电机多数为同步电机,同步电机启动的时候需要知道转子的磁极位置,这样才能够大力矩启动伺服电机,这样需要另外配几路信号来检测转子的当前位置,比如增量型的就有UVW等信号,正因为有了这几路检测转子位置的信号,伺服编码器显得有点复杂了,以致一般人弄不懂它的道理了,加上有些厂家故意掩遮一些信号,相关的资料不齐全,就更加增添了伺服电机编码器的神秘色彩。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率-编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 输出信号 1、OC输出:就是平常说的三极管输出,连接需要考虑输入阻抗和电路回路问题. 2、电压输出:其实也是OC输出一种格式,不过置了有源电路. 3、推挽输出:接口连接方便,不用考虑NPN和PNP问题. 4、差动输出:抗干扰好,传输距离远,大部分伺服编码器采用这种输出. 分类 增量编码除了普通编码器的ABZ信号外,增量型伺服编码器还有UVW信号,国产和早期的进口伺服大都采用这样的形式,线比较多。 增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。

天虹伺服驱动器说明书

永磁同步电机驱动器用户手册 THSR-A/B系列

永磁同步电机驱动器用户手册 -I-目录 一.安装 (1) 1.装时注意事项 (1) 2.环境条件 (1) 二.产品型号对照 (2) 1.伺服驱动器铭牌说明 (2) 2.驱动器型号说明 (2) 三.驱动器外观及面板说明 (3) 四.伺服驱动器尺寸图 (6) 五.伺服电机尺寸图 (8) 六.伺服驱动器与伺服电机搭配对照表 (10) 七.驱动器使用电线规格 (11) 八.控制信号标准接线图 (12) 九.驱动器端子说明 (14) 十.伺服驱动器信号输入输出回路图 (17) 十一.驱动器接线方式 (18) 1.绣花机主轴 (19) 2.绣花机移框 (20) 3.绣花机D轴 (21) 4.绣花机H轴 (22) 十二.参数表 (23) 十三.驱动器异常报警 (24) 附录:主轴/移框参数快速设置 (26) 主轴参数快速设置 (26) 移框参数快速设置 (26)

永磁同步电机驱动器用户手册一. 安装 1.装时注意事项 1)驱动器与电机连线勿拉紧;电源线与控制信号线分开走线,有 30cm的间距,这样可以减小电源对信号线的干扰; 2)接线时,禁止将三相电源接至U、V、W端子上; 3)确保接地良好; 4)电机轴心必须与设备轴心对心良好; 5)通电时,请勿拆卸驱动器、电机、或更改配线; 6)通电运行时,请勿接触散热片,以免烫伤 2.环境条件 本产品驱动器使用环境温度为0°C ~ 50°C。若环境温度超过45°C 以上时,请置于条件通风良好的场所。长时间的运转建议在45°C 以下的环境温度,以确保产品的可靠性能。如果本产品装在配电箱里,那配电箱的大小及通风条件必须让所有内部使用的电子装置没有过热的危险。而且也要注意机器的震动是否会影响配电箱的电子装置。除此之外,使用的条件也包括: ▲无发高热装置的场所; ▲无水滴、蒸气、灰尘及油性灰尘的场所; ▲无腐蚀、易燃性的气、液体的场所; ▲无漂浮性的尘埃及金属微粒的场所; ▲坚固无振动的场所; ▲无电磁噪声干扰的场所。 第1页

