线性规划问题计算机解法

线性规划问题计算机解法
线性规划问题计算机解法

线性规划问题计算机解法

本节将简要介绍几种软件求解线性规划问题的方法.

1.6.1应用EXCEL求解线性规划问题

以EXCEL2007为例,首先加载EXCEL规划求解加载项,具体操作步骤为:Office按钮——EXCEL选项——加载项——转到——加载宏——规划求解加载项,此时在“数据”选项卡中出现带有“规划求解”按钮的“分析”组.

下面仍然以例1.5为例,说明其求解过程:

1设计电子表格

将模型中的数据直接输入到工作表中并保存文档.其中,A列为说明性文字,A3为决策变量的初始值,可以任意给定,本例均设为0;在D4其中键入“=SUMPRODUCT (B$3:C$3,B4:C4)”或者从直接从函数中选择,SUMPRODUCT是EXCEL的一个内置函数,

,x x初始其功能是两个向量或者矩阵对应元素乘积的和,因此表示表示目标函数值,由于

12

值设为0,因而显示0;同理在D5其中键入“=SUMPRODUCT(B$3:C$3,B5:C5)”,以此类推,其显示值均为0.

2设置规划求解参数

点击“分析”组中的“规划求解”按钮即可弹出如下对话框:

在设计目标目标单元格中键入$D$4,或者直接点击单元格D4,并选择“最大值”选项,如下图所示

点击对话框中“添加”,弹出如下对话框

在“单元格引用位置”栏中键入“$D$ 5”(或点击单元格D5),选择“<=”(点击出现下拉菜单,可以选择其他约束形式),在约束值栏中键入“$F$5”(或点击单元格F5),确定后弹出下面对话框:

类似于上一步操作,添加所有的约束条件后如下图所示:

3 应用规划求解工具:

点击“求解”弹出如下对话框,选择“保存规划求解结果”与“运算结果报告”

确定后则形成一张新的工作表:

如果想得到价值系数、资源向量等条件对最优值的影响,可以在步骤3中选择输出“敏感性报告”.

1.6.1应用LINGO求解线性规划问题

从上面的介绍中看出,用EXCEL求解线性规划问题时操作简单,而其在输入数据方面有其方便之处.但如果决策变量和约束条件很多的话,其运行速度就不及专业的优化软件了.本节介绍一种专业的优化软件--LINGO的使用方法.LINDO 是 Linear Interactive Discrete Optimizer的缩写,是一个线性和整数规划的软件系统. LINDO /386 5.3以上版本,最大规模的模型的非零系数可以达到1,000,000个,最大变量个数可以达到100,000个,最大目标函数和约束条件个数可以达到32000个,最大整数变量个数可以达到100,000个。

仍以例1.5为例, 打开LINGO,点击“File”下拉菜单,选择“new”弹出对话框,在对话框中输入目标函数和约束条件,其格式是:

max=2*x1+3*x2;

x1+2x*2<=8;

4*x1<=16;

4*x2<=12;

如下图所示:

说明:每个表达式以“分号”隔开;如果目标函数是取小,则使用“min=”.

保存文件后点击LINGO弹出下拉菜单,选择“solver”或者直接点击快捷按钮即会输出计算结果报告

和解的状态报告

从上面的介绍看出,在求解线性规划问题时,Lingo 较Excel 更为人性化.但涉及到整数规划和非线性规划问题时,格式有所不同,后面将要介绍.

1.6.1应用MATLAB 求解线性规划问题

针对不同的线性规划模型,MA TLAB 优化工具箱提供不同的命令,具体分以下几种情况:

模型1

min ..0

z CX

s t AX b X =≤??≥? 其命令为 x=linprog (C ,A ,b )

说明:向量C 为行向量;命令用于求目标函数为最小的形式.

模型2

min

0z CX

AX b AeX =be X =≤????≥?

命令为x=linprog (C,A ,b ,Ae,be )

说明:若没有不等式约束b AX ≤存在,则令A=[ ],b=[ ];若没有等式约束,可用模型1中的命令,或者令Aeq=[ ], beq=[ ].

3、模型:

min ..

0e e l u z CX

AX b s t A X =b x X x =≤????≤≤≤?

