边际函数与弹性函数

边际函数与弹性函数
边际函数与弹性函数

经济数学中的边际与弹性分析3

经济数学中的边际与弹性分析 朱文涛 (健雄职业技术学院 商贸系,江苏 太仓 215411) 摘 要:边际与弹性是经济数学中的重要概念, 是微分学在经济分析中应用的一种有效的方法。本文从经济数学理论中的“边际”和“弹性”出发 ,对目前企业管理中常见的几个问题进行了数学化讨论和数学模型的建立 ,包括最低成本、最优利润和价格变动对销售收入的影响模型等。 关键词:边际;弹性;经济数学 中图分类号:F224 文献标识码:A 边际分析和弹性分析是经济数量分析的重要组成部分,是微分法的重要应用。它密切了数学与经济问题的联系。在分析经济量的关系时,不仅要知道因变量依赖于自变量变化的函数关系,还要进一步了解这个函数变化的速度,即函数的变化率,它的边际函数;不仅要了解某个函数的绝对变化率,还要进一步了解它的相对变化率,即它的弹性函数。经过深层次的分析,就可以探求取得最佳经济效益的途径。 一、 边际及其经济意义 边际作为一个数学概念, 是指函数y= f(x)中变量x 的某一值的“边缘”上y 的变化。它是瞬时变化率, 也就是y 对x 的导数。用数学语言表达为:设函数y= f(x)在(a, b)内可导, 则称导数)('x f 为f(x)在(a, b)内的边际函数;在0x 处的导数值)(0'x f 称为f(x)在0x 处的边际值。根据不同的经济函数,边际函数有不同的称呼,如边际成本、边际收益、边际利润、边际产值、边际消费、边际储蓄等。本文主要分析前三个边际函数的应用。 1、边际成本。在经济学中,把产量增加一个单位时所增加的总成本或增加这一个单位产品的生产成本定义为边际成本 ,边际成本就是总成本函数在所给定点的导数,记作MC= C ′(q)。 2、边际收益。是指销售量增加一个单位时所增加的总收益或增加这一个单位的销售产品的销售收入,是总收入函数在给定点的导数,记作MR= C ′(q)。 3、边际利润。对于利润函数 L (q) = R(q) - C(q) ,定义边际利润为 L ′(q) = R ′(q) – C ′(q)=MR-MC ,表示指销售量增加一个单位时所增加的总利润或增加这一个单位销售量时利润的改变量。 二、边际理论的应用模型 边际分析理论是当代经济理论中数学方法的基础之一,可用来预测商品价格需求量或供给量,确定企业内部生产资料同劳动数量之间最合理的比例;确定企业的最佳规模,直至最合理的分配整个社会的资源等问题。下面主要探讨一下,如何利用边际理论决策最低成本、最优利润,以提高企业经营管理水平。 1. 建立最低成本的模型 从图1可知,由于平均成本包括有产量的增加而始终递减的固定成本,同时它又是按全部产量平均计算的,所以它的曲线由递减转为递增较边际成本曲线为迟。

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

边际、弹性分析经济数学建模课件

一、边际分析 边际的概念. 如果一个经济指标y 是另一个经济指标x 的函数)(x f y =,那么当自变量有改变量x ?时,对应有函数的改变量y ?.在经济学中,当自变量在x 处有一个单位改变量时,所对应的函数改变量为该函数所表示的经济指标在x 处的边际量.例如当生产量在x 单位水平时的边际成本,就是在已生产x 单位产品水平上,再多生产一个单位产品时总成本的改变量,或者可以说是再多生产一个单位产品所花费的成本. 设x 的改变量为x ?时,经济变量y 的改变量为y ?=)()(x f x x f -?+,则相应于x ?,y 的平均变化率是 x x f x x f x y ?-?+=??)()( 由边际的概念,在上式中取1=?x 或1-=?x 就可得到边际量的表达式.但边际概念的定义和计算使我们想到能否用函数)(x f y =的导数作为y 的边际量呢?如果按纯粹的数学概念来讲,似乎行不通,因为导数定义要求自变量增量必须趋向于零,而实际问题中自变量x 的经济意义通常是按计件的产量或销量作为单位的,改变量为小数且趋于零不合乎实际.但我们可以这样考虑,对于现代企业来讲,其产销量的数额和一个单位产品相比是一个很大数目,1个单位常常是其中微不足道的量,可以认为改变一个单位的这种增量是趋近于零的.正是这个缘故,在经济理论研究中,总是用导数 x x f x x f x f x ?-?+='→?)()(lim )(0