新力川伺服驱动使用说明

感谢您使用本产品,本使用操作手册提供LCDA系列伺服驱动器的相关信息。内容包括: ●伺服驱动器和伺服电机的安装与检查 ●伺服驱动器的组成说明 ●试运行操作的步骤 ●伺服驱动器的控制功能介绍与调整方法 ●所有参数说明 ●通讯协议说明 ●检测与保养 ●异常排除 ●应用例解说 本使用操作手册适合下列使用者参考: ●伺服系统设计者 ●安装或配线人员 ●试运行调机人员 ●维护或检查人员 在使用前,请您仔细详读本手册以确保使用上的正确。此外,请将它妥善保存在安全的地点以便随时查阅。下列在您尚未读完本手册时,务必遵守事项: ●安装的环境必须没有水气,腐蚀性气体或可燃性气体。 ●接线时,禁止将三相电源接至马达U、V、W的连接器,因为一旦接错 时将损坏伺服驱动器。 ●接地工程必须确实实施。 ●在通电时,请勿拆解驱动器、马达或更改配线。 ●在通电动作前,请确定紧急停机装置是否随时开启。 ●在通电动作时,请勿接触散热片,以免烫伤。 如果您在使用上仍有问题,请洽询经销商或者本公司客服中心。

安全注意事项 LCDA 系列为一开放型(Open Type )伺服驱动器,操作时须安装于遮蔽式的控制箱内。本驱动器利用精密的回授控制与结合高速运算能力的数字信号处理器(Digital Signal Processor,DSP ),控制IGBT 产生精确的电流输出,用来驱动三相永磁式同步交流伺服马达(PMSM )达到精准定位。 LCDA 系列可使用于工业应用场合上,且建议安装于使用手册中的配线(电)箱环境(驱动器、线材与电机都必须安装于符合环境等级的安装环境最低要求规格)。 在按收检验、安装、配线、操作、维护与检查时,应随时注意以下安全注意事项。 标志[危险]、[警告]与[禁止]代表的含义: ? 意指可能潜藏危险,若未遵守要求可能会对人员造成严 重伤或致命 ? 意指可能潜藏危险,若未遵守可能会对人员造成中度的 伤害,或导致产品严重损坏,甚至故障 ? 意指绝对禁止的行动,若未遵守可能会导致产品损坏, 或甚至故障而无法使用

伺服驱动器的工作原理

伺服驱动器的工作原理 。速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。换一种说法是:

1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为 2、5Nm:如果电机轴负载低于 2、5Nm时电机正转,外部负载等于 2、5Nm时电机不转,大于 2、5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位回馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由

伺服电机旋转编码器旋变安装

伺服电机旋转编码器安装 一.伺服电机转子反馈的检测相位与转子磁极相位的对齐方式 1.永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐 其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示: 图1 因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示: 图2 如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。 在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相(U相)相反电势波形的正弦(Sin)相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴(直轴)与定子坐标系的a轴(U轴)或α轴之间的夹角,这一点有助于图形化分析。 在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示:

DA98伺服驱动器说明书

第一章概述 1.1 产品简介: 交流伺服技术自九十年代初发展至今,技术日臻成熟,性能不断提高,现已广泛应用于数控机床、印刷馐机械、纺织机械、自动化生产线等自动化领域。 DDA98交流伺服系统系国产第一代全数字交流伺服系统,采用国际最新数字信号处理DSP)、大规模可编程门阵列(CPLD)和MISUBISHI智能化功率模块(IPM),集成度高、体积小、保护完善、可靠性好、彩最何必PID算法完成PWM控制,性能已达到国外同类产品的水平。 与步进系统相比,DA98交流伺服系统具有以下优点 ●避免失步现象 伺服电机自带编码器,位置信号反馈至伺服 驱动器,与开环位置控制器一起构成半闭环 控制系统。 ●宽速比、恒转矩 调速比为1:5000,从低速到高速都具有稳 定的转矩特性。 ●高速度、高精度 伺服电机最高转速可达3000rpm,回转定位 精度1/10000r。 〖注〗不同型号伺服电机最高转速不同。 ●控制简单、灵活 通过修改参数可对伺服系统的工作方式、运 行特性作出适当的设置,以适应不同的要求。