命令为x=linprog (C ,A ,b ,Ae,be, xl ,xu )

或者 x=linprog (C ,A ,b ,Ae,be, xl ,xu, x0)

说明: 若没有等式约束, 则令A=[ ], b=[ ];若没有等式约束,令Ae=[ ], be=[ ];x0表示初始值.

注:以上命令可以用格式[x,fval]=linprog(…),其含义为返回最优解x及x处的目标函数值fval .

例1:用matlab 优化工具箱计算例1.5线性规划问题

解 新建M 文件如下:

C=[-2 -3];

A=[1 2; 4 0;0 4];

b=[8;16;12];

x=linprog(c,A,b)

保存文件为xxgh1.m ,点击Debug 选择run 或适用快捷键F5,运行结果为

x =

4.0000

2.0000

或者建立如下M 文件:

C=[-2 -3];

A=[1 2; 4 0;0 4];

b=[8;16;12];

Ae=[ ]; be=[ ];

xl=[0;0;0;0;0;0]; (或xl=zeros(6,1))

xu=[ ];

[x,fval]=linprog(c,A,b,[ ],[ ],vl,[ ])

保存并运行,结果为

x =

4.0000

2.0000

fval =

-14.0000

例2

123

123123min 63412030..050

20

z x x x x x x x s t x x =++++=??≥??≤≤??≥?

解: 编写M 文件如下:

C=[6 3 4];

Ae=[1 1 1];

be=[120];

A=[0 1 0];

b=[50];

xl=[30,0,20];

xu=[ ];

[x,fval]=linprog(c,A,b,Ae,be,xl,xu) 保存为xxgh2.m并运行,结果为

x =

30.0000

50.0000

40.0000

fval =

490.0000

运筹学中的线性规划在企业中的应用

线性规划在企业中的运用 摘要:运筹学是一门定量优化的决策科学,而线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,帮助决策人员选择最优方针和决策,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在帮助企业经营决策、计划优化等方面具有重要的作用。 关键词:运筹学;线性规划;应用;企业 运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。 它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。运筹学早期应用在军事领域,二战后转为民用,并且在企业中的应用越来越广泛,取得了良好的经济效益。运筹学的思想贯穿了企业发展的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划(或非线性规划)问题。从应用范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门它都可以发挥作用。线性规划方法具有适应性强,应用面广,计算技术比较简便的特点。其基本思路是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少

线性规划应用案例

线性规划应用案例

市场营销应用 案例一:媒体选择 在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。 REL发展公司正在私人湖边开发一个环湖社区。湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。REL公司已经聘请BP&J 来设计宣传活动。 考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。质量评定是通过宣传质量单位来衡量的。宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。表4-1列出了收集到的这些信息。 表4-1 REL发展公司可选的广告媒体

REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。应当推荐何种广告媒体选择计划呢? 案例二:市场调查 公司开展市场营销调查以了解消费者个性特点、态度以及偏好。专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。市场营销调查公司的目标是以最小的成本满足客户要求。 市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。而且MSI还同意同时开展日间和晚间调查。尤其是,客户的合同要求依据以下限制条款进行1000个访问: ●至少访问400个有儿童的家庭; ●至少访问400个无儿童的家庭; ●晚间访问的家庭数量必须不少于日间访问的家庭数量; ●至少40%有儿童的家庭必须在晚间访问; ●至少60%无儿童的家庭必须在晚间访问。 因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。基于以往的调查研究,预计的访问费用如下表所示: 以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的

线性规划化问题的简单解法

简单线性规划问题的几种简单解法 依不拉音。司马义(吐鲁番市三堡中学,838009) “简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。 简单的线性规划是指目标函数只含两个自变量的线性规划。简单线性规划问题的标准型为: 1112220(0)0(0),(),0(0) m m m A x B y C A x B y C m N z Ax By A x B y C +++≥≤??++≥≤?∈=+???++≥≤?约束条件 目标函数 , 下面介绍简单线性规划问题的几种简单解法。 1. 图解法 第一步、画出约束条件表示的可行区域,这里有两种画可行 区域的方法。 ⑴代点法:直线Ax+By+C=0(c 不为0)的某侧任取一点,把 它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。 ⑵B 判别法:若B>0(<0),则不等式Ax+By+C >0(<0)