表示经济变量y 的边际量,即认为)(x f '的经济意义是自变量在x 处有单位改变量时所引起函数y 的改变数量. 1.边际成本 在经济学中,边际成本定义为产量为x 时再增加一个单位产量时所增加的成本. 成本函数的平均变化率为 x x C x x C x C ?-?+=??)()( 它表示产量由x 变到x +x ?时,成本函数的平均改变量. 当成本函数()C x 可导时,根据导数定义,成本函数在x 处变化率为 x x C x x C x C x ?-?+='→?)()(lim )(0 在经济上我们认为)(x C '就是边际成本.因此,边际成本)(x C '是成本函数)(x C 关于产量x 的一阶导数.,它近似等于产量为x 时再生产一个单位产品所需增加的成本,即 )()1()()(x C x C x C x C -+=?≈' 在实际问题中企业为了生产要有厂房、机械、设备等固定资产,在短期成本函数中作为固定成本0C ,它是常数,而生产中使用劳力,原料、材料、水电等方面的投入随产量x 的变化而改变,生产的这部分成本是可变成本,以)(1x C 记,于是成本函数可表示为 )()(10x C C x C += 此时边际成本为

统计学常用分布及其分位数

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的 分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分 布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t

边际、弹性分析(经济数学建模课件(西安交通大学,戴雪峰)

一、边际分析 边际的概念. 如果一个经济指标y 是另一个经济指标x 的函数)(x f y =,那么当自变量有改变量x ?时,对应有函数的改变量y ?.在经济学中,当自变量在x 处有一个单位改变量时,所对应的函数改变量为该函数所表示的经济指标在x 处的边际量.例如当生产量在x 单位水平时的边际成本,就是在已生产x 单位产品水平上,再多生产一个单位产品时总成本的改变量,或者可以说是再多生产一个单位产品所花费的成本. 设x 的改变量为x ?时,经济变量y 的改变量为y ?=)()(x f x x f -?+,则相应于x ?,y 的平均变化率是 x x f x x f x y ?-?+=??)()( 由边际的概念,在上式中取1=?x 或1-=?x 就可得到边际量的表达式.但边际概念的定义和计算使我们想到能否用函数)(x f y =的导数作为y 的边际量呢?如果按纯粹的数学概念来讲,似乎行不通,因为导数定义要求自变量增量必须趋向于零,而实际问题中自变量x 的经济意义通常是按计件的产量或销量作为单位的,改变量为小数且趋于零不合乎实际.但我们可以这样考虑,对于现代企业来讲,其产销量的数额和一个单位产品相比是一个很大数目,1个单位常常是其中微不足道的量,可以认为改变一个单位的这种增量是趋近于零的.正是这个缘故,在经济理论研究中,总是用导数 x x f x x f x f x ?-?+='→?)()(lim )(0 表示经济变量y 的边际量,即认为)(x f '的经济意义是自变量在x 处有单位改变量时所引起函数y 的改变数量. 1.边际成本 在经济学中,边际成本定义为产量为x 时再增加一个单位产量时所增加的成本. 成本函数的平均变化率为 x x C x x C x C ?-?+=??)()( 它表示产量由x 变到x +x ?时,成本函数的平均改变量. 当成本函数()C x 可导时,根据导数定义,成本函数在x 处变化率为 x x C x x C x C x ?-?+='→?)()(lim )(0 在经济上我们认为)(x C '就是边际成本.因此,边际成本)(x C '是成本函数)(x C 关于产量x 的一阶导数.,它近似等于产量为x 时再生产一个单位产品所需增加的成本,即 )()1()()(x C x C x C x C -+=?≈' 在实际问题中企业为了生产要有厂房、机械、设备等固定资产,在短期成本函数中作为

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

概率分布函数各种类型

Diagram of distribution relationships Probability distributions have a surprising number inter-connections. A dashed line in the chart below indicates an approximate (limit) relationship between two distribution families. A solid line indicates an exact relationship: special case, sum, or transformation. Click on a distribution for the parameterization of that distribution. Click on an arrow for details on the relationship represented by the arrow. Other diagrams on this site:

The chart above is adapted from the chart originally published by Lawrence Leemis in 1986 (Relationships Among Common Univariate Distributions, American Statistician 40:143-146.) Leemis published a larger chart in 2008 which is available online.