1.2 到货检查 1)收货后,必须进行以下检查: (1) 包装箱是否完好,货物是否因运输受损? (2) 核对伺服驱动器和伺服电机铭牌,收到货物是否确系所订货物? (3) 核对装箱单,附件是否齐全? 2)型号意义: (1) 伺服驱动器型号 (示出华中理工大学电机厂STZ 系列) ※1 (04、06……23)对应0.4~2.3KW ※2 ※1:可选配其它国产、进口伺服电机,需订货。驱动器缺省参数仅适配STZ 系列伺服电机, 选配其它伺服电机时,出厂参数已备份在EEPROM 区。恢复出厂参数时应执行恢复备份,不可执行恢复缺省参数操作。 ※2:中小功率(小于等于1.5KW )为标准配置,中功率(大于1.5KW 、小于等于2.3KW )采用 加厚散热器。 〖注〗产品出厂时,上面填写框已按产品型号填写好,请用户与产品铭牌核对。 (2) 伺服电机型号 DA98交流伺服驱动器可与国内外多款伺服电机配套,由用户订货时选择。本手册按华中电机厂生产的伺服电机进行描述,其它型号伺服电机有关资料随伺服电机提供。 光电编码器反馈 电机工作电压H :300V L :200V 额定转速级别 1:低速(1500/2000rpm ) 2:高速(2500/3000rpm ) 零速转矩2、4、5、6、7.5、10…N.m 正弦波驱动伺服电机 电机外径 110:110×110mm 130:130×130mm

伺服电机编码器

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG 断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器

与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏

伺服电机工作原理图

伺服电机工作原理图 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

伺服电机维修之编码器对位调零

伺服电机转子反馈的检测相位与转子磁极相位的对齐方式 论坛中总是有人问及伺服电机编码器相位与转子磁极相位零点如何对齐的问题,这样的问题论坛中多有回答,本人也曾在多个帖子有所回复,鉴于本人的回复较为零散,早就想整理集中一下,只是一直未能如愿,今借十一长假之际,将自己对这一问题的经验和体会整理汇总一下,以供大家参考,或者有个全面的了解。 永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐 其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示: 图1 因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示: 图2 如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据此相位生成与反电势波形一致的正弦型相电流波形了,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系。

在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示: 图3 对比上面的图3和图2可见,虽然U相绕组(红色)的位置同处于电磁场波形的峰值中心(特定角度),但FOC控制下,U相中心与永磁体的q轴对齐,而空载定向时,U相中心却与d轴对齐,也就实现了a轴或|á轴与d轴间的对齐关系,此时相位对齐到电角度0度,电机绕组中施加的转子定向电流的方向为U相入,VW出,由于V相与W相是并联关系,流经V相和W相的电流有可能出现不平衡,从而影响转子定向的准确性。 实用化的转子定向电流施加方法是U入,V出,即U相与V相串联,可获得幅值完全一致的U相和V相电流,有利于定向的准确性,此时U相绕组(红色)的位置与d轴差30度电角度,即a轴或|á轴对齐到与d差(负)30度的电角度位置上,如图所示: 图4 上述两种转子定向方法对应的绕组相反电势波形和线反电势,以及电角度的关系如下图所示,棕色线为a轴或|á轴与d轴对齐,即直接对齐到电角度0点,紫色线为a轴或|á轴对齐到与d差(负)30度的电角度位置,即对齐到-30度电角度点:

伺服电机驱动器的工作原理

伺服电机驱动器的工作原理 伺服驱动器又称为“伺服控制器”、“伺服放大器”,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。 伺服进给系统的要求 1、调速范围宽 2、定位精度高 3、有足够的传动刚性和高的速度稳定性 4、快速响应,无超调 为了保证生产率和加工质量,除了要求有较高的定位精度外,还要求有良好的快速响应特性,即要求跟踪指令信号的响应要快,因为数控系统在启动、制动时,要求加、减加速度足够大,缩短进给系统的过渡过程时间,减小轮廓过渡误差。 5、低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚至半小时内1.5倍以上的过载能力,在短时间内可以过载4~6倍而不损坏。 6、可靠性高 要求数控机床的进给驱动系统可靠性高、工作稳定性好,具有较强的温度、湿度、振动等环境适应能力和很强的抗干扰的能力。 对电机的要求 1、从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r/min或更低速时,仍有平稳的速度而无爬行现象。 2、电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4~6倍而不损坏。 3、为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。 4、电机应能承受频繁启、制动和反转。 常州丰迪电气有限公司是一家专业生产三相步进电机、交流伺服电机、三相伺服电机、伺服电机驱动器、步进电机驱动器的企业,产品主要用于各类数控机床、医疗机械、包装机械、纺织机械等自动化控制领域。公司技术力量雄厚,生产工艺精湛,电机全部采用优质材料,技术性能和质量指标达到国内同类产品的领先水平,丰迪始终以诚信、共赢的经营宗旨立足于市场。下面就由丰迪电气讲述下伺服电机驱动器的工作原理。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。 随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。

da9伺服驱动器说明书

第一章 概述 1.1 产品简介: 交流伺服技术自九十年代初发展至今,技术日臻成熟,性能不断提高,现已广泛应用于数控机床、印刷馐机械、纺织机械、自动化生产线等自动化领域。 DDA98交流伺服系统系国产第一代全数字交流伺服系统,采用国际最新数字信号处理DSP )、大规模可编程门阵列(CPLD )和MISUBISHI 智能化功率模块(IPM ),集成度高、体积小、保护完善、可靠性好、彩最何必PID 算法完成PWM 控制,性能已达到国外同类产品的水平。 与步进系统相比,DA98交流伺服系统具有以下优点 ● 避免失步现象 伺服电机自带编码器,位置信号反馈至伺服 驱动器,与开环位置控制器一起构成半闭环 控制系统。 ● 宽速比、恒转矩 调速比为1:5000,从低速到高速都具有稳 定的转矩特性。 ● 高速度、高精度 伺服电机最高转速可达3000rpm , 回转定位 精度1/10000r 。 〖注〗不同型号伺服电机最高转速不同。 ● 控制简单、灵活 通过修改参数可对伺服系统的工作方式、运 行特性作出适当的设置,以适应不同的要求。 1.2 到货检查 1)收货后,必须进行以下检查: (1) 包装箱是否完好,货物是否因运输受损? (2) 核对伺服驱动器和伺服电机铭牌,收到货物是否确系所订货物? (3) 核对装箱单,附件是否齐全? 2)型号意义: (1) 伺服驱动器型号 DA98

适配伺服电机型号(示出华中理工大学电机厂STZ 系列) ※1 输出功率:两位数字(04、06……23)对应0.4~2.3KW ※2 系列代号 ※1:可选配其它国产、进口伺服电机,需订货。驱动器缺省参数仅适配STZ 系列伺服电机, 选配其它伺服电机时,出厂参数已备份在EEPROM 区。恢复出厂参数时应执行恢复备份,不可执行恢复缺省参数操作。 ※2:中小功率(小于等于1.5KW )为标准配置,中功率(大于1.5KW 、小于等于2.3KW )采用加 厚散热器。 〖注〗产品出厂时,上面填写框已按产品型号填写好,请用户与产品铭牌核对。 (2) 伺服电机型号 DA98交流伺服驱动器可与国内外多款伺服电机配套,由用户订货时选择。本手册按华中电机厂生产的伺服电机进行描述,其它型号伺服电机有关资料随伺服电机提供。 STZ —— HM 3(1DA98伺服驱动器标准附件安装使用手册(本书)1本 安装支架2个 ×8沉头螺钉 4个 插头(DB25孔) 1套 (注1) 插头(DB25针) 1套 (注2) 〖注1〗 配套我厂位置控制器时,与信号电缆(3)米配套提供。 〖注2〗 我厂提供伺服电机时,用户可选择反馈电缆(3米)配套提供。 (2)伺服电机标准附件按伺服电机说明书提供 1.3 产品外观 1) 伺服驱动器外观 2) 伺服电机外观 第二章 安装 光电编码器反馈 电机工作电压H :300V L :200V 额定转速级别 1:低速(1500/2000rpm ) 2:高速(2500/3000rpm ) 零速转矩2、4、5、6、7.5、10…N.m 正弦波驱动伺服电机 电机外径 110:110× 110mm 130:130×130mm