表示的区域在直线Ax+By+C=0的上方;若B>0(<0),则不等式Ax+By+C<0(>0)表示的区域在直线Ax+By+C=0的下方。(即若B与0的大小方向跟不等式的方向相同,则可行区域是边界线的上方;若B与0的大小方向与不等式的方向相反,则可信分区域是边界线的下方) 用上面的两种方法画出可行区域是很简单,所以这里不必举例说明。 第二步、在画出的可行区域内求最优解(使目标函数取最大值或最小值的点),这个可以用下面的两种办法解决。 ⑴y轴上的截距法:若b>0,直线y a b x z b =-+所经过可行域上的点使其y轴上的截距最大(最小)时,便是z取得最大值(最 小值)的点;若b<0,直线y a b x z b =-+所经过可行域上的点使其y 轴上的截距最大(最小)时,是z取得最小值(最小值)的点(提醒:截距不是距离,截距可以取正负)。 例1.设x,y满足约束条件 x y y x y +≤ ≤ ≥ ? ? ? ? ? 1 , , , 求z x y =+ 2的最大值、最 小值。 解:如图1作出可行域,因为y的系数1大于0,目标函数z x y =+ 2表示直线y x z =-+ 2在y轴上的截距,当直线过A(1,0) 时,截距值最大z max =?+= 2102,当直线过点O(0,0)时,截距

对偶线性规划理论及其在经济中的应用开题报告

开题报告 信息与计算科学 对偶线性规划理论及其在经济中的应用 一、选题的背景、意义[1] 21世纪中国进入到了一个新的时代,随着经济的快速发展和社会的进步,整个社会运行的各个方面——无论是在政治、经济、文化、科技、军事、外交方面,还是在环境、生态、资源问题方面,都将着眼于解决能否实现的问题扩充到更加重视解决如何优化实现的问题,从解决局部的简单问题扩充到解决系统的复杂问题,从静态地解决问题到动态地解决问题,从解决涉及单一领域的独立发展问题扩充到解决涉及多个领域的协同发展的问题,从通过直接办法解决问题扩充到通过间接的办法解决问题等,都迫切需要线性规划理论及其应用。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们合理利用有限资源制定最佳决策的有利工具。 二、研究的基本内容与拟解决的主要问题 2.1 对偶线性规划理论概述 2.1.1 对偶线性规划理论的发展历程及现状[2] [3] 线性规划理论产生于20世纪30年代。1939年,苏联数学家康托罗维奇在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题。 1947年,美国数学家丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法─单纯形法,为这门学科奠定了基础。1947年,美国数学家诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。 1951年,美国经济学家库普曼斯把线性规划应用到经济领域;1960年,康托罗维奇再次发表《最佳资源利用的经济计算》,创立了享誉全球的线性规划要点,对资源最优分配理论做出了贡献。为此,库普曼斯与康托罗维奇一起获1975年诺贝尔经济学奖。1984年,美国贝尔电话实验室的印度数学家卡马卡提出求解线性规划问题的投影尺度法,这是一个有实用意义的新的多项式时间算法。这个算法引起了人们对内点算法的关注,此后相

线性规划理论在实际问题中的应用

Ⅰ线性规划理论在实际问题中的应用 ⅰ问题背景描述 线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。把线性规划的知识运用到企业中,企业就有必要利用线性规划的知识对战略计划,生产,销售的各个环节进行优化,从而降低生产成本,提高企业的生产效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前矛,有85%的公司频繁地使用线性规划,并取得了显著提高经济效益的效果。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其

有利的条件。线性规划已经成为现代化管理的一种重要的手段。 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际内容,要明确目标函数和约束条件,通过表格的形式把问题中的已知条件和各种数据进行整理分析,从而找出约束条件和目标函数。 从实际问题中建立数学模型一般有以下三个步骤; 1.根据影响所要达到目的的因素找到决策变量; 2.由决策变量和所在达到目的之间的函数关系确定目标函数; 3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。 所建立的数学模型具有以下特点: 1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。 2、目标函数是决策变量的线性函数根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。 3、约束条件也是决策变量的线性函数。 当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。 线性规划模型的基本结构:

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

高二数学最新教案-简单线性规划问题的向量解法 精品

●教学目标 (一)教学知识点 1.线性规划问题,线性规划的意义. 2.线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念. 3.线性规划问题的图解方法. (二)能力训练要求 1.了解简单的线性规划问题. 2.了解线性规划的意义. 3.会用图解法解决简单的线性规划问题. (三)德育渗透目标 让学生树立数形结合思想. ●教学重点 用图解法解决简单的线性规划问题. ●教学难点 准确求得线性规划问题的最优解. ●教学方法 讲练结合法 教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性规划问题. ●教具准备 多媒体课件(或幻灯片) 内容:课本P60图7—23 记作§7.4.2 A 过程:先分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线l0:2x+y=0. 然后,作一组与直线的平行的直线: l:2x+y=t,t∈R (或平行移动直线l0),从而观察t值的变化. ●教学过程 Ⅰ.课题导入 上节课,咱们一起探讨了二元一次不等式表示平面区域,下面,我们再来探讨一下如何应用其解决一些问题. Ⅱ.讲授新课 首先,请同学们来看这样一个问题.

设z =2x +y ,式中变量x 、y 满足下列条件?? ???≥≤+-≤-1255334x y x y x 求z 的最大值和最小值. 分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域. (打出投影片§7.4.2 A) [师](结合投影片或借助多媒体课件) 从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R . 可知,当t 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0. 而且,直线l 往右平移时,t 随之增大. (引导学生一起观察此规律) 在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小. 所以:z m ax =2×5+2=12, z m in =2×1+3=3. 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数. 另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题. 那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. Ⅲ.课堂练习 [师]请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题. (1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件?? ???-≥≤+≤.1,1,y y x x y 解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线 l :2x +y =t ,t ∈R . 可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大 .

线性规划的应用(简介和案例)

线性规划的应用 线性规划是运筹学中一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。广泛应用于军事作战、经济分析、经营管理和工程技术等方面。如:经济管理、交通运输、工农业生为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 线性规划作为运筹学的一个研究较早、发展较快、应用广泛、方法较成熟的重要分支,它在日常生活中的典型应用主要有:1合理利用线材问题:如何下料使用材最少 2配料问题:在原料供应量的限制下如何获取最大利润 3投资问题:从投资项目中选取方案,使投资回报最大 4产品生产计划:合理利用人力、物力、财力等,使获利最大 5劳动力安排:用最少的劳动力来满足工作的需要 6运输问题:如何制定调动方案,使总运费最小 其实,也就是说,线性规划在运筹学中的研究对象主要是在有一定的人力、财力、资源条件下,如何合理安排使用,效益最高和在某项任务确定后,如何安排人、财、物,使之最省。 例如: 某公司现有三条生产线来生产两种新产品,其主要数据如表1.1所示。请问如何生产可以让公司每周利润最大?

表1 产品组合问题的数据表 此问题是在生产线可利用时间受到限制的情形下寻求每周利润最大化的产品组合问题。 在建立产品组合模型的过程中,以下问题需要得到回答: (1)要做出什么决策? (2)做出的决策会有哪些条件限制? (3)这些决策的全部评价标准是什么? (1)变量的确定 要做出的决策是两种新产品的生产水平,记x1为每周生产产品甲的产量,x2为每周生产产品乙的产量。一般情况下,在实际问题中常常称为变量(决策变量)。 (2)约束条件 求目标函数极值时的某些限制称为约束条件。如两种产品在相应生产线上每周生产时间不能超过每条生产线的可得时间,对于生产线一,有x1≤4,类似地,其它生产线也有不等式约束。 (3)目标函数 对这些决策的评价标准是这两种产品的总利润,即目标函数是要求每周的生产利润(可记为z,以百元为计量单位)为最大 这样,可以把产品组合问题抽象地归结为一个数学模型: max z = 3x1+5x2 s.t. x1 ≤4 2x2 ≤12 3x1+ 2x2 ≤18 x1≥0,x2 ≥0

线性规划的常见题型及其解法(教师版,题型全,归纳好)

线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致. 归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用. 本节主要讲解线性规划的常见基础类题型. 【母题一】已知变量x ,y 满足约束条件???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3,则目标函数z =2x +3y 的取值范围为( ) A .[7,23] B .[8,23] C .[7,8] D .[7,25] 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求 直线的截距z b 的最值,间接求出z 的最值. 【解析】画出不等式组???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3, 表示的平面区域如图中阴影部分所示, 由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-2 3 x 知在点B 处目标函数取到最小值,解方程组 ????? x +y =3,2x -y =3,得????? x =2, y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组????? x -y =-1,2x -y =3,得????? x =4,y =5, 所以A (4,5),z max =2×4+3×5=23. 【答案】A