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

(完整版)常用连续型分布性质汇总及其关系

常用连续型分布性质汇总及其关系 1. 常用分布 1.1 正态分布 (1)若X 的密度函数和分布函数分别为 ()( )()222222(),.,. x t x p x x F x e dt x μσμσ-----∞= -∞<<+∞=-∞<<+∞ 则称X 服从正态分布,记作()2~,,X N μσ,其中参数,0.μσ-∞<<+∞> (2)背景:一个变量若是由大量微小的、独立的随机因素的叠加结果,则此变量一定是正态变量。测量误差就是由量具零点偏差、测量环境的影响、测量技术的影响、测量人员的心理影响等等随机因素叠加而成的,所以测量误差常认为服从正态分布。 (3)关于参数,μσ: μ是正态分布的的数学期望,即()E X μ=,称μ为正态分布的位置参数。μ为正态分布的对称中心,在μ的左侧和()p x 下的面积为0.5;在 μ的右侧和()p x 下的面积也是0.5, 所以μ也是正态分布的中位数。2σ是正态分布的方差,即2().Var X σ=σ是正态分布的标准差,σ愈小,正态分布愈集中,σ愈大,正态分布愈分散。σ又称为是正态分布的的尺度参数。 (4)称0,1μσ==时的正态分布(0,1)N 为标准正态分布。记U 为标准正态分布变量,()u ?和()u Φ为标准正态分布的密度函数和分布函数。()u ?和()u φ满足:

()()()(); 1.u u u u ??-=Φ-=-Φ (5)标准化变换: 若()2~,,X N μσ则()~0,1.X U N μ σ-= (6)若()2~,,X N μσ则对任意实数a 与b ,有 ()(), ()1(), ()()(),b P X b a P a X b a P a X b μ σμσ μ μσσ-≤=Φ-<=-Φ--<≤=Φ-Φ 0.6826,1,()()()0.9545,2,.0.9973, 3.k P X k k k k k μσ=??-<=Φ-Φ-==??=? (7)特征函数 22 ()exp{}.2t t i t σ?μ=-(标准正态分布2()exp{}2t t ?=-) 1.2.均匀分布 (1)若X 的密度函数和分布函数分别为 1().0a x b P x b a else ?<

商务数学47变化率及相对变化率在经济中的应用—边际分析与弹性分析介绍

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 第四章 导数的应用 §7 变化率及相对变化率在经济中的应用——边际分析与弹性分析介绍 7.1 函数变化率——边际函数 设函数 ()x f y =可导,其导函数()x f '也称为边际函数(marginal function ),记为()x Mf ,即 ()()x f x Mf '=. 差 商 ()()x x f x x f x y ?-?+=??00称为函数 () x f 在 () x x ,x 00?+(或 () 00x ,x x ?+)内的平均变化率(average rate of change ),它表示在 () x x ,x 00?+(或 ()00x ,x x ?+)内 ()x f 的平均变化速度. 函数 ()x f 在点 x x =处的导数 ()0x f '称为()x f 在点0x x =处的变化率,也称为()x f 在点 0x x =处的边际函数值,记为()0x Mf ,即()()00x f x Mf '=.它表示函数()x f 在点0x x =处的 变化速度. 由于 ()x x f dy y 0?'=≈?,当1x =?时,()0x f y '≈?.这说明()x f 在点0x x =处,当自变量x 产生一个单位的改变时,因变量y 近似改变()0x f '个单位.以后,在应用问题中解释边际函 数值的具体意义时我们略去“近似”二字(即直接说成“ () x f 在点 x x =处,当自变量 x 产生一个单位的改变 时,因变量 y 改变 () 0x f '个单位”). 下面介绍几种常见的边际函数: 7.1.1 边际成本 设总成本函数(total cost function )为 ()() x C C x C 10+=,其中 x 为产量, 0C 为固定成本, ()x C 1为可变成本.则平均成本函数(average cost function )为()()()x x C C x x C x C 10+==, 边际成本函数(marginal cost function )为 ()x MC ()()[]()x C x C C x C 1 10'='+='=. 【Note 】显然,总成本、平均成本、边际成本都是产量的函数;总成本、平均成本都与固定成本有关,而边际成本只与可变成本有 关,与固定成本无关. 由于 ()()()()()[]x C x C x 1 x x C x x C x C 2-'=-'=' ()()[]x C x MC x 1 -=,令()0 x C =',可得 ()C x MC =,因此产量水 平满足平均成本等于边际成本这个条件时,平均成本最低.