西门子伺服电机编码器的正确安装法

关于西门子伺服电机内置编码器的正确安装方法 一、工作内容 1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613, 1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020, 绝对值编码器为海德汉公司EQN1325.001。 2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一 字改锥各一把,梅花改锥6件套。 3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的 伺服电机内置编码器,做到修旧利废,节约维修费用。 二、操作方法 1、该操作方法和一般操作方法的区别 在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。因此正确安装非常重要。 2、该项技术的操作步骤 2.1拆卸损坏的编码器 关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床

上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。这样第一步工作即告完成。 图1自制专用工具尺寸图 2.2安装海德汉公司ERN1387.001/020或EQN1325.001编码器 2.2.1先安装支持盘 不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。注意事项:确保支持盘面和编码器的底面间距为 5.2mm或12mm。 1.支持盘 2.编码器 图2 1FT606-1FT613/1FK606-1FK613电机内置编码器的支持盘

伺服电机内部结构及其工作原理

创作编号:BG7531400019813488897SX 创作者:别如克* 伺服电机内部结构

伺服电机工作原理

伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、2 6V、36V、115V等多种。

ES+海德汉1313编码器参数表

ON At SC.END SC 号菜单(其它参数一般不用设置)号菜单(其它参数一般不用设置)加大数值,曲线则陡。页码 标准编号 参数 名称 参数值 备注 ﹟0。**号菜单 0?03 加速斜率 0.5cm/s2 0?04 减速斜率 0.6cm/s2 ﹟1。**号菜单 1.06 为最高速度限值 一般设置为电机额定转速 ﹟2。** ﹟3。** 3.05 零速阀值 2 很重要,直接影响停车舒适感 3.08 超速限值 此值自动生成,根据1.06 3.25 编码器相位角 整定出的相位角,U V W 的位置 3. 29 变频器编码器位置 此参数很重要,自学习后断电送电检查是否改变 3.33 编码器转位 0 3.34 编码器脉从数 2048 3.36 编码器电压 5v 3.37  300 3.38 编码器的类型 3.39 编码器终端选择 1 3.40 错误检测级别 1 3.41 编码器自动配置 ﹟4。**号菜单(其它参数不用设置) 加大数值,曲线则陡。

页码 标准编号4.07 对称电流限值200% 4.11 转矩方式选择4 4.12 电流给定滤波器12ms降低电机噪音 4. 13 电流环比例增益自学习生成 4.14 电流环积分增益自学习生成 4.15 电极热时间常数89 4.23 电流给定滤波器110ms降低电机噪音, ﹟5。**号菜单(其它参数不用设置) 5.07 电机额定电流 A按铭牌设定 5.08 电机额定速度 Rmp按铭牌设定 5.09 电机额定电压 380V 5.11 电机极数 20 5.18 PWM开关频率选择 6K HZ ﹟6。**号菜单(不用设置) ﹟7。**号菜单(不用设置) 7.10=0 7.14=0 ﹟8。**号菜单(其它参数不用设置) 8.21 24端子功能选择10.02 运行使能(10.02变频器工作)8.22 25端子输入源18.38 相当于我们主板的多端速输出Y15 8.23 26端子输入源18.37 相当于我们主板的多端速输出Y14 8.24 27端子功能选择19.44 顺时针旋转(上升)8.25 28端子功能选择18.44 逆时针旋转(下降)可以通过18.45=1 改变运行方向 8.26 29端子输入源18.36 相当于我们主板的多端速输出Y13 8.31 24端子输入(出)选择ON 0:输入功能1:输出功能8.3225端子输入(出)选择OFF 0:输入功能1:输出功能﹟16**菜单(其他参数不用设置)