【母题二】变量x ,y 满足???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, (1)设z =y 2x -1,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围; (3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. 点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0 ??? ? x -12表示点(x ,y )和????12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方. 【解析】(1)由约束条件???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, 作出(x ,y )的可行域如图所示. 由 ????? x =1,3x +5y -25=0,解得A ????1,22 5. 由????? x =1, x -4y +3=0,解得C (1,1). 由? ???? x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z = y 2x -1 =y -0x -12 ×12 ∴z 的值即是可行域中的点与????12,0连线的斜率,观察图形可知z min =2-05- 12×12=29 . (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29. (3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4, d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.

非线性规划的概念和原理

第五章 非线性规划的概念和原理 非线性规划的理论是在线性规划的基础上发展起来的。1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。 一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。非线性规划的各种算法大都有自己特定的适用范围。都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。这正是需要人们进一步研究的课题。 5.1 非线性规划的实例及数学模型 [例题6.1] 投资问题: 假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高? 解:令决策变量为j x ,则j x 应满足条件() 10j j x x -= 同时j x 应满足约束条件 1 n j j j a x b =≤∑ 目标函数是要求盈利率()1121 ,,,n j j j n n j j j c x f x x x a x === ∑∑L 最大。 [例题6.2] 厂址选择问题: 设有n 个市场,第j 个市场位置为() ,j j p q ,它对某种货物的需要量为j b ()1,2,,j n =L 。 现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =L 。试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。 解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =L ,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==L L ,则第i 个仓库到第j 个市场的距离为

线性规划的实际应用

密封线 线性规划的实际应用 摘要线性规划模型是科学与工程领域广泛应用的数学模型。本文应用线性规划模型,以 某水库输水管的选择为研究对象,以实现输水管的选择既能保证供水,又能使造价最低为 目标,根据水库的特点和实际运行情况,分析了其输水管选择过程中线性规划模型的建立 方法,并分别通过单纯形法和MATLAB软件进行求解。 关键词线性规划模型单纯形法 MATLAB 一、专著背景简介 《最优化方法》介绍最优化模型的理论与计算方法,其中理论包括对偶理论、非线性规划的最优性理论、非线性半定规划的最优性理论、非线性二阶锥优化的最优性理论;计算方法包括无约束优化的线搜索方法、线性规划的单纯形方法和内点方法、非线性规划的序列二次规划方法、非线性规划的增广Lagrange方法、非线性半定规划的增广Lagrange方法、非线性二阶锥优化的增广Lagrange方法以及整数规划的Lagrange松弛方法。《最优化方法》注重知识的准确性、系统性和算法论述的完整性,是学习最优化方法的一本入门书。 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用-运输问题;以及动态规划的模型、求解、应用-资源分配问题。 二、专著的主要结构内容 《最优化方法》是一本着重实际应用又有一定理论深度的最优化方法教材,内容包括线

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益.

8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策. 3.3 线性规划在运输问题中的应用 运输是物流活动的核心环节,线性规划是运输问题的常用数学模型,利用数学知识可以得到优化的运输方案. 运输问题的提出源于如何物流活动中的运输路线或配送方案是最经济或最低成本的.运输问题解决的是已知产地的供应量,销地的需求量及运输单价,如何寻找总配送成本最低的方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题的条件包括需求假设和成本假设.需求假设指每一个产地都有一个固定的供应量所有的供应量都必须配送到目的地.与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须有出发地满足;成本假设指从任何一个产地到任何一个销地的配送成本和所配送的数量的线性比例关系.产销平衡运输问题的一般提法是: 假设某物资有m个产地a1,a2,?,am;各地产量分别为b1,b2,?,bn,物资从产地Ai运往销地Bj的单位运价为cij,满足:

线性规划的方法及应用

线性规划的方法及应用 1 引言 运筹学最初是由于第二次世界大战的军事需要而发展起来的,它是一种科学方法,是一种以定量的研究优化问题并寻求其确定解答的方法体系.线性规划(Linear Progromming ,简称LP )是运筹学的一个重要分支,其研究始于20世纪30年代末,许多人把线性规划的发展列为20世纪中期最重要的科学进步之一.1947年美国的数学家丹泽格提出了一般的线性规划数学模型和求解线性规划问题的通用方法――单纯形法,从而使线性规划在理论上趋于成熟.此后随着电子计算机的出现,计算技术发展到一个高阶段,单纯形法步骤可以编成计算机程序,从而使线性规划在实际中的应用日益广泛和深入.目前,从解决工程问题的最优化问题到工业、农业、交通运输、军事国防等部门的计划管理与决策分析,乃至整个国民经济的综合平衡,线性规划都有用武之地,它已成为现代管理科学的重要基础之一. 2 线性规划的提出 经营管理中如何有效地利用现有人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现.这类问题可以用数学语言表达,即先根据问题要达到的目标选取适当的变量,问题的目标通常用变量的函数形式(称为目标函数),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件).当变量连续取值,且目标函数和约束条件为线性时,称这类模型为线性规划的模型.有关对线性规划问题建模、求解和应用的研究构成了运筹学中的线性规划分支.线性规划实际上是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解.从而线性规划模型的基本结构为: ①变量:变量又叫未知数,它是实际系统的位置因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如n x x x ,,,21 等. ②目标函数:将实际系统的目标用数学形式表示出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值,利润极大值)或极小值(如成本极小值,费用极小值等等). ③约束条件:约束条件是指实现系统目标的限制因素.它涉及到企业内部条件和外部环境的各个方面,如原材料供应设备能力、计划指标.产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件.约束条件的数学表示有三种,即 ,,,线性规划的变量应为非负值,因为变量在实际问题中所代表的均为实物,所以不能为负. 线性规划问题有多种形式,函数有的要求实现最大化,有的要求最小化;约束条件可以是“ ”,

线性规划问题的解法比较与分析

线性规划问题的解法比较与分析 【摘要】 总结了线性规划问题数学模型各种解法的优势和局限性,结合具体实例介绍一种适用性强,便于理解和记忆的新解法—新两阶段的解题思想和步骤,并通过初等行变换对单纯形法进行了进一步的改进。 关键词: 新两阶段法;换基迭代; 单纯形法; 初等行变换 1.问题的提出 线性规划问题的数学模型的一般表示形式为: 112211112211211222221122 12,max(min)(,)(,)(,),,0n n n n n n m m mn n m n z c x c x c x a x a x a x b a x a x a x b a x a x a x b x x x =++++++≤=≥??+++≤=≥??? ?+++≤=≥?≥? ? 由于有的线性规划问题目标函数求“最大值”,有的求“最小值”;约束条件中数量约束部分有的为“等式”约束,有的为“不等式”约束,故在解线性规划问题数学模型时,除图解法外,通常先规定线性规划问题的标准形式,然后给出标准形式的解法。在此我们规定,线性规划问题数学模型的标准形式为: 112211112211 21122222 1122 12,max ,,0n n n n n n m m mn n m n z c x c x c x a x a x a x b a x a x a x b a x a x a x b x x x =++++++=??+++=?? ? ?+++=?≥? ? 且:0(1,2, )i b i m ≥= 2.新两阶段法 以往,根据标准形式的不同形式的不同特点需要采用不同的解法。常用方法有:单纯形方法,大M 法,两阶段法及对偶单纯形方法等等。 在吕为的《线性规划数学模型的一种新解法》【1】 一文中,给出了适用性强,便于理解和记忆 的新解法——新两阶段法,下面我们结合例题介绍其解题方法和步骤: 例1:求解线性规划问题:

北师大版数学高二必修5第三章4.2、4.3简单线性规划及其应用作业

[学业水平训练] 1.设x ,y 满足???? ?2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y ( ) A .有最小值2,最大值3 B .有最小值2,无最大值 C .有最大值3,无最小值 D .既无最小值,也无最大值 解析:选B.由图像可知z =x +y 在点A 处取最小值,即z m in =2,无最大值. 2.设变量x ,y 满足???? ?x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( ) A .20 B .35 C .45 D .55 解析:选D.作出可行域如图所示. 令z =2x +3y ,则y =-23x +13z ,要使z 取得最大值,则需求直线y =-23x +1 3z 在y 轴上 的截距的最大值,移动直线l 0:y =-2 3x ,可知当l 0过点C (5,15)时,z 取最大值,且z m ax =2×5+3×15=55,于是2x +3y 的最大值为55.故选D. 3.(2013·高考课标全国卷Ⅱ)设x ,y 满足约束条件???? ?x -y +1≥0,x +y -1≥0,x ≤3, 则z =2x -3y 的最小