统计学常用分布及其分位数完整版

统计学常用分布及其分 位数 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

§ 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的 分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时, Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~ 2χ(n),它的分布密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的?? ? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ??? ??Γ21=π。2χ分布是非对称分布,具有可加性, 即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互 独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ? ?+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30 时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。

常见的分布函数

6数理统计的基本概念 6.1 基本要求 1 理解总体、样本(品)、样本容量、简单随机样本的概念。能在总体分布给定情况下,正确无误地写出样本的联合分布,这是本章的难点。 2*了解样本的频率分布、经验分布函数的定义,了解频率直方图的作法。 3 了解χ2分布、t分布和F分布的概念及性质,了解临界值的概念并会查表计算。 4 理解样本均值、样本方差及样本矩的概念。了解样本矩的性质,能借助计算器快速完成样本均值、样本方差观察值的计算。了解正态总体的某些常用抽样分布。 6.2 内容提要 6.2.1 总体和样本 1 总体和个体研究对象的某项特征指标值的全体称为总体(或母体),组成总体的每个元素称为个体。总体是一个随机变量,常用X,Y等来表示。 2 样本从总体中随机抽出n个个体称为容量为n的样本,其中每个个体称为样品,它们都是随机变量。 3 简单随机样本设X1,X2,…,X n是来自总体X的容量为n 的样本,如果这n个随机变量X1,X2,…,X n相互独立且每个样品X i与总体X具有相同的分布,则称X1,X2,…,X n为总体X的简单随机样本。 4 样本的联合分布 *该部分内容考研不作要求。 149

150 若总体X 具有分布函数F (x ),则样本(X 1,X 2,…,X n )的联合分布函数为 ∏== n i i n x F x x x F 1 21) (),,,( 若总体X 为连续型随机变量,其概率密度函数为f (x ),则样本的联合概率密度为 ∏ == n i i n x f x x x f 1 21) (),,,( (6.1) 若总体X 为离散型随机变量,其分布律为P {X =a i }=p i (i =1,2,…n),则样本的联合分布为 ∏=== ===n i i i n n x X P x X x X x X P 1 22 11} {},,,{ (6.2) 其中),,,(21n x x x 为),,,(21n X X X 的任一组可能的观察值。 6.2.2 样本分布 1 频率分布 设样本值(x 1,x 2,…,x n )中不同的数值是x 1*,x 2*,…,x l *,记相应的频数分别为n 1,n 2,…,n l ,其中x 1*< x 2*<…< x l * 且n n l i i =∑=1 。 则样本的频数分布及频率分布可由表6-1给出。

统计学常用分布及其分位数

统计学常用分布及其分 位数 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

§ 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的 分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时, Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~ 2χ(n),它的分布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ??? ??Γ21=π。2χ分布是非对称分布,具有可加性, 即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互 独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且

等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)= )()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30 时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。 3. F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~ 2χ(m ), 则Z=m Y n X 的分布称为第一自由度等于n 、第二自由度等于m 的F 分布,记作Z ~F (n , m ),它的分布密度 p(z)=?????????>++-??? ??Γ??? ??Γ??? ??+Γ?。其他,00,2)(1222222z m n z n m n z m n m n m m n n 请注意:F 分布也是非对称分布,它的分布密度与自由度的次序有关,当Z ~F (n , m )时, Z 1~F (m ,n )。 4. t 分布与F 分布的关系 若X ~t(n ),则Y=X 2~F(1,n )。 证:X ~t(n ),X 的分布密度 p(x )=??? ??Γ?? ? ??+Γ221n n n π2121+-???? ??+n n x 。 Y=X 2的分布函数F Y (y ) =P{Y

常用的概率分布类型及其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2

X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n 件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

X的方差 D(X)=np(1-p) 3.2.3 泊松分布 泊松分布比二项分布更重要。我们从产品受冲击(指瞬时高电压、高环境应力、高负载应力等)而失效的事实引入泊松分布。假设产品只有经过一定的冲击次数后,产品才失效,又设这些冲击满足三个条件: (1)、两个不相重叠的时间间隔内产品所受冲击次数相互独立; (2)、在充分小的时间间隔内发生两次或更多次冲击的机会可忽略不计; (3)、在单位时间内发生冲击的平均次数λ(λ>0)不随时间变化,即在时间间隔Δt内平均发生λΔt次冲击,它和Δt 的起点无关。 则在[0,t]时间内发生冲击的次数X服从泊松分布,其分布概率为: X的期望 E(X)=λt X的方差 D(X)=λt 假设仪表受到n次冲击即发生故障,则仪表在[0,t]时间内的可靠度为: 其中:x =0,1,2,……,λ>0,t>0。

常见分布的期望和方差

常见分布的期望和方差

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞ -∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1 (,)( arctan )( arctan )2 3 x y F x y π π π 2 =++2 2 的概率密度为:2 222 6 (,)(,)(4)(9) f x y F x y x y x y π? = = ??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞-∞+∞ -∞ == ?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞-∞-∞+∞-∞ -∞ =+∞==+∞= ?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

相关文档
最新文档