SD伺服驱动器说明书

第一章简介 1.1产品简介 交流伺服技术自八十年代初发展至今,技术日臻成熟,性能不断提高,现已广泛 应用于数控机床、印刷包装机械、纺织机械、自动化生产线等自动化领域。 SDXXX系列交流伺服是本公司自主研发的新一代交流伺服驱动器,主要采用最新的IRMCK201作为核心运算单元,并采用了复杂可编程器件EPLD及三菱智能功率 模块,具有集成度高,体积小,响应速度快,保护完善,可靠性高等一系列优点。适 用于高精度的数控机床、自动化生产线、机械制造业等工业控制自动化领域。 与以往驱动系统相比,SDXXX交流伺服系统具有以下优点: ★伺服电机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。 ★调速比为1:5000,从低速到高速都具有稳定的转矩特性。 ★伺服电机最高转速可达5000rpm,回转定位精度1/10000r(注:不同型号电机最高转速不同)。 ★通过修改参数可对伺服系统的工作方式、运行特性作出适当的设置,以适应不同的要求。 ★改进的空间矢量控制算法,比普通的SPW产M生的力矩更大,噪音更小。 ★高达3倍的过载能力,带负载能力强。 ★完善的保护功能:过流,过压,欠压和编码器故障等保护。 ★监视功能允许显示18个参数状态,包括位置误差,电机转速、反馈脉冲、指令脉冲、电机电流、报警记录等。 ★高适应性,能够适应高速高精度电机,可以配套2~8磁极,400-6000线编码器的各型号电机。 1.2型号意义 1.伺服驱动器型号 SD30MT 功能代码(M:数字量与模拟量兼容) IPM模块的额定电流(15/20/30/50/75A) 采用空间矢量调制方式(SVPWM)的交流伺服驱动器

之山伺服器说明书(ZS-C或ZS-Q)

目录 安全事项 (1) 第一章产品检查与型号说明 (3) 第二章安装 (4) 第三章信号和接线 (8) 第四章参数说明 (15) 第五章面板显示及操作 (25) 第六章运行 (28)

安全事项 欢迎您使用杭州之山科技有限公司生产的纺机专用伺服控制系统。 在产品存放、安装、配线、运行、检查或维修前,用户必需熟悉并遵守以下重要事项,以确保安全地使用本产品。 错误操作可能会引起危险并导致人身伤亡。 错误操作可能会引起危险,导致人身伤害,并可能使设备损坏。 严格禁止行为,否则会导致设备损坏或不能使用。 ● 禁止将产品暴露在有水气、腐蚀性气体、可燃性气体的场合使用。否则会导致 触电或火灾。 ● 禁止将产品用于阳光直射,灰尘、盐分及金属粉露末较多的场所。 ● 禁止将产品用于有水、油及药品滴落的场所。 ● 请将接地端子可靠接地,接地不良可能会造成触电或火灾。 ● 请勿将220V驱动器电源接入380V电源,否则会造成设备损坏及触电或火灾。 ● 请勿将U、V、W电机输出端子连接到三相电源,否则会造成人员伤亡或火灾。 ● 必须将U、V、W电机输出端子和电机接线端子U、V、W一一对应连接,否则电 机可能超速飞车造成设备损失与人员伤亡。 ● 请紧固电源和电机输出端子,否则可能造成火灾。