值是() A.-7 B.-6 C.-5 D.-3 解析:选B.作出不等式组表示的可行域,如图(阴影部分). 易知直线z=2x-3y过点C时,z取得最小值. 由 ?? ? ??x=3, x-y+1=0, 得 ?? ? ??x=3, y=4, ∴z m in=2×3-3×4=-6,故选B. 4.直线2x+y=10与不等式组 ?? ? ??x≥0 y≥0 x-y≥-2 4x+3y≤20, 表示的平面区域的公共点有() A.0个B.1个 C.2个D.无数个 解析: 选B.画出可行域如图阴影部分所示. ∵直线过(5,0)点,故只有1个公共点(5,0). 5.已知实数x,y满足 ?? ? ?? y≥1, y≤2x-1, x+y≤m. 如果目标函数z=x-y的最小值为-1,则实数m等 于() A.7 B.5 C.4 D.3

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决策问题,贴近生活,很好的吧线性规划应用到生活实践中。 1、简单线性问题步骤简单介绍 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际容,要明确目标函数和约束条件,通过表格的形式把问题中的已知

线性规划模型的应用与灵敏度分析正文

线性规划模型的应用与灵敏度分析 第一章线性规划问题 1.线性规划简介及发展 线性规划(Linear Programming)是运筹学中研究最早、发展最快、应用广泛、方法成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写为LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面,为合理利用有限的人力、物力、财力等资源做出的最优决策,提供科学的依据。 线性规划及其通用解法——单纯形法是由美国G.B.Dantzig在1947年研究空军军事规划提出来的。法国数学家傅里叶和瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。1939年苏联数学家康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视[1]。1947年美国数学家丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。1947年美国数学家诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力[2]。1951年美国经济学家库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1954年莱姆基提出对偶单纯形法,1954年加斯和萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年塔克提出互补松弛定理,1960年丹齐克和沃尔夫提出分解算法等。线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究[3]。由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。1979年苏联数学家提出解线性规划问题的椭球算法,并证明它是多项式时间算法。1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法。用这种方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50。现已形成线性规划多项式算法理论。50年代后线性规划的应用范围不断扩大。建立线性规

第三章线性规划的解法习题解答090426y

第三章线性规划的解法 §3.1重点、难点提要 一、线性规划问题的图解法及几何意义 1.图解法。 线性规划问题采用在平面上作图的方法求解,这种方法称为图解法。图解法具有简单、直观、容易理解的特点,而且从几何的角度说明了线性规划方法的思路,所以,图解法还有助于了解一般线性规划问题的实质和求解的原理。 (1)图解法适用于求解只有两个或三个变量的线性规划问题,求解的具体步骤为: 1)在平面上建立直角坐标系; 2)图示约束条件,找出可行域。具体做法是画出所有约束方程(约束条件取等式)对应的直线,用原点判定直线的哪一边符合约束条件,从而找出所有约束条件都同时满足的公共平面区域,即得可行域。求出约束直线之间,以及约束直线与坐标轴的所有交点,即可行域的所有顶点; 3)图示目标函数直线。给定目标函数Z一个特定的值k,画出相应的目标函数等值线; 4)将目标函数直线沿其法线方向向可行域边界平移,直至与可行域边界第一次相切为止,这个切点就是最优点。具体地,当k值发生变化时,等值线将平行移动。对于目标函数最大化问题,找出目标函数值增加的方向(即坐标系纵轴值增大的方向),等值线平行上移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最大值的最优解;对于目标函数最小化问题,找出目标函数值减少的方向(即坐标系纵轴值减少的方向),等值线平行下移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最小值的最优解。 (2)线性规划问题的几种可能结果: 1)有唯一最优解; 2)有无穷多个最优解; 3)无最优解(无解或只有无界解)。 2.重要结论。 (1)线性规划的可行域为一个凸集,每一个可行解对应该凸集中的一个点; (2)每一个基可行解对应可行域的一个顶点。若可行解集非空,则必有顶点存在,从而,有可行解必有基可行解。 (3)一个基可行解对应约束方程组系数矩阵中一组线性无关的列向量,对

相关文档
最新文档