● 配线请参考线材选择配线,否则可能造成火灾。 ● 当机械设备开始运转前,必须配合合适的参数设定值。若未调整到 合适的设定值,可能会导致机械设备失去控制或发生故障。 ● 开始运转前,请确认是否可以随时启动紧急开关停机。 ● 请先在无负载情况下,测试伺服电机是否正常运行,之后再负载接上,以避免 不必要的损失。 ● 请勿频繁接通、关闭电源,否则会造成驱动器内部过热。 4、运行 ● 当电机运转时,禁止接触任何旋转中的零件,否则会造成人员伤亡。 ● 设备运行时,禁止触摸驱动器和电机,否则会造成触电或烫伤。 ● 设备运行时,禁止移动连接电缆,否则会造成人员受伤或设备损坏。 5、保养或检查 ● 禁止接触驱动器及其电机内部,否则会造成触电。 ● 电源启动时,禁止拆卸驱动器面板,否则会造成触电。 ● 电源关闭5分钟内,不得接触接线端子,否则残余高压可能会造成触电。 ● 禁止在电源开启时改变配线,否则会造成触电。 ● 禁止拆卸伺服电机,否则会造成触电。 本手册所涉及产品为一般工业用途,请勿用于可能直接危害人身安全装置上,如核能装置、航天航空设备、生命保障及维持设备和各种安全设备;如有以上使用

Heidenhain海德汉编码器

Heidenhain海德汉编码器 旋转编码器 (带内置轴承,采用定子联轴器安装) ERN 1000 (微型) ExN 400 (小型) ExN 100 (大直径轴) ExN 1100 (内置马达中) ExN 1300 (内置马达中) (带内置轴承、采用分离联轴器的旋转编码器) ROC/ROQ/ROD 400 (标准尺寸) ROD 1000 (微型) (无内置轴承) ECI/EQI 1300 (机械兼容ECN/EQN 1300) ERO 1200 (小型) ERO 1400 (微型) ECI/EQI 1100 (机械兼容ECN/EQN 1100) 角度编码器(带内置轴承) RCN (绝对式测量) RON (增量式测量) ROD (增量式测量) ECN (绝对式测量) (无内置轴承) ERP 880 ERP 4080 ERP 8080 ERO 6080 ERO 6070 ERO 6180 ERA 4280C ERA 4480C ERA 4880C ERA 4282C ERA 7480C ERA 8480C 模块式磁栅编码器 ERM 200 ERM 2200 ERM 2410 ERM 2200 ERM 2400 ERM 2900 编码器,海德汉编码器常用的都有:ERN1331-1024, ERN1331-2048, ERN1381-2048,ERN1387-2048, ROD431-1024, ROD431-2048, EQN1325-2048, ROD320-2000, ROD320-2500 海德汉编码器常用的都有:ERN1331-1024, ERN1331-2048, ERN1381-2048,ERN1387-2048, ROD431-1024, ROD431-2048, EQN1325-2048, ROD320-2000, ROD320-2500 优势供应德国heidenhain编码器 610系列632系列674系列,675系列,684系列,685系列,510系列 312系列,560系列,562系列,540系列,541系列525系列,310系列,320系列 优势供应德国heidenhain编码器 ERN1381.001-2048, ID: 313453-06, 313453-02 EQN1125.030 Heidenhain Endoder海德汉编码器 ERN1381.020-2048, ID: 385489-06 EQN1325.020-2048, ID: 538234-01 ERN1381-2048, ID:385489-56 EQN1325, ID: 312214-53 ERN1381.040-2048, ID:608290-01 EQN1325.001-2048, ID312214-16 ERN1381.062-2048, ID: 385489-08, 385489-07 EQN1325-2048, ID:538234-51 ERN1387.001-2048, ID:312215-14 EQN1325-2048 ID:515385-01 ERN1387.001-2048.ID:312215-02, 312215-66 EQN1325.048-2048, 655251-01 ERN1387-2048, ID:373787-N6 EQN425,ID:312214-16 海德汉研制生产光栅尺、角度编码器、旋转编码器、数显装置和数控系统。海德汉公司的产品被广泛应用于机床、自动化机器,尤其是半导体和电子制造业等领域。 编码器的性能对电机的重要特性具有决定性影响, 例如: 1. 定位精度 2. 速度稳定性 3. 带宽, 它决定驱动指令的响应时间和抗干扰性能 4. 功率损耗 5. 尺寸 6. 噪声 海德汉(HEIDENHAIN) 产品线丰富, 能为各种旋转电机和直线电机提供恰当的解决方

伺服电机编码器调零

万能增量式光电编码器控制的伺服电机零位调整技巧 下述述两种调法完全取决于你的手工能力和熟练程度, 一般来说, 每款伺服电机都有自己专门的编码器自动调零软件. 不外传仅是出于商业羸 利和技术保密. 如果你是一家正规的维修店,请不要采用以下方法, 应通过正常渠道购买相应的专业设备. 实践证明, 手工调整如果技巧掌握得当, 工作仔细负责, 也可达到同样的效果. 大批量更换新编码器调零方法 第一步: 折下损坏的编码器 第二步: 把新的编码器按标准固定于损坏的电机上 第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V. 第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断 线报警器,把0V线与Z信号线接到断线报警器的两个光耦隔离输入 端上 第五步:在电机转动轮上固定一根二十厘米长的横杆, 这样转动电机时转角精度很容易控制. 第六步:所有连线接好后用手一点点转动电机轮子直到报警器发出报警时即为编码器零位, 前后反复感觉一下便 可获得最佳的位置,经实测用这种方法校正的零位误差极小,很适于批量调整, 经实际使用完全合格. 报警器也可用示波器代替, 转动时 当示波器上的电压波形电位由4V左右跳变0V时或由0V跳变为4V左右 即是编码器的零位.这个也很方便而且更精确.杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱.只要用耳朵感知就行了. 在编码器的转子与定圈相邻处作好零位标记, 然后拆下编码器 第七步:找一个好的电机, 用上述方法测定零位后在电机转轴与处壳相邻处作好电机的机械零位标记.

第八步:引出电机的U V W动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V直流电,通电时间设为2秒左右,观察各个电 机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所作的机械零位标记是同一个位置. 这就是厂方软件固定的电机机械零 位, 当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了. 如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器 的试运行模式来进行测试.有关资料是必须的, 否则不要轻易动手,以免损坏编码器. 第九步:把编码器装上电机后端, 这一步要小心,以确保编码器零位记号和电机械械零位位置无偏移, 最后固定柱头镙钉和可调固定底座.. 对于同类电机来说获得了一个正确的零位位置后以后也就知道了24V的正负极该正确地连接至UVW的哪两个端子上,以后就不必再逐 个搞试验了, 这一型号的编码器调零算是搞定了. 第十步:正确连接电机与伺服放大器,并把工作模式定为试运行,各厂商的测试方式均有些差异, 请仔细阅读说明书, 如无任何硬件损坏, 测试应 当一次成功. 第十一步:用自动调谐功能自动设定合适的PID 数据. 以保证平稳运行的实际需要. 由于损坏的有些电机很难判别电机轴承是否能承受额定高速运转的要 求, 经这样处理的电机还应进行抽样力矩测试和轴承测试, 如果 轴承磨损严重, 应同时更换轴承. 二:应急调零方法, 简单而且实用. 但必须把电机拆离设备并依靠设备来进行调试试好后再装回设备再可. 事实上经过大量的调零试验, 每个伺服电机都有一个角度小于10 度的零速静止区域, 和350度的高速反转区域, 如果你是偶而更换一只编码器 , 这样的做法确实是太麻烦了, 这里有一个很简便的应急方法也能很快搞定. 第一步:拆下损坏的编码器 第二步: 装上新的编码器, 并与轴固定. 而使可调底座悬空并可自由旋转, 把电

相关文档
最新文档